
48

Fast Charging Scheduling under the Nonlinear

Superposition Model with Adjustable Phases

ZHI MA and SHENG ZHANG, State Key Lab. for Novel Software Technology, Nanjing University

JIE WU, Temple University

ZHUZHONG QIAN, State Key Lab. for Novel Software Technology, Nanjing University

YANCHAO ZHAO, College of Computer Science and Technology, Nanjing University

of Aeronautics and Astronautics

SANGLU LU, State Key Lab. for Novel Software Technology, Nanjing University

Wireless energy transfer has been widely studied in recent decades, with existing works mainly focused

on maximizing network lifetime, optimizing charging efficiency, and optimizing charging quality. All these

works use a charging model with the linear superposition, which may not be the most accurate. We apply a

nonlinear superposition model, and we consider the Fast Charging Scheduling problem (FCS): Given multiple

chargers and a group of sensors, how can the chargers be optimally scheduled over the time dimension so that

the total charging time is minimized and each sensor has at least energy E? We prove that FCS is NP-complete

and propose a 2-approximation algorithm to solve it in one-dimensional (1D) line. In a 2D plane, we first

consider a special case of FCS, where the initial phases of all chargers are the same, and propose an algorithm

to solve it, which has a bound. Then we propose an algorithm to solve FCS in a general 2D plane. Unlike other

algorithms, our algorithm does not need to calculate the combined energy of every possible combination

of chargers in advance, which greatly reduces the complexity. Extensive simulations demonstrate that the

performance of our algorithm performs almost as good as the optimal algorithm.
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1 INTRODUCTION

Energy has always played an important role throughout human history. We human obtain wind

power through wind turbines and obtain water power through hydro generators. With the devel-

opment of society, the demand for energy is rasing. Not only has the demand for energy quantity

increased, but also the demand for energy types has become more diverse. In past decades, Wire-

less Sensor Networks (WSN) have been proposed and been widely studied (Nishikawa et al. 2018;

Noel et al. 2017; Jegadeesan and Venkatesan 2016; Li et al. 2014; Alphonsa and Ravi 2016). A WSN

is a wireless network composed of a large number of static or mobile sensors in a self-organizing

and multi-hop way, which can cooperatively sense, collect, process, and transmit the information

of the perceived objects in the geographical area.

WSNs have many applications. Nishikawa et al. (2018) construct a WSN system that can sense

and monitor the deformation of the ground caused by heavy rain in mountain areas with ra-

dio communication devices and sensor devices. WSNs are also used to monitor structural health

(Noel et al. 2017), measure biological parameters in cattle farms (Jegadeesan and Venkatesan 2016),

construct earthquake early warning systems (Alphonsa and Ravi 2016), and so on. However, sen-

sors in WSNs are powered by small batteries, and constrained energy supply limits the lifetime

of WSNs. Therefore, Energy Harvesting-based WSNs (EHWSNs) are proposed (Seah et al. 2009).

In EHWSNs, sensors are replaced by energy harvesting sensors, which are designed to use var-

ious energy sources such as solar energy (Hsu et al. 2006; Jiang et al. 2005; Kansal et al. 2007;

Raghunathan et al. 2005; Simjee and Chou 2006; Park and Chou 2006), active user power (Shenck

and Paradiso 2001; Paradiso 2006), wind energy (Park and Chou 2006), and electromagnetic radi-

ation energy (Niyato et al. 2007).

Although there are so many energy sources, Tong et al. (2010) pointed out that many energy

sources may be limited by uncontrollable environmental conditions (e.g., cloudy skies, arid lands),

and electromagnetic radiation is a cost-efficient way for sensors to harvest energy. In this article,

wireless charging refers to the techniques that use electromagnetic radiation as the energy source.

Wireless charging techniques have been proposed to provide additional energy supply to pro-

long the lifetime of WSNs (Li et al. 2014; Zhang et al. 2018). Wireless energy charging has been

regarded as a promising technology for prolonging sensor lifetime in wireless rechargeable sensor

networks. With recent breakthroughs in wireless power transfer, it is possible to charge sensors

over a long distance (>10m away) with a fixed charger connecting to the power line.

However, long-distance charging brings a new problem: low transition efficiency, which means

that the energy harvested by sensors is much lower than the energy sent by the chargers. As a

result, it takes a much longer time to charge a EHWSN than expected. To accelerate long-distance

charging, one way is to increase the chargers’ power, but this may lead to electromagnetic radiation

(EMR) pollution and harm humans (Gandhi et al. 2012). Another method is to add more chargers in

EHWSNs and using multiple chargers to charge sensors at the same time, as the combined power

energy will be stronger and charging time will be shortened. To calculate the combined charging

power, almost all previous studies assumed that the combined energy from multiple chargers is

additive (Dai et al. 2016; Deng-Peng 2009; Fréville 2004; Gao et al. 2015; Garcia et al. 1999; Peng et al.

2010), but this may not be the most accurate. Naderi et al. (2014a) points out that radio interference

occurs when using multiple chargers to charge sensors at the same time.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 48. Publication date: September 2019.

https://doi.org/10.1145/3356342


FCS under the Nonlinear Superposition Model with Adjustable Phases 48:3

Fig. 1. Difference between linear superposition and nonlinear superposition. There are two chargers placed
in a line, and they are 11.4m apart from each other. There is a sensor moving from c1 to c2. The x-axis of
the figure represents the distance between the sensor and c1, and the y-axis represents the energy received
by this sensor from those two chargers. The blue line in (b) represents the combined energy of two chargers
using a linear superposition model, while the red line represents the combined energy using a nonlinear
superposition model.

The difference between a linear superposition model and a nonlinear superposition model is

shown in Figure 1. There are two chargers placed in a line, and they are 11.4m apart from each

other. There is a sensor moving from c1 to c2 along the line. The x-axis of Figure 1(b) represents the

distance between the sensor and charger c1, and the y-axis represents the received energy from

those two chargers. The blue line in Figure 1(b) represents the combined energy of two chargers

using linear superposition model, and the red line represents the combined energy using nonlin-

ear superposition model. We can see from Figure 1(b) that when using a nonlinear superposition

charging model, the combined energy of two chargers is not equal to the sum of their energy, as the

chargers would strengthen each other in some places (which we call plus areas) but weaken each

other in other places (which we call minus areas). Based on this, Guo et al. (2016) proposed a con-

current charging model and gave algorithms to solve the concurrent charging scheduling problem.

