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Abstract—Currently, conventional indoor localization schemes
mainly leverage WiFi-based or Bluetooth-based schemes to locate
the users in the indoor environment. These schemes require to
deploy the infrastructures such as the WiFi APs and Bluetooth
beacons in advance to assist indoor localization. This property
hinders the indoor localization schemes in that they are not
scalable to any other situations without these infrastructures. In
this paper, we propose FootStep-Tracker, an anchor-free indoor
localization scheme purely based on sensing the user’s footsteps.
By embedding the tiny SensorTag into the user’s shoes, FootStep-
Tracker is able to accurately perceive the user’s moving trace,
including the moving direction and distance, by leveraging the
accelerometers and gyroscopes. Furthermore, by detecting the
user’s activities such as ascending/descending the stairs and
taking an elevator, FootStep-Tracker can effectively correlate
with the specified positions such as stairs and elevators, and
further determine the exacted moving traces in the indoor map by
leveraging the space constraints in the map. Realistic experiment
results show that, FootStep-Tracker is able to achieve an average
localization accuracy of 1m for indoor localization, without any
infrastructures having been deployed in advance.

I. INTRODUCTION

Recently, indoor localization schemes have been widely
used to support various applications such as context-aware
or location-based services. Conventional localization schemes
mainly leverage WiFi-based or Bluetooth-based schemes to
locate the users in the indoor environment. These schemes
primarily require the deployment of the infrastructures such
as WiFi APs and Bluetooth beacons in advance to assist
indoor localization. However, for a number of indoor environ-
ments, it is impossible (or rather expensive) to deploy such
a large number of devices as the localization infrastructures.
This property hinders the indoor localization schemes in that
there are not scalable to any other situations without these
infrastructures. Therefore, it is essential to design a brand new
approach for indoor localization without any requirement for
the infrastructure.

Recently, a few researchers have sought to leverage the
devices with embedded sensors, such as smart phones [1–
3] and wearable bracelets, to position and track the indoor
environment users. However, the previous work in positioning
and tracking the users have had the following common limita-
tions: First, they usually put devices like smart phones into the
user’s pant pocket and perceive the user’s movements via the
embedded sensors. They cannot accurately capture the user’s
movements, including the moving directions and distances,

Fig. 1. The SensorTag used in FootStep-Tracker. We embed two tags into
the insoles and use an Android phone to collect and process the sensor data.

due to the inappropriate placement of sensors. Second, they
conventionally estimate the moving distance by counting the
foot steps, while assuming the user’s step length remains to be
a constant value. This approach is not adaptive to the variation
of user’s moving activities, since the user may sometimes walk
with small steps, and sometimes jog with large steps. Third,
they still need to leverage the anchor nodes like the WiFi APs
to help determine the exact position in the map. This increases
their dependence on the surrounding infrastructure.

In this paper, we propose FootStep-Tracker, an anchor-free
indoor localization scheme purely based on sensing the user’s
footsteps. Our novel solution is based on the observation that
the user’s moving activities can be effectively inferred from
his/her footsteps by leveraging the tiny sensors embedded in
shoes, such as accelerometers and gyroscopes. As is shown in
Fig. 1 (a), by embedding the tiny sensor like the SensorTag
[4] into the user’s shoes, FootStep-Tracker is able to accu-
rately perceive the user’s moving traces, including the moving
direction and distance, by leveraging the accelerometers and
gyroscopes. Fig. 1 (b) shows the FootStep-Tracker Android
app. Furthermore, by detecting the user’s activities such as as-
cending/descending the stairs and taking an elevator, FootStep-
Tracker can effectively correlate with the specified positions
such as the stairs and elevators, and further determine the
exact moving traces in the indoor map, by leveraging the space
constraints in the map.

There are several challenges building the indoor localization
scheme purely based on sensing the user’s footsteps. First,
it is difficult to accurately estimate the user’s horizontal step
movements. Since the sensors are embedded in the shoes, they
actually capture the feet’s movement in the air while the user
is moving, and thus the user’s horizontal movement cannot



be directly derived from the collected sensor data. To address
this challenge, we leverage the gyroscope to measure the angle
between the foot’s direction of movement and the ground, and
leverage the accelerometer to measure the actual movement
of the foot. We then build a geometric model to estimate
the horizontal movement. Second, it is difficult to accurately
estimate the user’s moving direction during the movement.
While tracking the user’s foot steps, the angle variation of the
foot steps cannot be directly correlated to the user’s moving
direction. To address this challenge, we build a geometric
model to depict the relationship between the angle variation
of the foot steps and the moving direction, and further derive
the user’s moving direction from the measurements from the
embedded sensors. Third, to realize the indoor localization,
it is essential to determine the exact moving traces in the
indoor map. To address this challenge, we use activity sensing
to effectively figure out the reference positions, such as the
elevators and stairs, and further leverage the space constraints
in the indoor map to filter out those infeasible candidate traces,
so as to fix the moving traces in the indoor map.

