
Online NFV-Enabled Multicasting in Mobile Edge
Cloud Networks
Yu Ma†, Weifa Liang†, and Jie Wu‡

† The Australian National University, Canberra, ACT 2601, Australia
‡ Temple University, Philadelphia, PA, USA

Abstract—Mobile Edge Computing (MEC) reforms the cloud
paradigm by bringing unprecedented computing capacity to the
vicinity of mobile users at the mobile network edge. This provides
end-users with swift and powerful computing, energy efficiency,
storage capacity, mobility- and context-awareness support. Fur-
thermore, provisioning virtualized network services in MEC
can improve user service experience, simplify network service
deployments, and ease network resource management. However,
user requests usually arrive into the system dynamically and
different user requests may have different resource demands.
How to optimize and guarantee the performance of MEC is of
significant importance and challenging. In this paper, we study
the problem of online NFV-enabled multicasting in an MEC
network with resource capacity constraints on both cloudlets
and links. We first devise an approximation algorithm for the
cost minimization problem for a single NFV-enabled multicast
request admission. We then propose an online algorithm with a
provable competitive ratio for the online throughput maximiza-
tion problem where NFV-enabled multicast requests arrive one
by one without the knowledge of future request arrivals. We
admit the requests through placing or sharing VNF instances of
network functions in their service chains to meet their computing
and bandwidth resource demands, and we introduce a novel
cost model to capture the dynamic usages of different resources
and perform network resource allocations based on the proposed
cost model. We finally evaluate the performance of the proposed
algorithms through experimental simulations. Simulation results
demonstrate that the proposed algorithms are promising.

I. INTRODUCTION

Mobile devices, including smart phones and tablets, gain
increasing popularity as communication tools of users for
their business, social networking, and personal entertainment.
However, their computing, storage and battery capacity is
very limited, due to their portal size. Leveraging by rich
computing and storage resources in public and private clouds,
mobile devices can offload their tasks to remote clouds for
processing and storage. However, such rich-resource clouds
are usually far away from users. The response delay to user
requests may not be tolerable for some real-time applications,
and their availability and security are also concerned [12].
Instead, a new network paradigm, Mobile Edge Computing
(MEC) is emerged, which can provide cloud-computing capa-
bilities at the edge of pervasive Radio Access Network (RAN)
in close proximity to mobile users [1]. It can significantly
shorten the response delay, ensure highly efficient network
operation and service delivery, and offer an improved user
experience. MEC thus is an ideal platform to meet ever-
growing resource demands of mobile users for their ap-

plications, by enhancing mobile device capabilities with a
realtime manner for autonomous vehicles, e-Health, Internet of
Things (IoT), virtualized/augmented reality, etc. In addition to
MEC, Network Function Virtualization (NFV) [15] has been
envisaged as another key technology to the next-generation
networking paradigm that enables fast service deployments,
and inexpensive and error-free service provisioning in future
communication networks [5]. It replaces resource demanding
service applications, such as object recognition, voice control,
or virtual reality, with software components in servers or
cloudlets that provide the same capability. Each network
function runs in a virtual machine, referred to as a virtualized
network function instance, hosted in a cloudlet.

Although implementing network functions as VNF in-
stances in cloudlets is a promising technology for simpli-
fying network service deployments, easing network resource
management, and improving user service experience, it poses
several fundamental challenges. One major challenge is the
limited resources on both cloudlets and links of mobile edge
cloud networks compared to powerful centralized data center
networks. It is of paramount importance to optimize the per-
formance of an MEC network through judicious allocation of
its limited resources. In addition, each NFV-enabled multicast
request has a requirement of a service function chain. How to
steer the data traffic of the request to go through each network
function in its service function chain correctly? Furthermore,
the implementation of a request may share an existing network
function instance with the other request implementations or
create a new VNF instance. How to make a decision to
create a new VNF instance or make use of an existing VNF
instance to minimize the operational cost of service providers?
Finally, how to deal with request admissions providing that
multicast requests arrive into the system dynamically without
the knowledge of future request arrivals. In this paper, we will
address the aforementioned challenges.

The novelties of this work lie in proposing an approximation
algorithm for a single NFV-enabled multicast request admis-
sion, through constructing an auxiliary graph and reducing
the problem to a minimum cost steiner tree in the auxiliary
graph. Furthermore, an online algorithm with a provable
competitive ratio for a sequence of NFV-enabled multicast
request admissions is also proposed, through the development
of a novel cost model to accurately capture the usage costs of
different resources in cloudlets and links.