Multiple chargers may weaken or strengthen each other depending on different distances; there-

fore, we cannot know the combined energy at a sensor node unless we explicitly know the set of

working chargers and their positions and phases. Guo et al. (2016) calculates the charging energy

of each charger set at each sensor node in advance, and algorithms were proposed based on these

values. As a result of this preparatory process, the complexity of the proposed algorithm in Guo

et al. (2016) grows exponentially with the number of chargers.

However, we observe that the nonlinear superposition model still has some properties. With

these properties, we can reduce the computing complexity by no longer calculating the combined

energy of each charger groups in advance.

This article focuses on the fast charging scheduling problem (FCS), which aims to schedule

multiple chargers under the nonlinear superposition interference model without heavy calcula-

tions in advance. In our problem, a sensor can be charged by multiple chargers at the same time.

Concurrent charging can accelerate the charging time, meanwhile maybe causing electromagnetic

interference. To provide some intuitive insights into the structure of our problem, we first consider

the scenario that all chargers and sensor nodes are distributed along a one-dimensional (1D) line.

For this scenario, we propose a 2-approximation algorithm called FastPick. Then we investigate

FCS in 2D EHWSNs. Because of the complexity in 2D EHWSNs, we first consider the condition

that all initial phases of chargers are the same, and, after this, we try to solve the FCS in general

2D EHWSNs.
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Our main contributions are summarized as follows:

—We are the first to consider the FCS problem, which takes both ON/OFF decisions and het-

erogeneous initial phases into account, under the nonlinear superposition model. We theo-

retically prove that FCS is NP-complete.

—We propose a 2-approximation algorithm called FastPick to solve FCS in the 1D scenario.

—We propose the RoundPick algorithm to solve a special case of FCS in the 2D scenario and

analyze its approximation. We also propose the WeightGreedyPick algorithm to solve FCS

in general 2D EHWSNs.

—Simulations are conducted to evaluate the proposed solutions. The results are shown from

different perspectives to provide conclusions.

The rest of the article are organized as follows. Section 2 surveys related works. Section 3 de-

scribes the concurrent charging model and formulates the problem. Section 4 analyzes the prob-

lem. Section 5 discusses the FCS in a one-dimensional line, and Section 6 solves FCS in a two-

dimensional plane. Section 7 includes the simulation results, and conclusions follow in Section 8.

2 RELATED WORK

Medium Access Control (MAC) protocols define rules for orderly access to the shared medium and

play a crucial role in the efficient and fair sharing of scarce wireless bandwidth. Thus, in EHWSNs,

MAC is an important technique that enables the successful operation of the sensors. In this section,

we first introduce some backgrounds of MAC protocols, and then we introduce some related works

about wireless charging.

2.1 MAC Protocols for WSNs

Sensor-MAC (S-MAC) (Ye et al. 2004) was a milestone protocol for WSNs. S-MAC defines a MAC

protocol in which neighboring nodes form virtual clusters that share a common sleeping schedule.

The time is divided into active and sleeping rounds. All the sensors of the cluster communicate

in the active round, saving energy during the sleeping round. The active rounds are scheduled

by periodical SYNC packets between the neighbors. S-MAC also identifies major sources of en-

ergy waste, including collision, overhearing, and idle listening. The S-MAC protocol focused on

reducing energy consumption and is straightforward against the energy wasted in idle listening.

Inspired by S-MAC, Dynamic Sensor MAC (DSMAC) introduces a dynamic duty cycle. DSMAC

aims to decrease the latency for delay sensitive applications in battery-powered WSNs (Lin et al.

2004).

There are also some MAC protocols proposed for EHWSNs. Eu et al. studied several fundamental

MAC layer approaches on EHWSNs (Eu et al. 2008). However, they assumed that the sensor does

not have energy constraints thus the sensor never sleeps. So their insightful conclusions cannot

be applied in common sensor networks. Fafoutis et al. proposed ODMAC, an on-demand MAC

protocol for EHWSNs that is designed to minimize the energy wastage through idle listening

(Fafoutis and Dragoni 2011). However, the energy harvesting rate is considered a parameter and

the authors did not explain how it was generated.

Naderi et al. (2014b) proposed a new protocol called RF-MAC to work with RF energy harvesting.

The RF-MAC protocol allows a sensor to broadcast its request for the energy packet containing its

ID and then waits to hear from the wireless chargers in the neighborhood. However, in RF-MAC,

a sensor node is charged only when it has communication request, which always incurs certain

delay to execute the communication.
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2.2 Wireless Charging in EHWSNs

After talking about MAC protocols, we focus on wireless charging for EHWSNs with fixed

chargers.

He et al. (2013) proposed how to deploy readers in a network to ensure that the WISP tags can

harvest sufficient energy for continuous operation. They investigated the energy provision prob-

lem of finding the minimum number of RFID readers to cover a given EHWSN, and they showed

that their algorithm can greatly reduce the number of readers compared with those assuming tradi-

tional coverage models. Pang et al. (2014) investigated the minimum charging coverage problem,

which aims to recharge a set of sensors in a given area with the minimum number of wireless

chargers. They introduced a partition algorithm to address this charging coverage challenge, and

through theoretical analysis, they proved that the proposed algorithm can develop a solution close

to the optimal one with guarantees approximation ratio. Dai et al. (2012, 2014) also focused on the

charger location problem but took safety into account. They proposed PESA, a wireless charger

Placement scheme that guarantees EMR safety for every location on the plane. Their experimental

results showed that in terms of charging utility, their algorithm outperforms the prior form by up

to 45.7%. Zhang et al. (2018) considered wireless charging service provision in a two-dimensional

target area and focused on optimizing charging quality, where the power of each charger is ad-

justable. The algorithms proposed by them perform very closely to the optimum and outperform

the baseline algorithms.

Due to the low charging efficiency of fixed chargers, mobile chargers have been proposed. Mo-

bile chargers are controlled to move around in EHWSNs and charge sensors nearby. Gao et al.

(2015) proposed a new framework that can jointly schedule sensor activity and recharging to save

the traveling energy of Recharging Vehicles (RVs). They proposed two schemes to manage sen-

sor activity: balanced clustering and distributed sensor activation schemes. Based on schemes,

they further introduced a new metric so that the energy demand in each cluster can be managed.