We advance the state of the art on positioning and tracking
the users from three perspectives. First, we propose an anchor-
free indoor localization purely based on sensing the user’s
footsteps, without the support of any infrastructure. Second,
we propose efficient solutions to accurately estimate the mov-
ing direction and distance, by only leveraging the low-cost
inertial sensors like accelerometer and gyroscope. Third, we
leverage activity sensing to effectively figure out the reference
positions during the process of tracking the user, so as to
further determine the exact moving traces in the indoor map.

II. RELATED WORK

A. Infrastructure based Indoor Localization
Infrastructure based indoor localization schemes primarily

use wireless signal, such as RF signal and WiFi signal, to lo-
cate the users or objects in the indoor environment. Several lo-
cation algorithms such as Fingerprint[6] and LANDMARC[7]
have been proposed and widely accepted in the academic
area. Yang et al. [9] proposed Tagoram, an object localization
system based on COTS RFID reader and tags. By proposed
Differential Augmented Hologram (DAH), Tagoram can re-
cover the tag’s moving trajectories and achieves a milimeter
location accuracy in tracking mobile RFID tags. Xiao et al.
[10] proposed Nomloc which dynamically adjusts the WLAN
network topology by nomadic WiFi AP to address the per-
formance variance problem. By the proposed space partition
based algorithm and fine-grained channel state information,
Nomloc can effectively mitigate the multipath and NLOS
effects.

B. Infrastructure-free based Indoor Localization
State-of-the-art infrastructure-free based indoor localization

schemes, especially for pedestrian navigation work track the
user by detecting the user’s movement with the IMU sensors,
and dead-reckoning is the most popular scheme which esti-
mate the object’s current position by it’s previous determined

position.[3, 11–17]. Leppäkoski et al. [11] proposed an IMU
sensors, WLAN signals and indoor map combined localization
system. By using extended Kalman filter to combine the sensor
with WLAN signal and particle filter to combine the inertial
data with map information, the diverse data are fused well
to improve the pedestrian dead reckoning. Vidal et al. [12]
present an indoor pedestrian tracking system with the sensor
on the smart phone. Combined with the dead-reckoning and
the gait detecting approach, and aided by the indoor signatures
such as corners, the system have an acceptable location accu-
racy. Wang et al. [13] present UnLoc, which leverage the iden-
tifiable signal signatures of indoor environment which can be
captured by the sensor or WiFi to improve the dead-reckoning
method. With UnLoc, the localization system converge speed
can be effectively improved. Fourati et al. [15] proposed an
Complementary Filter algorithm to process the sensor data,
and combined with Zero Velocity Update (ZVU), the system
can locate the user with high accuracy. Rai el al. developed
ZEE [3], which leverages the smart phone built-in sensors,
tracking the user when he travels in an indoor environment,
and scanning with WiFi signal simultaneously. By combining
the sensors and WiFi, ZEE uses crowdsourcing to locate the
user, achieving a meter-level location accuracy.

Different from the previous work, in this paper, we pro-
pose an anchor-free indoor localization system. By sensing
the user’s foot step and utilizing the reference position and
constraint of the indoor map, FootStep-Tracker track the user’s
location without any deployment of anchor nodes.

III. SYSTEM OVERVIEW

In our system, called FootStep-Tracker, we focus on how to
track the user’s position based on the low-cost inertial sensors
embedded inside the shoes, according to a given indoor map.
Fig.2 shows the framework of FootStep-Tracker. First, the
Activity Classifier is designed to classify the user’s activities
into two activity groups, i.e., walking and reference activities
such as ascending/descending the stairs, and the elevator
ascending/descending, according to the raw sensor data of
gyroscope and accelerometer. In regard to the walking activity,
we measure the moving distance based on the Step Segmen-
tation and Step Length Estimator, and measure the moving
direction based on Moving Direction Estimator. According to
the moving distance and moving direction, we reconstruct the
user’s moving trace relative to the starting point. Meanwhile,
it is possible to derive the reference positions according
to the activity sensing results from the Activity Classifier.
For example, the reference positions can be the elevators
if the activity of elevator ascending/descending is detected.
Furthermore, by leveraging the space constraints in the indoor
map to filter out those infeasible candidate traces, our solution
could finally determine the user’s trace in the indoor map.