The main contributions of this paper are summarized as fol-

lows. We study the NFV-enabled multicast request admissions
in mobile edge cloud networks with the aim to either minimize
the admission cost of a single NFV-enabled multicast request
admission, or maximize the network throughput through ad-
mitting a sequence of NFV-enabled multicast requests dynami-
cally, by taking both resource capacity constraints on cloudlets
and links, and the service chain of each request into consid-
eration. We first propose an approximation algorithm for the
cost minimization of a single multicast request admission. We
then devise an online algorithm with a provable competitive
ratio for dynamic multicast request admissions. We finally
evaluate the performance of the proposed algorithms through
experimental studies. The simulation results reveal that the
proposed algorithms are very promising.

The rest of the paper is organized as follows. Section II
reviews related work. Section III introduces notions, notations,
and problem definitions. Section IV devises an approximation
algorithm for the NFV-enabled multicasting cost minimization
problem. Section V develops an efficient online algorithm with
a provable competitive ratio for dynamic NFV-enabled mul-
ticast request admissions. Section VI evaluates the proposed
algorithms empirically, and Section VII concludes the paper.

II. RELATED WORK

As a key-enabling technology of 5G, MEC networks have
gained tremendous attention from the research community
recently [13]. Also, with the emergence of complicated and
resource-hungry mobile applications, implementing user tasks
in cloudlets of a nearby mobile edge-cloud network is be-
coming an important approach to reduce mobile device energy
consumption and improve user experience. There are extensive
studies on resource allocations in MEC networks [2], [3], [6],
[7], [9], [10], [13]. For example, Jia et al. [8] considered the
assignment of user requests to different cloudlets in a Wireless
Metropolitan Area Network with the aim to minimize the max-
imum delay among offloaded tasks, by developing heuristics
for the problem. Feng et al. [6] proposed an algorithm with
performance guarantee for placing VNFs in distributed cloud
networks and routing service flows among the placed VNFs
under the constraints of service function chains of the requests.

All the aforementioned studies assumed that each task will
be allocated with dedicated computing resources. There is no
consideration for whether there are existing VNF instances
in cloudlets to serve them. However, many tasks usually
request for the same type of network services. If the VNF
instance for a specified service has already been instantiated
and its workload has not reached its capacity, the other
tasks that requested for the service can make use of the
VNF instance. Several recent works started exploring VNF
instance sharing [7], [10]. For example, He et al. [7] recently
studied the joint service placement and request scheduling
in order to optimally provision edge services while taking
into account the demands of both sharable and non-sharable
resources. They aim to maximize the network throughput, by
developing heuristic algorithms. There are several studies of
NFV-enabled multicasting in MEC environments [17], [18],

[19]. For example, Zhang et al. [19] investigated the NFV-
enabled multicasting problem in SDNs. They assumed that
there are sufficient computing and bandwidth resources to
accommodate all multicast requests, for which they provided
a 2-approximation algorithm if only one server is deployed
for implementing the service chain of each multicast request.
Xu et al. [18] considered the cost minimization of admitting
a single NFV-enabled multicast request with the QoS require-
ment in MEC, where the implementation of the service chain
of each request will be consolidated into a single cloudlet.
They developed both approximation and heuristic algorithms
for the problem, by placing no more than constant numbers of
VNF instances of the service chain of the request in different
branches of the found pseudo-multicast tree for the request.

III. PRELIMINARIES

In this section, we first introduce the system model, notions
and notations, and then define the problems precisely.

A. System model

We consider a mobile edge cloud (computing) network
(MEC) in a metropolitan region, which is modelled by an
undirected graph G = (V,E), where V is a set of access
points (APs) located at different locations in the metropolitan
region, e.g., shopping centers, airports, restaurants, bus sta-
tions, and hospitals. A cloudlet is co-located with each AP
node v ∈ V via a high-speed optical cable, which implies that
the communication delay between them is negligible due to
plenty of bandwidth on the cable. For simplicity, an AP node
and the co-located cloudlet will be used interchangeably if no
confusion arises. Each cloudlet has computing capacity Cv for
implementing various virtualized network functions (VNFs)
requested by mobile users. E is the set of links between APs.
Each link e ∈ E has a bandwidth capacity Be. We assume that
each AP node covers a certain area, in which mobile users can
access the MEC wirelessly through it. In case a mobile user
located at an overlapping coverage region by multiple APs,
the mobile user can choose connecting to its nearest AP (or
an AP with the strongest signal strength). Fig. 1 is an example
of an MEC network.

Access
Point
(AP)

Cloudlet
(Server)

Fig. 1. An example of an MEC network with 6 APs and each is attached
with a cloudlet.

B. NFV-enabled multicast requests with service function chain
requirements

Consider an NFV-enabled multicast request rj =
(sj , Dj , SFCj , ρj) that transfers data traffic from a source
node sj ∈ V to a given set of destination nodes Dj ⊆ V
with a specified packet rate ρj . Each packet in the data
traffic must pass through a sequence of network functions
of its specified type of service function chain SFCj =
〈fj,1, . . . , fj,l, . . . , fj,Lj 〉 before reaching its destinations,
where Lj is the length of the service function chain.