Then they formulated the recharging problem into a Traveling Salesman Problem with Profits and

proposed two algorithms to reduce travelling distance. The experiments results show that their

algorithms can save travelling distances of RVs by 41% and 16%, respectively. Zhang et al. (2015)

proposed a scheduling algorithm called Pushwait to cover a one-dimensional EHWSN of infinite

length, and they proved that Pushwait is the optimal algorithm in a 1D scenario. Li et al. (2014)

proposed J-RoC—a practical and efficient Joint Routing and Charging scheme. They used proactive

to guide the routing activities in the network and deliver energy to where it is needed. Evaluation

results demonstrated that J-RoC significantly elongates the network lifetime compared to existing

wireless charging based schemes. Sangare et al. (2017) developed a hardware platform using off-

the-shelf radio frequency energy transfer hardware equipments to evaluate the practical perfor-

mance of EHWSNs powered by radio frequency energy transfer. Based on the developed platform,

they established an empirical model and used the empirical model to jointly optimize path planning

and mobile charge scheduling for wireless-powered sensor networks. Numerical results showed

that their derived policy significantly improves the performance of EHWSNs in different practical

scenarios. However, in many scenarios the mobile chargers may not move freely. Additionally, the

energy supply of the mobile chargers themselves is also a bottleneck.

Besides, all the works above are based on an assumption that the power received by one device

from multiple chargers is linear additive, but this assumption may not be the most accurate.

Naderi et al. (2014a) pointed out that radio interference occurs when multiple chargers are used

to charge one device, even if all the chargers transfer energy with high power. Interference may re-

sult in higher or lower levels of energy cancellation. Guo et al. (2016) proposed three algorithms to

solve the concurrent charging scheduling problem based on the nonlinear superposition charging
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model. To the best of our knowledge, it is the first time that the nonlinear superposition charg-

ing model has been used to solve the charger scheduling problem. However, their algorithms had

to calculate all charger sets utilities in advance. The complexity would grow exponentially with

the number of chargers, which motivates us to formulate the FCS problem and solve it without

calculations beforehand.

We have already done some works in wireless charging area. We have already done some works

in Ma et al. (2018a, 2018b), and these works gave us a deeper understanding of the nonlinear

charging model.

3 MODEL AND PROBLEM FORMULATION

In this section, we first propose our models, including the network model, charging model, har-

vesting model, and communication model. Different from previous works, our charging model is

nonlinear superposition. Then we use these models to define the FCS problem.

3.1 Network Model

We consider a set of N stationary sensor nodes S = {s1, s2, . . . , sn } distributed over a two-

dimensional area. The location of the ith node si is denoted as (xi ,yi ), and each node con-

sumes energy for sensing, data reception, and transmission. There are also M chargers, defined as

C = {c1, c2, . . . , cm }, distributed in this area. The location of the jth charger is denoted as (x j ,yj ).

There is a set {di j |1 ≤ i ≤ N , 1 ≤ j ≤ M} of distance between ci and sj .

3.2 Charging Model and Harvesting Model

As we know, chargers use electromagnetic waves to transmit energy. According to Guo et al.

(2016) and Naderi et al. (2015), we suppose that the amplitude of the frequency component ω0 in

the chargers’ power spectral density (PSD) curve is A0 and that the corresponding initial phase is

φ0. Therefore, the power density of each charger at ω0 is p0 =
A2

0

2 . Since the charging powers from

wireless chargers weaken nonlinearly with distance, we assume, for simplicity, that the power

attenuation factor is 2. The radio signal of the frequency component ω0 arriving at the sensor

node sj from the charger ci is expressed as

ai0 (t ) =
A0

4πdi j/λ
cos

(
ω0t + φ0 − 2π

di j

λ

)
. (1)

Based on this, Guo et al. (2016) proposed that the compound radio signal of frequency compo-

nent ω0 at sj from a group of chargers C is

Aj
0 (t ) =

∑
ci ∈C

ai0 (t ) =
∑
ci ∈C

A0

4πdi j/λ
cos

(
ω0t + φ0 − 2π

di j

λ

)
. (2)

Then, we get the power of compound radio signal at sensor sj from charger set C as follows:

Pj |C =

∫
[Aj

0 (t )]2dω = P
∑
ci ∈C

1

d2
i j

+ P
∑
ci ∈C

∑
cm ∈C
cm�ci

1

di jdmj
cos

(
2π

di j − dmj

λ

)
, (3)

where P =
∫
pidω is the radio power of each charger.

From this equation, we can see the nonlinear superposition charging effect in the concurrent

charging. The equation above considers only distance and assumes that all sensors’ initial phases

are the same. With an adjustable initial phase, we can still use the equation to calculate and just

need to add a variable of initial phase ωi .
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Generally, energy harvesting can be divided into two architectures: The first is the Harvest-

Use architecture, where energy is harvested just-in-time for use. The second is Harvest-Store-Use

architecture, where energy is harvested whenever possible and stored for future use (Sudevalayam

and Kulkarni 2010). In this article, we only consider the Harvest-Store-Use architecture. Denote

PG
j |C as the power that sensor sj get from a group of chargersC . We assume PG

j |C = α ∗ Pj |C , where

α (0 < α < 1) is the transition coefficient. From the former research (He et al. 2013), we know that

if the radio power is lower than a threshold, then a sensor is not able to receive any energy from

this radio. Taking this into account, we present the harvesting model as follows:

ej |C,t =

{
0 if Pj |C < ϵ

αt (Pj |C − ϵ ) otherwise
,

where ej |C,t denotes the energy that sj harvested from a set of chargers C during time t , and ϵ is

the threshold of the radio power.

Each sensor also has an electric capacity. We set this capacity as E. So the energy harvesting

model can be expanded as follows:

ej |C,t =

⎧⎪⎪⎪⎨
⎪⎪⎪
⎩

0 if Pj |C < ϵ

0 if Pj |C > ϵ and e ′j > E

αt (Pj |C − ϵ ) otherwise

,

where e ′j denotes the energy sj already received.

3.3 Communication Model

In this subsection, we introduce our communication model and MAC protocol used in this article.

Naderi et al. (2014a) gave an experimental study on the concurrent data and wireless charging

for sensor networks, confirming the large interference range. Hence, to avoid the significant in-

terference from the chargers, sensor nodes have to make communications only when no charger

is active in the area.

We use the time-division multiple access (TDMA) control to insulate the wireless charging and

wireless communication. That is, sensors work in turn for being charging and communications.

Figure 2 shows the TDMA scheduling for charging and communication of sensors. During each

turn of charging, it is expected to fully charge the sensor as soon as possible. After being fully

charged, the sensors are ready for potential communications in the communication round, and

chargers are not allowed to be active at this time. When the sensor nodes tend to exhaust their

energy, another round of charging starts. Due to the low efficiency of long-distance charging, the

charging round may need a relatively long time. Although a sensor in low-duty EHWSNs may

have few communication requests in the charging round, the possibility that the whole network

has many communication requests in the charging is non-ignorable. So we partition the charging

round into multiple charging periods with the same duration by some time reservations. We can

see from Figure 2 that these time reservations are evenly spaced in the charging period for potential

communications of sensors.