The components of FootStep-Tracker are as follows:
1) Activity Classifier. It extracts corresponding features

from the inertial sensor data of human movement, then
it estimates the user’s current activities via the classifica-
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Fig. 2. Framework of FootStep-Tracker. By input the sensors’ data and the
indoor map, FootStep-Tracker outputs the user’s location in time.

tion techniques such as decision tree and hidden Markov
model.

2) Step Segmentation. In regard to the activity of walking,
it splits the sequential inertial sensor data into segments,
each segment represents a complete process of footstep
during walking.

3) Step Length Estimator. It estimates the distance of each
step in the horizontal line. We use a geometric model
to depict the footstep movement and rotation of the foot
during one step, and then project the step length in the
air to the horizontal line, by leveraging the accelerometer
to estimate the step length in the air and the gyroscope
to estimate the projection angle.

4) Moving Direction Estimator. It estimates the turning
angle during the process of walking. We use a geometric
model to depict the relationship between the angle
variation of the foot steps and the moving direction,
and further derive the user’s moving direction from the
measurements from the embedded sensors.

5) Reference Position Estimator. It estimates the reference
positions in the given indoor map, such as elevators and
stairs, according to the results in activity sensing. In this
way, the moving trace can be fixed in the indoor map.

IV. SYSTEM DESIGN

System Deployment. FootStep-Tracker processes the data
captured by the sensors which is embedded in the user’s shoes.
Without loss of generality, we use CC2541 SensorTag[4]
which is produced by TEXAS INSTRUMENTS. We sample the
accelerometer and gyroscope with 20Hz, analysing data and
presenting the result of localization by an android smart phone
carried by the user. For the convenience of further discussion,
we present the axes on the SensorTag coordinate system in
Fig. 3. We denote the three-axis acceleration as a

x

, a
y

, a
z

,
and the three-axis angular velocity as g

x

, g
y

, g
z

.

A. Activity Classifier

Motivation. For the purpose of estimating the moving trace
and reference position, we first need to know what the user
is currently doing. In our scene, we need to classify the
user’s activity into two main classes: walking and reference
activities. If the user is walking, we use the sensor data
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(b) Axes of gyroscope.
Fig. 3. Axes on SensorTag.

to estimate the user’s moving trace. If the user is doing
reference activities, including ascending/descending the stairs
and ascending/descending the elevator, we use it to find the
reference positions in the map. Besides, if the user is detected
as standing still, we keep sensing the sensors.
Observation and Intuition. The acceleration a

z

is strongly
relative with the six activities. That is because when the
user is standing still, the direction of z-axis is along the
vertical direction which is the opposite direction of the gravity.
Besides, the acceleration is constant, which differs from the
periodicity fluctuant acceleration of walking and climbing
stairs. And when the user is moving up or down, such as
ascend/descend the stairs, the foot’s movement is along the
vertical direction which can be sensed well by a

z

.
We first collect a

z

for each activity. Fig.4 shows the
acceleration of different activities. Fig.4 (a) shows that when
the user is standing still, a

z

almost stays constant, and the
amplitude equals to the gravity. Fig.4 (b-d) show that when
the user is walking or ascending/descending the stairs, a

z

changes periodically. Fig.4 (e) shows the process of a user
ascending the elevator. The red box in the figure shows that
the acceleration first gets smaller than the gravity, then gets
larger. While the elevator accelerates to have an upward speed,
the user is under the hypergravity condition and the a

z

is
smaller than the gravity. Then the elevator rises in a constant
speed, with the user’s speed relative to the rest of the elevator.
Meanwhile, the a

z

is equal to the gravity. Finally, the elevator
slows down, the user is under the weightlessness condition,
and a

z

has a negative, but bigger reading than the gravity. Fig.4
(f) shows the the process of an elevator descending which is
a opposite the ascending process.
Solution. To classify the user’s activities, we first segment the
sequential data into windows, then classify the window by a
hybrid method. Generally, the human step frequency is 1Hz
to 3Hz. That is to say, the period of a step will last from
0.3s to 1s. The weightlessness and hypergravity process in the
elevator will commonly last for about 2 seconds. We use a
slide window with size 40, which equals to 2 seconds in time,
to ensure that the window contains an entire step period during
walking or a process of hypergravity and weightlessness.

We classify the window into eight classes, which are the
description shown in the Fig.5. Table I shows the description of
each abbreviation. Firstly, we note that UST, DST and WALK
obviously have a higher variance than EHG, EOW and SS. To
classify this two activities groups, we use a decision tree with
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Fig. 4. Accelerometer data of vertical direction(z-axis, contains the gravity
about -9.8) when the user is standing still, walking, ascending/descending
stairs and taking an elevator.
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TABLE I
LABEL DESCRIPTION

Abbrev Description Abbrev Description
UST ascend the stairs EWL weightlessness in elevator
DST descend the stairs EA ascend the elevator
WALK walking ED descend the elevator
EHG hypergravity in elevator SS stand still

Fig.6 (a) shows the CDF (Cumulative Distribution Function)
plot of the two groups’ window variances of a

z

, which
contains about 700 windows collected among three different
users.

The a
z

almost stays constant when a user is standing still or
is taking an elevator. Meanwhile, it has a larger variance while
the user is walking or ascending/descending stairs. Moreover,
there is an obvious bound between the two groups, which can
be selected as the threshold. There is no such an obvious bound
to classify the UST, DST and WALK. However note that, the
fluctuation of UST, DST and WALK is different as we have
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Fig. 6. CDF of variance and means for different activity.

mentioned before. We use Hidden Markov Model (HMM) for
the classification. To classify EHG, EOW and SS, we also
notice that the mean value of the window is different, caused
by the hypergravity and weightlessness. Fig. 6 (b) shows the
CDF plot of the three activities’ mean values of a

z

window,
which contains about 200 windows collected among three five
different users. Further more, if we estimate the user’s activity
as EHG, then we wait for an EOW, and we say the user is
under EA. If the user is under EOW, we wait for an EHG,
and we say the user is under ED.

B. Step Segmentation
To estimate the length of each step, we first need to split

the raw sequential data into each step. Human walking is a
periodical movement along the moving direction, which has
a specific pattern in sensors’ reading. The direction of y-
axis is almost the same as the moving direction, we do step
segmentation on a

y

and assisted by a
x

and a
z

. Fig.7 shows
the acceleration of three-axis while the user is walking. Note
that, after the foot touches the floor, and before it lifts up, it
is relative static to the ground and the accelerometer have a
constant reading, which we called “static zone”.

The red boxes in Fig.7 shows the “static zone” of accelerom-
eter. To avoid the mistake segmentation caused by the activities
which is similar to walking, such as swing the leg, we also
detect “static zone” on a

x

and a
z

. If the current activity
is walking, Step Segmentation takes the raw data as input,
segmenting a

x

, a
y

, a
z

by “static zones” which contains six
consecutive samples which range from 0± 0.5 on a

x

, a
y

and
�9.8± 0.5 on a

z

. We extract the window between the “static
zone” window for each axis. And get intersection elements of
the three as our segmented data for the current step.
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Fig. 7. the data of accelerometer of walking.



C. Step Length Estimator
Motivation. For the purpose of depicting the user’s moving
trace, we need the user’s moving distance. Different users have
different step length according to their figure. For a specific
user, lot of existing step length estimation schemes are based
on the assumption that the step length is invariable during a
period of time. While we believe that the user’s step length
may change frequently in some cases, such as walking with
small steps and jogging with large steps. Step Length Estimator
estimates the length step by step, which can sensing the change
of the user’s stride in time.
Challenge. The step length is not exactly the length of the
foot’s moving trace in the air. Instead, as depicted by the red
dotted line in Fig.8, it is the moving trace’s projection on the
ground. Therefore, we cannot directly derive the step length
by the double integral on a

y

.
Observation and Intuition. Fig.8 (a) depicts the moving
process of the feet. As shown in the figure, the y-axis is not
always horizontal, we project it on the horizontal plane and
denote it as foot direction, and the angle between the y-axis
direction and foot direction as ✓.