Compared to RF-MAC where sensors are charged on-demand, the TDMA protocol is easier to

implement and is flexible. Moreover, using the RF-MAC protocol to communicate always causes

communication delay, and this delay would be even higher when many sensors have requires at

the same time (which is common is EHWSNs). Therefore, it is necessary to charge sensor nodes

in advance with TDMA instead of a hasty and crowded charging on-demand with RF-MAC.
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Fig. 2. TDMA scheduling for charging and communication of sensors.

3.4 Problem Formulation

In the above TDMA-MAC, the charging round is partitioned into multiple charging periods of

equal length. To schedule the chargers, we need to ascertain the active time and inactive time of

each charger in the charging periods. To simplify the scheduling instructions, we schedule each

charger’s active time and inactive time with the unit of charging period. We use Δ to represent the

duration of each charging period, and we use the vectorHiHiHi to denote the ith charging schedule. For

example,H2H2H2 = [1, 0, 1, 0] means that in the second charging period, the first and the third chargers

are open while the second and the fourth chargers are closed. Also, we use the vectorXiXiXi to denote

the initial phases of chargers in the ith charging period. For instance,X3X3X3 = [ π
4 , 0,

π
16 , 0] means that

in the third charging period, the initial phases of the second and the fourth charger are 0, the initial

phase of the first charger is π
4 and the initial phase of the third charger is π

16 . Therefore, the main

problem studied in this article is as follows:

Problem 1. Given a set C of chargers with fixed position, a set S of rechargeable sensors, a set

{di j |1 ≤ i ≤ N , 1 ≤ j ≤ M} of distance between ci and sj , and an energy capacity E of each sensor,

FCS is to find a set of multiple charging schedules {H1H1H1,H2H2H2, . . . ,HkHkHk } with corresponding initial phases

of chargers {X1X1X1,X2X2X2, . . . ,XkXkXk }, such that each sensor receives no less than E energy, and k is minimized.

4 HARDNESS ANALYSIS

In this section, we show that FCS is NP-complete.

Theorem 4.1. The FCS is NP-complete.

Proof. We prove this by using the decision version of the FCS problem: Given a threshold k ,

does there exist a collection of charger sets {C1,C2, . . . ,Ch }(Ci ⊆ C, i = 1, 2, . . . ,h) whereh is equal

or less than k? In this problem, we assume that the initial phases of all chargers are the same.

We prove this decision problem by reduction from the knapsack problem (Martello et al. 2000),

which is NP-hard. The decision version of the knapsack problem is as follows: Given a set of items

U = {e1, e2, . . . , em }, each with a weight and a value, and an integer k , does there exist a collection

of these items so that the total weight is less than or equal to the limitW and the total value isV ?

Given an instance of the decision version of the knapsack problem, we construct an instance of

FCS as follows:

—For each element ej in U , we construct a charger set Ci in FCS.

—For the weight of the item, we construct the charging period in FCS, and for the value of

item, we construct the total energy harvested by the network in this period; we assume the

length of all the charging periods are equal to Δ.

—For the weight of knapsack, we use k ∗ Δ to represent the limit. And for the given value V ,

we set M ∗ E as the value.

ACM Transactions on Sensor Networks, Vol. 15, No. 4, Article 48. Publication date: September 2019.
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Fig. 3. One-dimensional plus areas and minus areas. Green lines represent the interactional areas of c1

and c2, and red lines represent the interactional areas of c2 and c3. c1 and c3 have no interactional area,
because they are too far away from each other.

—After we pick a charger set Ci , we need to recalculate other periods’ value, because while

some sensors in this period may harvest energy, it is not sufficient to reach E. Therefore,

we need to reduce other periods’ value, as this complexity is the number of periods.

Combining these elements, we get the following special case of the decision version of the FCS

problem: Given a limited time k ∗ Δ and a period set, does there exist a collection of periods whose

total size is less than or equal to k so that all the sensors will harvest no less than E energy (total

is ME)?

The construction can be finished in polynomial time; thus, we reduce solving the NP-hard knap-

sack problem to a special case of FCS, implying that FCS is NP-hard.

5 ONE-DIMENSIONAL LINE

In this section, we discuss FCS in a one-dimensional line. We first show how initial phases influence

charging, and then we propose an algorithm to solve FCS. After we give the complexity of our

algorithm, we prove that our algorithm is 2-approximation.

5.1 Rationale

According to our observation, when the difference of phases between two chargers is less than

λ/4, these two chargers will strengthen each other. And when the difference is between λ/4 and

λ/2, two chargers will weaken each other, where λ represents the wavelength. As we can see

from Figure 3, the initial phases of chargers c1 and c2 are the same, the green lines represent

the interaction areas of c1 and c2, and sensor s2 is distributed in their plus area, while s3 lies in

their minus area. If we increase the phase of c1 by π/2, then the total size of their plus areas

and minus areas remain the same, but the positions will change: original plus areas become

new minus areas and original minus areas become new plus areas. Generally speaking, in 1D

line, once the distance and initial phase are determined, then the plus areas and minus areas are

determined. When we change initial phases to different values, these areas will move along the

line. Based on these observations, we propose FastPick, a 2-approximation algorithm, to solve the

FCS in 1D line.

5.2 The FastPick Algorithm

FastPick is shown in Algorithm 1. Under the condition that the initial phases are adjustable, all

chargers can be opened together, which means all the HiHiHi is [1, 1, . . . , 1], and the initial phases of

chargers are the only variables to be decided (line 1). First, we choose the sensor with the least

energy (line 3). Next, we choose two chargers that are the closest to this sensor and adjust their
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ALGORITHM 1: FastPick (FP)

Input: charger set C , sensor set S , energy capacity E
Output: The charging schedule {H1H1H1,H2H2H2, . . . } and corresponding initial phases {X1X1X1,X2X2X2, . . . }

1 Open all chargers together, i=1;

2 while S � ∅ do

3 Find a sensor with the least energy;

4 Choose two chargers that are the closest to this sensor;

5 Adjust their phases to that make as many sensors as possible lie in their plus areas and record

their phases inXiXiXi ;

6 Adjust the initial phases of other chargers to make their plus and minus areas overlap with the

previous ones and record their phases inXiXiXi ;

7 Make all chargers work for time Δ;

8 Change initial phases of all chargers and make original minus areas become plus areas while

original plus areas become minus areas and record their phases inXiXiXi ;

9 Make all chargers work for time Δ, i++;

10 for every sensor in S do

11 if sj is fully charged then

12 Remove sj from S .

13 end

14 end

15 end

initial phases to make as many sensors as possible lie in their plus areas (lines 4 and 5). As we know

that areas will move in parallel when initial phases change, we can make all chargers strengthen

each other in the same places by adjusting their phases (line 6). In line 8, we reverse the original

minus areas and plus areas, make original minus areas become plus areas while plus areas

become minus areas, this step ensures that our algorithm is 2-approximation. Algorithm 1 ends

when all sensors are fully charged (line 2), and after each charging period, it will check whether a

sensor is fully charged (lines 10–14).