Fig.8 (b) shows the sensor’s data corresponding to (a). As
shown in Fig.3, in the sensor’s coordinate system, the forward
direction is positive of a

y

and the anticlockwise direction is
positive of x-axis of g

x

. At phase (1), the foot is relative static
to the ground, corresponding to a few zero values on a

y

and
g
x

. At phase (2), the foot actually does not have a forward
acceleration. But the heel uplifts, leading to a negative reading
in g

x

. As the y-axis is no longer horizontal, a
y

is slightly less
than zero caused by the gravity. We denoted the time at begin
of phase (2) as uplift time, i.e., T

u

. At phase (3), the foot starts
to move forward. Instep moving upwarp, leading to a positive
reading in g

x

. The entire foot accelerates forward and causes a
positive reading in a

y

. We denoted the time at begin of phase
(3) as liftoff time, i.e., T

l

. At phase (4), the foot decelerates to
static, touch the land and the instep downwarps. We denoted
the time at begin of phase (4) as landing time, i.e., T

d

. At
phase (5), the heel touches down the land and rests again. We
denote the time at begin of phase (5) as rest time, i.e., T

r

.
Besides, due to the toe in and toe out, the forward horizontal

acceleration along the foot direction can not represent that
along the moving direction. Fig.9 depicts the situation. a

x

denotes the x-axis acceleration, a
m

denotes the acceleration
along the moving direction, and a

f

is the acceleration along
the horizontal foot direction. There is an angle ' between the
moving direction and foot direction. The relationship of the
three acceleration a

m

, a
f

, a
x

can be represent as Eq.(1).
a
m

= a
f

cos(') + a
x

sin(') (1)

Given the segmented sensor data by Step Segmentation, we
first extract the critical time, including uplift time, liftoff time,
landing time and rest time. Then we estimate the step length by
integral on the a

m

from liftoff time to landing time. Lastly,
as we embedded sensor in both shoes, we use double feet
calibration to reduce the error further, getting the calibrated
step length.

moving
direction
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x-axis direction
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direction

φ

(a)

φ
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Fig. 9. The toe-in and toe-out situation.

Critical Time Extraction. As we mentioned above, only the
foot’s movement in phase (3) leads to the displacement which
happens between the uplift time and liftoff time. Besides, the
angle ✓ changes from uplift time to landing time. So we extract
the critical time, which is uplift time, liftoff time, landing time
and rest time. Given the segmented data by Step Segmentation,
which only contains the phase (2)-(4) data, FootStep-Tracker
extracts critical times in the data sequences. At the uplift time,
the heel uplifts, the g

x

starts to be negative, but a
y

is slightly
less than zero. We extract backward from the segment, taking
the time when g

x

starts to be negative as uplift time. At the
liftoff time, the foot just starts to move forward. We extract
among the segment, taking the time when a

y

(t) < 0, and
a
y

(t + 1) is positive as liftoff time. At the landing time, the
heel touch the ground, a

y

declines to negative. At the rest
time, g

x

and a
y

start to be zero again. We extract the first
time when ay, gx become zero.

Algorithm 1: Critical Time Extraction.
Input: Sequential data a

y

, g
x

, Segmented data for current
step D

s

Output: Uplift time T
u

, liftoff time T
l

, landing time T
d

,
rest time T

r

1 Find the T
u

backward from the beginning of D
s

until the
data at time t satisfies that g

x

(t� 1) = 0, g
x

(t) < 0;
2 Find the T

l

backward from the beginning of D
s

until the
data at time t that satisfies that a

y

(t) < 0, a
y

(t+ 1) > 0;
3 Find the T

d

forward from the end of D
s

until the the
data at time t satisfies that a

y

(t� 1) > 0, a
y

(t) < 0;
4 Find the T

r

forward from the end of D
s

until the the
data at time t satisfies that g

x

(t), a
y

(t) is equal to zero;
5 return T

u

, T
l

, T
d

, T
r

;

Step Length Estimation. The red dotted line in Fig.8 shows
that the step length is not the foot’s moving tracing in the air,
but it’s projection on the ground. Eq.(2) shows that the forward
acceleration along the foot direction a

f

can be calculated by
a
y

,a
z

, and the angle ✓ at each time. We project a
y

, a
z

on the
horizontal plane, and compound them as a

f

.

a
f

(t) = a
y

(t)cos(✓(t)) + a
z

(t)sin(✓(t)), t 2 [Tl ,Td ] (2)

Eq.(3) calculates the angle between y-axis direction and foot
direction for each time. As the instep starts to roll at uplift
time, we do the integral on x-axis gyroscope from uplift time,
getting the angle ✓ at each time t.

✓(t) =

Z
t

Tu

g
x

(t) dt, t 2 [Tu ,Tr ] (3)
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To calibrate the acceleration from toe-in and toe-out prob-
lem, Eq. (4) gives the way to get the acceleration along the
moving direction.

a
m

(t) = a
f

(t)cos(') + a
x

(t)sin('), t 2 [Tl ,Td ] (4)

Having the acceleration along the moving direction, we can
finally get the displacement of the current step by Eq.(5).