5.3 Approximation Ratio Analysis

Now we show that FastPick is 2-approximation. First, we show a lower bound on the optimal

charging time. Imagine that all chargers strengthen each other in all places (which cannot be

achieved in reality); in this case, we can always open all chargers, and these chargers have no

interferences. In doing so, we have a charging time Ta . Obviously, Ta is a lower bound on the

optimal charging time.

Next, we show that the charging time achieved by our algorithm FastPick is at most 2 times

longer than Ta .

We know that sensors lie either in plus areas or minus areas. Sensors that lie in plus areas

will get the most energy they can get from the chargers in this charging period. Sensors that lie in

minus areas can hardly get energy in this period, but in the next period, minus areas and plus

areas will reverse (line 8 in Algorithm 1), so these sensors will get the most energy in the next

period. If we put these two periods together to construct a big period, then each sensor will get a

little more energy in this big period than in the hypothetical situation that all chargers strengthen

each other in all places. So the total charging time is 2Ta − ϵ , which ensures 2OPT − ϵ . Therefore,

Algorithm 1 is 2-approximation.
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Fig. 4. Two-dimensional plus areas and minus areas. c1 and c2 represent chargers. “+” represents the plus

areas of these two chargers, and “–” represents the minus areas.

6 TWO-DIMENSIONAL PLANE

In this section, we first propose an algorithm to solve a special case of FCS, where initial phases

of all charger are the same. To distinguish it from the original FCS, we define this special case

to be FCSF (FCS with Fixed phase). Then, we prove that under some conditions, our algorithm

has a bound. After this, we propose the WeightGreedyPick algorithm to solve FCS in general 2D

networks.

6.1 FCSF Problem

In the 1D line, the plus areas and minus areas are line segments, but in the 2D plane, the plus

and minus areas are interspaces between some hyperbolas as shown in Figure 4. Given any pair

of chargers, we can find their plus areas and minus areas, and use the area information to make

our schedule.

To reduce calculation, we propose a method to partition the EHWSN. After partition, the whole

EHWSN is divided into multiple grids, and we just need to focus on each grid independently. As we

know, the coverage areas of chargers would coincide in some place; with the concurrent charging

model, we cannot just look at one charger and leave other chargers irrespective.

6.1.1 Partition. The partition should hold three conditions:

Condition 1. Every sensor in one grid should be charged by chargers in this grid.

Condition 2. There is at least one charger in a grid.

Condition 3. The side length of the grid should be minimized, but no less than 2 ∗ R (R is the

charging radius).

After every charging period, we need to move the grid position by moving the grid toward the

direction of the sensor with the least energy, and condition 3 guarantees that after moving, two

chargers, which cause the overlap, will be in the same grid.

With these three conditions, we can find a bound of our algorithm. The worst case of the parti-

tion is that we can only get one grid, which means we do not make any partition. The best case of

the partition is that every grid has exactly one charger.

6.1.2 The RoundPick Algorithm. RoundPick is showed in Algorithm 2. Under the condition that

initial phases of all chargers are the same, charging schedule HiHiHi becomes the only variable to

be decided. In lines 1–10, Algorithm 2 partitions the whole EHWSN. After partitioning, Round-

Pick circularly pick chargers during each iteration to decide each charging schedule (lines 11–19).

The iteration terminates when all the sensors are fully charged. In each iteration, RoundPick first
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ALGORITHM 2: RoundPick (RP)

Input: Charger set, S : Sensor set, E: Energy capacity

Output: The charging schedule:H1H1H1,H2H2H2, . . .

1 Choose a charger recorded as ci that can charge the most sensors;

2 for every sensors in the coverage of ci do

3 if sj has the farthest distance away from ci on x or y axis then

4 Record sj .

5 end

6 end

7 Use these sensors as the border to partition the EHWSN;

8 while partition is not under three conditions do

9 Add a new charger in this grid that has the least side length.

10 end

11 while S� ∅ do

12 for every grid do

13 Compute each two chargers’ plus area, called PA;

14 Choose a sensor sj with the least energy, do SP (sj );

15 Make chargers inHiHiHi work for time Δ;

16 Choose a sensor sj that has the lowest energy and lies in a overlap;

17 Compute the distance L between the sb and the charger cd that cause the overlap;

18 Move grid to the direction of sb -cd with distance L;

19 end

20 for every sensor in S do

21 if si is fully charged then

22 Remove si from S .

23 end

24 end

25 end

ALGORITHM 3: sub-procedure SinglePick (SP)

Input: Charger set, S : Sensor set, E: Energy capacity

Output: The ith charging schedule:HiHiHi

1 for every area in St do

2 if sj is in this area then

3 Add these two charger intoHiHiHi and break.

4 end

5 end

6 if HiHiHi is empty then

7 Add the charger that can charge most energy to s .

8 end

9 for every charger in C do

10 if adding will charge more energy to the EHWSN then

11 Add this charger inHiHiHi .

12 end

13 end

14 returnHiHiHi ;
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Fig. 5. An example of the partition of a WRAN. Black lines represent the partition that each grid has at most
one charger. Red lines represent the partition that each grid has at most two chargers; green lines represent
the partition that all chargers lie in the same grid.

computes each two chargers plus areas in each grid, called PA (line 13), and then the algorithm

chooses a sensor with the least energy and uses Algorithm 2 to select chargers (line 14). Then, the

chargers opening in this charging period are selected. After charging, we need to move the grid

so that the sensors that overlap no longer overlap (lines 16–18). In this iteration, we still need to

remove sensors with full energy, which means they already have E energy (lines 20–25).

The complexity of Algorithm 2 is O(M3N ). The total number of the charging period is O(N ),

we can make this by increasing each charging period. The complexity to partition is O(M), be-

cause once we confirm a grid, others can be expanded, and the maximum number of chargers in

a grid is M . During every charging period, the complexity of picking chargers is O(M3); it is com-

posed of two parts: the number of the grid and chargers in the grid. The most combination is M3

mathematically. So the total complexity is O(M3N ).