S =

Z
Td

Tl

Z
t

0

Tl

a

m

(t) dtdt0

=

Z
Td

Tl

Z
t

0

Tl

(a
f

(t)cos(') + a

x

(t)sin(')) dtdt0

= S

x

+ S

y

+ S

z

(5)

Here S
x

, S
y

, S
z

is the real acceleration’s projection on the
accelerometer’s three-axis, which are Eq.(6).

S

x

=

Z
Td

Tl

Z
t

0

Tl

(a
x

(t)sin(')) dtdt0

S

y

=

Z
Td

Tl

Z
t

0

Tl

(a
y

(t)cos(✓(t))cos(')) dtdt0

S

z

=

Z
Td

Tl

Z
t

0

Tl

(a
z

(t)sin(✓(t))cos(')) dtdt0

(6)

As depicted in Fig.10, to get the angle ', we let the user to
walking ahead for a constant distance s. Then we do double
integral on the a

f

to get the displacement along the foot
direction s

f

. As the angle between the �s
f

and �s is ',
we can estimate the angle ' by ' = arccos( �s

�sf
). Besides,

s
f

is equal to the sum of �s
f

, and s is equal to the sum of
�s. Therefore, we can estimate the angle by ' = arccos( s

sf
).

Fig.11 (a) shows the raw data a
y

and calibrated data a
m

.
Figure (b) shows the corresponding displacement. We do
integral on raw data and on calibrated data. For raw data,
we got an estimated step length of 1.86m. For the calibrated

s

φ φ φ φ φ

sf

sssss

sfsf sf sf sf

Fig. 10. Estimate the angle '.

data, we got an estimated step length of 1.11m. Referring to
the ground-truth 1.23m, our calibration reduces the error from
0.63m to 0.12m.
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Fig. 11. Case study of the step length estimator.

Double feet based calibration. To further reduce the error
accumulation, FootStep-Tracker embeds two sensors in both
feet and respectively estimates step length. Having the intu-
itions that the distance between the two feet can not be too
large at any time, if the difference of displacement for each
foot is more than one meter, we chose the mean of them as
the displacement, and restart the estimation process.

D. Moving Direction Estimation

Motivation and Challenge. To depict the user’s moving trace,
we also need to figure out the user’s moving direction. As
we embed the sensor in the shoes, we should estimate the
relatively variety angle of foot when the user make turns
according to the inertial sensor readings. And furthermore, due



to the different walking habits of different user, the relatively
variety angle of moving direction is not exactly the angle of
foot direction. So we need to estimate the moving direction
by the measured foot direction.
Observation and Intuition. When the users are turning
left/right, they always take the gravity direction as the axis. As
depicted in Fig.1 (b), the direction of z-axis is opposite to the
gravity direction. Thus we measure the g

z

, which is strongly
relative with the turning movement.

φi+1

βi

γ

df

dm

φi

O

dm
df

αi

df   foot direction  
dm  moving direction

do

do

λ
λ

Fig. 12. Foot direction and moving direction

For a specific user, we assume the angle between the foot
direction, i.e., d

f

, and moving direction, i.e., d
w

, is invariable
during his walking process. The assumption is reasonable in
our scene. That is because for a person, the degree of toe-in
and toe-out is almost constant in a long time. For the propose
of getting the turning degree, which is ↵

i

, we rely on the
following theorem,

Theorem 1. Assume the angle ' between the foot direction,
i.e., d

f

, and moving direction, i.e., d
m

, is invariable. Then the
degree of the turning, i.e., ↵

i

, is equal to the relatively variety
angle of moving direction, i.e., �

i

.

Proof. Without loss of generality, as shown in Fig.12, the user
makes a turning with angle of degree ↵ around the point O.
Let the direction from O to the foot as d

o

, the foot direction
as d

f

, the moving direction as d
m

, the angle between the foot
direction and moving direction are '

i

and '
i+1, the variety

angle of foot direction is �
i

, and the variety angle of moving
direction is �. Since d

w

is orthogonal to d
o

, then ↵
i

= �.
As the vertically opposite angles is equal, we can have that
� + '

i

+ � = �
i

+ '
i+1 + �. According to the assumption,

'
i

= '
i+1, then � = �

i

. So we have ↵
i

= �
i

.