6.1.3 Approximation Ratio Analysis. We take uniform distribution as an example and show the

relation between bound and distribution. The hypothesis model is that all chargers strengthen each

other to every sensor, so the schedule is to open all chargers together. This charging time is less

than the optimal way. Under these three conditions, errors between neighbouring grids depend

on the number of sensor sets in overlap areas. Suppose that sensors and chargers are uniformly

distributed, then the most overlap areas of a grid are 4, and the sensors in these overlaps are half of

sensors in this grid. If chargers in other grids will strengthen these overlaps, then we just ignore

them. If chargers will weaken the overlaps, then the worst case is that half the sensors would

get less energy. But after every period, we do the movement operation, which will make sensors

in minus areas in a new grid without charging conflict with the other grid. But one operation

of movement can only make one direction in the 2D plane conflict-free, which means that we

should do another movement to make another direction become conflict-free. In every charging

period, we first choose a pair of chargers that can charge the most energy, and then a new charger

can be added if and only if this charger has the same plus areas with the first two chargers.

So in every charging period, we can make sure that half of the sensors charge the most energy.

Since half of them are influenced by other grids, eventually, only 1/4 sensors get the most energy.

The bound is α ∗ (Nd + 1) − ϵ , where α is the charging ability compared with OPT in each grid,

Nd is the influenced direction in grid (Nd = {1,2}), and 1 represents the original grid, while ϵ is

the error related to the actual charging condition. In uniform distribution, the upper bound is

(2 − ϵ ) ∗ (2 + 1) − ϵ = 6 − 4ϵ .

6.1.4 Example in 2D. In this section, we give an example to show the running process of our

algorithm. A simple example is shown in Figure 5, and Table 1 shows the actual charging energy.
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Table 1. The Receiving Energy of Sensors During
One Time Period in a 2D Plane

s0 s1 s2 s3 s4 s5 s6 s7

c1 2 2 0 0 2 2 0 0

c2 0 0 2 2 3 0 0 0

c3 0 0 0 0 0 3 3 3

c1, c2 2 2 2 2 0 2 0 0

c1, c3 2 2 0 0 2 5 2 2

c2, c3 0 0 2 2 3 3 3 3

c1, c2, c3 2 2 2 2 0 5 2 2

Suppose the energy capacity of each node is E = 10. According to algorithm, we first partition

the EHWSN and find the charger that can charge the most sensors. So we choose c1 and use it as

the division criterion to partition the whole EHWSN. As a result, we get four grids, as shown in

Figure 5, with black lines. Afterward, we check whether this partition follows our three conditions.

Obviously, s2 belongs to grid 1, but since it is not charged by c1, this partition is thus incorrect. Then,

we should add one charger; without loss of generality, we add c2, and we use the new side length of

the grid to partition the EHWSN, which is shown in Figure 5 with red lines. After partition, we get

two grids, and we check it again. s6 lies in grid 1 but is not covered by c1 and c2, which means this

partition is wrong, so we add c3 and make the whole EHWSN a grid, which is shown in Figure 5

with green lines. This is the worst case, because we do not actually partition the EHWSN. After

partitioning, Algorithm 2 selects a sensor with the least energy; in the first iteration, all sensors

have energy 0. Without loss of generality, we choose s0 and add c1 inH1H1H1. According to Algorithm 2,

we add c3 intoH1H1H1. That is the first charging period schedule. After this charging period, the sensors

energy are {2, 2, 0, 0, 4, 5, 3, 3}. In the second iteration, we select s2 and choose c2 into H2H2H2; then,

we add c3 into H2H2H2. After this charging period, the sensors energy are {2, 2, 2, 2, 8, 8, 6, 6}. In the

third period, we choose c1, c3. Because s4 and s5 have an energy of 8 now, the energy harvested by

them is at most 2 due to our harvest model in Section III. So we can add c2 intoH3H3H3, too. After this

charging period, the sensors energy are {4, 4, 4, 4, 8, 10, 9, 9}. In the fourth iteration, we choose

c1, c2, c3, and the sensors energy after charging are {6, 6, 6, 6, 8, 10, 10, 10}. In the fifth period, we

choose c1, c2, and the sensors energy are {8, 8, 8, 8, 8, 10, 10, 10}. In the sixth period, we choose

c1, c2, and the sensors energy after charging are {10, 10, 10, 10, 8, 10, 10, 10}. In the seventh period,

we choose c1 only. Therefore, the total charging periods of our algorithm is 7.

6.2 FCS in Two-Dimensional Plane

In the previous section, algorithm RoundPick solves FCSF, where the initial phases of all chargers

are the same. In this subsection, we discuss FCS in a two-dimensional plane. We first show the

difficulty in handling FCS in the 2D plane, and then we propose an algorithm to solve FCS. Then

we analyze the complexity of our algorithm.

In Section 4, we prove that FCS is NP-complete under the condition that initial phases of all

chargers are the same, which means FCSF is NP-complete. With adjustable initial phases, solving

a FCS problem means solving a large number of FCSF problems. Once we change the phase of any

charger, the input of our original FCSF problem changes, so the original FCSF problem changes

into a new FCSF problem, thus making it hard to find a solution for a FCS problem.

We propose the WeightGreedyPick (WP) algorithm to solve the FCS in a 2D plane. Our goal is to

use the minimal time to charge each sensor with at least E energy; therefore, the energy charged in

each period should be maximized. So the amount of energy received by the whole network should
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Fig. 6. A EHWSN with N=12, M=50.

be considered. Meanwhile, some sensors can be charged by only one or two chargers; therefore,

the energy received by a single sensor should be considered. So the number of chargers that are

able to charge a sensor should be taken into account when designing an algorithm. In this article,

we only discuss instances where the length of periods are the same.

To balance the received energy by a single sensor and the received energy by the whole network,

we give each sensor a weight w , which is represented as E ′/r , where E ′ is the energy remained to

be charged, and r is the number of chargers that can charge this sensor. We also give each charger

a weight w ′, which is the sum of the weights of the sensors that can be charged by this charger

(w ′i =
∑

sj
w j , where sj is the sensor charged by ci ). We useW to represent the set of the weight of

the chargers.

The main idea of our algorithm is as follows: We find a maximum unique covering set (MCS)

first and then expand this set by adding more chargers. Maximum unique coverage means every

item can be covered at most once, and the total weight of the set is maximized. As we know, MCS is

an NP-complete problem (Demaine et al. 2008) and has no polynomial way to solve it. We propose

a weight-greedy way to find a MCS. We give each charger a weight defined above. Every time we

pick or add a charger, we pick or add the charger with the maximum weight.