Moving Direction Estimation. FootStep-Tracker use low-pass
filter to extract the turning steps from the steps of walking
straight ahead. Besides, for a single turning step, we find
that the actual time which makes the foot turn is during
phase (3), from the liftoff time to the landing time. That is
because at phase (1)-(2), the heel lift up, preparing the forward
movement. And at the phase (4)-(5), the foot is under the
landing process. At those time, the feet has no rotation around
the z-axis. To divide each phase, we need to extract the critical
times, which is already given by Algorithm 1.

By getting the liftoff time and landing time by algorithm
1, we calculate the turning degree by Eq.(7). As the foot is
swing around the z-axis of gyroscope, we integral on g

z

from
liftoff time to landing time, getting the turning degree of foot
direction �

i

of the current step. And according to Theorem
1, we have the turning degree of the moving direction for the
current step ↵

i

is equal to �
i

. For a n-step turning process, we
then sum the ↵

i

up to get the turning degree ↵ for one foot
by equation ↵ =

P
n

i=1 ↵i

. Then we use the mean of the two
feet as the turning degree.

↵
i

= �
i

=

Z Td

Tl

g
z

(t) dt (7)

E. Reference Position Estimator
By Step Length Estimator and Moving Direction Estimator,

we can accurately estimate the user’s moving trace. However,
we still need to fix the moving trace into the global indoor
map. To determine the location of the user by the moving trace
and the indoor map, we have two basic intuitions. First, the
user’s moving trace is constrained by the topological structure
of indoor environment, which is to say that the user can
not walking through the wall. Second, due to the reference
position, such as elevators and stairs are fixed in the indoor
map, we can accurately locate the user when he/she is doing
the reference activities.

To locate the user, and further track the user in the indoor
environment, we adopt Snake Game[18] strategy as depicted
in Fig. 14. As shown in (a), the user firstly taking an elevator,
then turning right after walking a short distance. At this time,
there are three possible location according to the moving
trace and the position of elevator. When it comes to (b), the
user keep walking. Limited by the topological structure of
indoor environment, the infeasible moving trace (2) and (3)
are filtered out, and the trace (1) is the actual moving trace of
the user.

(1)
(2) (3)

(a) Feasible traces.

(1)
(2) (3)

(b) Filter out infeasible traces.
Fig. 14. Snake Game strategy.

As we have got the class of the user’s activity by Activity
Classifier, if the user is ascending/descending an elevator or
ascending/descending the stairs, we find the elevator or stairs’
location in the given indoor map as the reference position.
After employing Snake Game strategy, we determine the actual
user’s moving trace and location. Then we keep tracking the
user’s location in time by the moving trace.

V. PERFORMANCE EVALUATION

A. Implementation
Hardware: As shown in Fig.1 (a), our system consists

of a TEXAS-INSTRUMENTS CC2541 SensorTag[4]. and a
SAMSUNG Galaxy S5 Android smart phone.
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Fig. 13. Performance Evaluation. (a) Activity Classifier performance. (b) Location error when user walking along a long corridor. (c) CDF of Step Length
Error (d) Moving Direction Estimator performance. (e) Classified Moving Direction Estimator performance. (f) Location error with number of steps. (g)
Location error with number of turns. (h) Location error for each user.

Software: Fig.1 (b) shows the FootStep-Tracker app. We
implement our system in Java on the Android platform. The
sensor transmit data to the smart phone via Bluetooth. The
smart phone locates and tracks the user by the given sensor
data, and provides Graphical User Interface to the user.

B. Experiment Setting
We embed the FootStep-Tracker into user’s shoes, collecting

sensor data, and then analyzing the data by the smart phone
carried by the user. The SensorTag’s sample frequency is set
as 20 Hz, and it is embedded in the insole as depicted in
Fig.3. We chose our department building with 56m⇥63m as
the indoor environment of the evaluation. We evaluate our
scheme by the following two metrics-classification accuracy
and location error. Classification accuracy calculated by the
percentage of the number of window which is rightly classified
of the wrongly classified. Location error evaluate the error
in meter and degree from the ground-truth for Step Length
Estimator and Moving Direction Estimator.