We show why using the weight we designed to select charger can balance both individual and

overall energy. Supposing sensor si can be charged only by one charger named ck , while sj can be

charged by four chargers, and ck weakens other chargers. It is obvious that ck should be opened

for E/p (ck ) time so that sj can be fully charged, where p (ck ) is the power received by sensor sj

from charger ck . By the weight of sensors as E ′/r , sj ’s weight is divided into four parts while si ’s

weight remains the same. So the priority to select ck is increased. After we select a charger, we

need to remove covered sensors from the universal set and also remove chargers that can charger

these covered sensors. As a result, every sensor is covered by at most one charger. Then we need to

calculate every charger’s weight again. The complexity to find an MCS is O(MN ). Figure 6 shows

an example of an MCS.

Here we set the initial phases of all chargers to 0, and only use a step value of phase δ to adjust.

This is reasonable, because the interference areas are only affected by the D-value of two chargers.

We can change the D-value of the chargers by adding δ to some chargers.

In Algorithm WeightGreedyPick, we first initializeW as a set of all chargers weights in line 1.

WeightGreedyPick iteratively decides each charging schedule (lines 2 to 11). The iteration termi-

nates when all the sensors are fully charged (S � ∅ line 2). In each iteration, WeightGreedyPick

first finds a MCS and then adds chargers intoHiHiHi during this charging period. After this, we set all

w ′ to 0 and recalculate the weight of chargers that has not been picked. When max{w ′ ∈W } > 0,

we add this charger into HiHiHi . Then we adjust the phase of this charger according to δ and choose
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Fig. 7. Example of the placement of four chargers and three sensor nodes.

Table 2. Example of the Charging Utilities of Four Charger Sets at Three Sensor Nodes

s1 s2 s3

c1 3 0 0

c2 2 3 2

c3 0 3 3

c4 0 0 2

c1, c2 3 (φ1=φ2=0) / 4 (φ1=0, φ2=
π
2 ) 3 2

c2, c3 2 0 (φ2=φ3=0) / 5 (φ2=0, φ3=
π
2 ) 1 (φ2=φ3=0) / 4 (φ2=0, φ3=

π
2 )

c2, c4 2 3 0 (φ2=φ4=0) / 3 (φ2=0, φ4=
π
2 )

c3, c4 0 3 5 (φ3=φ4=0) / 1 (φ3=0, φ4=
π
2 )

c2, c3, c4 2 (φ1=φ2=0) / 2 (φ1=0, φ2=
π
2 ) 0 (φ2=φ3=0) / 5 (φ2=0, φ3=

π
2 ) 4 (φ2=φ3=φ4=0) / 5 (φ2=0, φ3=φ4=

π
2 )

the phase that can make the energy received by the EHWSN as big as possible. If the energy re-

ceived by the whole EHWSN becomes smaller no matter how we change the phase of the new

adding charger, then this charger will be removed. After adding a charger, WeightGreedyPick re-

calculatesW because of the charging interference. This operation continues until no chargers can

be added, which means adding any charger would have negative effect on the whole network

(lines 8–10). WeightGreedyPick makes the chargers in HiHiHi charge for Δ time (line 12). After each

charging period, the algorithm removes sensors that are fully charged from S (lines 13 to 17).

Finally, we recalculateW and add 1 to i (line 18).

6.3 Example and Analysis

In this subsection, a simple example of the algorithm is shown in Figure 7, and Table 2 shows the

actual charging energy with different initial phases of chargers. For simplicity, every charger has

only two different phases to choose. Suppose the energy capacity of each node E = 10.

According to Algorithm 4, we first find a MCS, which is c2, then we add other chargers if the

total energy harvested by the network increases after adding this charger. So we add c1 and adjust

the phase of c1 to be 0, and the phase of c2 to be π
2 , and then this iteration ends. After charging,

the current energy harvested in the node is {5, 3, 2}. In the next period, we first check whether any

sensor is fully charged. Then, we continue this operation. Obviously, c1 and c2 will be picked in

the next two periods. The current energy of each sensor increases to be {10, 9, 6}. Now sensor s1

is fully charged, and we remove it and find MCS again, which is c2 or c3. Suppose we choose c3;

then c4 and c2 will be added. Then we adjust the phase of c2 to be 0, the phases of c3 and c4 to be
π
2 . After this charging period, all sensors are fully charged. The total charging period is 4.
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ALGORITHM 4: WeightGreedyPick (WP)

Input: Charger set, S : Sensor set, E: Energy capacity, δ : step value of phase

Output: The charging schedule {H1H1H1,H2H2H2, . . . } and corresponding initial phases {X1X1X1,X2X2X2, . . . }

1 InitializeW , i=1;

2 while S � ∅ do

3 Find a MCS, add these chargers intoHiHiHi ;

4 W ={0,0,. . . ,0};

5 for each charger c j that is not picked do

6 Compute w ′j .

7 end

8 if max {w ′ ∈W }>0 then

9 Add this charger intoHiHiHi ;

10 Adjust the phase of this charger according to δ to make the energy received by the EHWSN as

big as possible, and record phases inXiXiXi .

11 end

12 Make chargers inHiHiHi work for time Δ, i++;

13 for every sensor in S do

14 if si is fully charged then

15 remove si from S .

16 end

17 end

18 i++,computeW ;

19 end

Our algorithm would obtain the optimal solution in two extreme cases. The first is when all

chargers strengthen each other. Obviously, the optimal method is to turn on all the chargers, which

is the same answer that our algorithm would give. The other case is when all chargers weaken

each other. In this case, we should make the interference the smallest possible in each period.

The answer is to turn on chargers in the MCS, which is also the same answer that our algorithm

gives.

The complexity of this algorithm is O(M2N 2). The while-loop runs at most O(M) iterations, and

we can make this by increasing the charging time of each period. In each iteration, while-loop

runs at most N times and for-loop runs at most O(N ) times, because the complexity of calculating

the weight w ′ of one charger is O(MN ). The complexity of finding a MCS is O(MN ). The total

complexity is O(M2N 2).

6.4 Summary

In consideration of the difficulty in solving FCS in a 2D plane, we first discuss a special case of FCS,

which we call the FCSF problem. We propose the RoundPick algorithm to solve FCSF and obtain

a bound of 6 − 4ϵ when sensors and chargers are uniformly distributed. After giving an example

of RoundPick, we try to solve FCS in a 2D plane. We propose the WeightGreedyPick algorithm to

solve it.

7 EXPERIMENTS

In this section, we conduct a series of simulations with a Matlab tool to evaluate the performance

of the proposed algorithm, including RoundPick for FCSF and WeightGreedyPick for FCS.
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Fig. 8. Experiment devices.

Fig. 9. An example of the partition.

7.1 Experimental Settings

We assume wireless devices and chargers are randomly distributed over a 50m × 50m area. In the

simulations, we employed the energy harvesting model present in Section 3. For the deployments

and the harvesting model, the time is calculated, and the procedures for the proposed algorithm are

executed in Matlab. Figure 8 shows our experiment equipments. We use the powercast TX91501-

915MHz to transmit energy. Moreover, we set the charger’s power to be 915MHz, which makes the

wavelength λ = 0.33m. We set the threshold of harvesting power as ϵ = 15μW, transition efficiency

as α = 0.25, and each charging period as Δ = 20s.

Based on these parameters, we calculate the distance threshold, 0.25 ∗ 4/(4π *d )2 = 0.015mW.

Then we calculate that d ≈ 6.78m, which means that when the distance between a sensor and a

charger is over 6.78m, the sensor will harvest no energy from that charger. In this simulation, the

default number of chargers is N = 12. The default number of sensors is M = 50, and the default

energy capacity is E = 4mJ. Figure 9(a) gives an example of the default placement. Figure 9(b)

illustrates the partition that RoundPick finds in the first iteration.

7.2 Baseline Setup

(i) Baselines of RoundPick for FCSF are as follows: Currently there is only one algorithm available

for FCSF with an actual charging model. The algorithms proposed in Guo et al. (2016) calculate all

the charger groups’ charging abilities in advance, and the performance of the Genetic Algorithm

(GA) they proposed is almost as good as the brute-force algorithm. We consider the GA as the

optimal algorithm (OPT).
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We also introduce a Random Algorithm (RA) for comparison. In addition, we compare our al-

gorithms with the random algorithm that consists of two phases. The first phase is removing k
chargers, which cannot charge any sensor, because some sensors may be fully charged after some

periods from C . The second phase is to randomly select β (N − k )(0 < β < 1) chargers in each pe-

riod. In this simulation, we set β to be 0.8.

(ii) Baseline of WeightGreedyPick for FCS is as follows: Since we are the first to consider ad-

justable initial phases alone with a nonlinear superposition charging model in a wireless charging

field. There is no other algorithm available to contrast WeightGreedyPick. In fact, FCS is too hard

to given an approximation algorithm. Here we introduce the RandomRoundPick (RRP) algorithm

for comparison. Given a set of fixed initial phases, RoundPick is able to output a charging schedule.

So we randomly set the initial phases of chargers as the input of RoundPick and use the minimum

value of several random inputs as the output to contrast the output of WeightGreedyPick.

For WeightGreedyPick, we set the δ , the step value of the phase, to be π
16 . And we set the initial

phases of all chargers to be 0.

7.3 Evaluation Results

In general, RoundPick achieves a near-optimal solution and outperforms the random algorithm.

In Figure 10(a), the number of charging periods decreases as the number of chargers grows. This

is obvious, because with more chargers, more sufficient energy will be supplied in the same period,

thereby reducing the charging time. According to the algorithms, the performance of RoundPick

is close to OPT when the number of chargers is small, and as the number of chargers increases,

the operation performance of RoundPick is gradually withdrawn by OPT. This is because when

the number of chargers is small, the electromagnetic interference will be limited and will tend to

select all the chargers.

In Figure 10(b), the total charging time grows with the growth in the number of sensors, and

there is a very good explanation, because with more sensors, interference will become more com-

mon, so the total charging length is increased. From each of the algorithms, the performance of

RoundPick is close to OPT when the number of sensors is small, and as the number of sensors

increases, the performance of RoundPick is worse than OPT. This is because when the number

of sensors is small, the electromagnetic interference caused by the sensor will be small, and the

overall charging power of the network will be higher than that of a single sensor.

In Figure 10(c), when the energy capacity goes up, the total charging time grows with the growth

of the capacitance, obviously, because the total harvesting grows, thereby increasing the charging

time. This is due to the fact that the electromagnetic interference is not large in the case of an hour

of electrical capacity, but as the capacitance increases, the influence of electromagnetic interference

on the charging will be amplified.

In Figure 10(a) and Figure 10(b), when the number of sensors or chargers decreases, the chance

of charging interferences goes down. As a result, the number of charging periods our algorithm

calculates is close to the optimal one. However, when the number of sensors or chargers goes up,

the performance of our algorithm is bad, because the interference becomes more common and is

hard to control. The only way to make the best choice is to calculate each group of chargers when

interference occurs.

As for the time complexity, it can be seen from Figure 10(d)–(f) that the running times of the

RoundPick and RA are much lower than those of the optimal algorithm. As we mentioned before,

the complexity of the OPT algorithm grows exponentially with the number of chargers. The run-

ning times of these three algorithms all increase with the charger scale, sensor scale, and energy

capacity, which is as expected.
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Fig. 10. Simulation results of RoundPick.

In Figure 11, we can see that the proposed algorithm WeightGreedyPick outperforms the RRP

algorithm, and the total charging periods decreases as the number of chargers grows. The to-

tal charging time grows with the growth of the number of sensors and with the growth of the

capacitance.

To show the influence of step value of phase, we construct an experiment, whose result is shown

in Figure 11(d). We can see that when the step value of a phase increases, the charging period also

increases. This is obvious, because with a smaller step value, the change of plus areas and minus

areas becomes more detailed, which may increase the possibility of better solutions.

We also construct an experiment to show the influence of the length of the charging period. We

can see from Figure 12 that the total charging time grows with the growth in the length of charging

period. This is obvious, because some sensors may be fully charged at the beginning of a charging

period, and with longer length of the period, more energy could be wasted. Shorter length of the
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Fig. 11. Simulation Results of WeightGreedyPick.

Fig. 12. Charging Time vs. The length of charging period.

period means more efficient scheduling, which gives us a better understanding of energy status of

sensors.

In summary, the proposed algorithm RoundPick performs very similarly to GA (which is con-

sidered as OPT) in sparse networks and outperforms the random algorithm, and the proposed

algorithm WeightGreedyPick performs better than RRP.

8 CONCLUSION

In this article, we study the FCS problem, addressing the nonlinear superposition charging effect

caused by radio interference. We prove that this problem is NP-complete by reduction from the

knapsack problem. To solve this problem, we first propose the 2-approximation algorithm FastPick
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in a 1D line. In a 2D plane, we discuss the special case of FCS, which we call the FCSF problem,

and propose the RoundPick algorithm to solve FCSF and obtain a bound of 6 − 4ϵ when sensors

and chargers are uniformly distributed, and ϵ is the error related to the actual charging condition.

After that, we propose the WeightGreedyPick algorithm to solve FCS in a 2D plane. The simulation

results show that the RoundPick can achieve a good performance that is close to that of OPT in a

sparse network.
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