C. Evaluate the Activity Classifier
Activity Classifier could accurately classify the mentioned

activities with an accuracy over 96.2%. To evaluate the
accuracy of the Activity Classifier, we collect data for each of
the six mentioned activities. For each activity, we collect about
500 windows of accelerometer and gyroscope data among
three different users. Then we use them to train the HMM
model and to determine the threshold for the decision tree
offline. We perform the classifier on the previous three users
and five new users online. They ascend/descend the stairs,
walk and take elevator 10 times for each in the environment.
Fig.13 (a) shows the accuracy of Activity Classifier on the
collected data. For the part of decision tree, which is to classify
SS, EHG and EWL, it is more accurate than the part of

HMM. This is because SS, EHG and EWL have some essential
difference among each other, such as variance and mean value.
However, the UST, DST and WALK are much more similar.
On average, we achieve a classification accuracy of 96.2%
which is acceptable.

D. Evaluate the Step Length Estimator
Step Length Estimator could effectively reduce the accu-

mulated error and estimate the user’s moving distance. To
evaluate the performance of Step Length Estimator, we track
a user wearring the FootStep-Tracker, walking along a long
corridor which is about 63m. Besides, as a comparison, we
also use the common method which is multiplying the number
of steps by a step length estimated by the user’s height.
Fig.13 (b) shows the location error. As can be seen from the
curve labeled with One Foot and Common Method, the error
estimated by only one foot and common method accumulates
over time as the user’s walking. The curve labeled with Double
Feet shows the location error after we use our approach to
estimate the step length by two feet. It reduces the error from
14.65%, i.e., 9.23m/63m and 14.60%, i.e., 9.2m/63m to 4.19%,
i.e., 2.64m/63m. Fig. 13 (c) shows the CDF of step length
error. It shows that the error of each step length distributes
around zero, and the error when we use our double feet based
calibration scheme is effectively reduced by about 0.2m.

E. Evaluate the Moving Direction Estimator
Moving Direction Estimator could estimate the user’s mov-

ing direction with low error and can accurately classify the
moving direction into turning left, turning right and turning
around. To evaluate the performance of the Moving Direction
Estimator, we invited eight different users, take turning from
�180� to +180� in 30� increments(Left is the positive direc-
tion), 10 times for each. Fig.13 (d) shows the average error.
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(a) (b)
Fig. 15. (a) Walking path in case study. (b) FootStep-Tracker Android APP.

To further improve the accuracy, we use the degree of both
foot as features of the turn, and use SVM to classify the current
turning into three classes: left turn (L), right turn (R) and turn
around (A). We invite three users turning 30 times for left
turn, right turn, turn around. Then we train the SVM model
and test the performance on five new users. Fig. 13 (e) shows
the accuracy of the Classified Moving Direction Estimator.
The L/R can be classified accurately, because gz of left turn
is positive and right turn is negative. There is some error
that classify the L/R turn into A. That is because that the
differen between a L/R turn and A is just the turning degree,
which has some overlapping area. On average, we achieve
an accuracy of 98.3%. Clearly, the performance of Moving
Direction Estimator is reliable.

F. Case Study in a Real World Environment

FootStep-Tracker could accurately track the user in the
indoor environment without any deployment of infrastructure.
To evaluate the performance of FootStep-Tracker, we test it
with 5 users. They wear FootStep-Tracker, walking along a
specific path in our department building which is the full red
line in Fig.15. The user takes the elevator (the left bottom
one) down to this floorand finally he takes another elevator
to leave the floor. At first, FootStep-Tracker cannot ensure
which elevator is the user’s location. The dotted line depicts
the other feasible locations. But when the user keep moving,
FootStep-Tracker filters out the imaginary three infeasible path
by Snake Game strategy. Fig. 13 (f) shows the relationship
between location error and the number of steps for a specific
user. At the beginning, foot step tracker had a large location
error caused by the undetermined location. As the user keep
walking, the initial location is determined after six steps, and
the error sharply reduces to about 1m for one feet scheme and
0.5m for double feet scheme. Fig. 13 (g) shows the relation
between average location error of the path and number of
turns. Since the error of first turn occurs when the initial
location has not be determined, the error is too large that
have little reference value. We evaluate the error started from
the second turn. The error reduced along the number of turns
obviously, and the Double Feet Scheme can further reduce the
error. Fig.13 (h) shows the average location error for each user.
On average, we have a location error in 1m.

VI. CONCLUSION

In this paper, we present a purely sensor-based scheme
for indoor localization. We embed sensors into user’s shoes,
leveraging the accelerometer and gyroscope to estimate the
user’s step length and moving direction. Besides, we sense the
user’s activity of ascending/descending the stairs and taking an
elevator, to get a reference position to help further localization.
The realistic evaluation shows our scheme can achieve an
average accuracy of about 1m for indoor localization.
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