We assume that resources in cloudlets are virtualized, using
container-based lightweight virtualization technologies, and
thus can be allocated and shared flexibly. Each instance of
a virtualized network function (VNF) is a lightweight vir-
tual machine in a cloudlet. Implementing VNF instances in
cloudlets consumes computing resource of cloudlets. Without
loss of generality, we assume that different types of VNFs
in service function chains of all requests can be classified
into K different types. Denote by f (k) and C(f (k)) the
virtualized network function of type k and the amount of
computing resource consumed for its implementation in a
cloudlet respectively, 1 ≤ k ≤ K. Suppose each VNF instance
of f (k) has a maximum processing capacity µ(k). Furthermore,
if the residual processing capacity of a VNF instance is
sufficient to process the data traffic of a request, this VNF
instance can be shared by the request. Otherwise, a new VNF
instance needs to be instantiated in a cloudlet if it has sufficient
residual computing resource in the admission of the request.

To implement an NFV-enabled multicast request rj , each
packet of its data traffic is enforced to go through an instance
of each network function in its service function chain SFCj
prior to reaching its destinations in Dj . Denote by T (j) the
multicast tree that transfers the data traffic of NFV-enabled
multicast request rj from the source sj to destinations in
Dj . Fig. 2 is an illustrative example of a multicast request
implementation. To this end, an existing VNF instance (with
sufficient residual processing capacity) must be selected or
a new VNF instance must be instantiated in a cloudlet, for
each network function fj,l in its service function chain SFCj .
Without loss of generality, we assume that the VNF instances
of service function chain SFCj can be placed at different
cloudlets, i.e., the VNF instances of a service function chain
are not necessarily consolidated into a single cloudlet only.

C. Admission cost of an NFV-enabled multicast request

The operational cost of an MEC network for NFV-enabled
multicast requests mainly consists of three components, the
VNF instance processing cost for processing request data
packets, the VNF instance instantiation cost for instantiating
VNF instances in cloudlets, and the bandwidth usage cost for
routing data traffic of the request along links. Instantiating
VNF instances at cloudlets consumes their computing and
storage resources, thus incurs the VNF instantiation cost.
Denote by cins(f (k), v) the instantiation cost a VNF instance
of network function f (k) in a cloudlet v, and ρj ·cproc(f (k), v)
the processing cost of data traffic of a request rj at a VNF

Destination 1

Destination 2

Destination 3

Destination 4

Destination 5

Destination 6

Destination 7

Source

NAT

FW

Proxy

NAT

FW

FW

Proxy

Proxy

Proxy

Proxy

Fig. 2. An example of an NFV-enabled multicast request with a service
function chain consists of three network functions, Network Address Trans-
lation (NAT), Firewall (FW), and Proxy. Data traffic of the multicast request
is transferred from the source node Source to a set of 7 destination nodes.
Each packet of the request must pass through an instance of network function
in its service function chain.

instance of f (k) at cloudlet v, where cproc(f (k), v) is the cost
of processing a packet by a VNF instance f (k) at cloudlet
v and ρj is the demanded packet rate of rj . Notice that the
processing cost of a packet cproc(f (k), v) of different VNF
instances at different cloudlets may be significantly different,
since different VNF instances consume different amounts of
computing resources, and servers in different cloudlets have
different amounts of energy consumptions.

In addition to the processing cost of its data traffic at VNF
instances, the data traffic of request rj is routed along a
pseudo-multicast tree T (j) (it may not be a multicast tree) in
the network from the source node sj to the destination nodes
in Dj , which incurs the communication cost. The routing
cost of data packets of rj along multicast tree T (j) thus is
ρj ·cbw(Tj) = ρj ·

∑
e∈T (j) ce, where ce is the unit transmission

cost on link e ∈ E, and cbw(Tj) is the cost of transferring a
packet along the multicast tree T (j).

D. Problem definitions

In this paper, we consider two NFV-enabled multicast
request admission problems. We first consider the cost mini-
mization problem for a single NFV-enabled multicast request
admission; we then consider the online multicast request
admissions in which requests arrive one by one without the
knowledge of future request arrivals, we aim to maximize
the network throughput. The precise definitions of the two
problems are given below.

Definition 1: Given an MEC network G = (V,E) with a
set V of cloudlets, each v ∈ V having computing capacity
Cv , let Be be the bandwidth capacity of each link e ∈ E,
an NFV-enabled multicast request rj = (sj , Dj , SFCj , ρj),
the NFV-enabled multicasting problem is to find a pseudo-
multicast tree for rj to route its data traffic from the source
node sj to each destination node in Dj while each packet
of its data traffic must pass through each VNF instance in
its service function chain SFCj , such that its implementation
cost is minimized, subject to the computing and bandwidth
capacities on both cloudlets and links of the network.

Definition 2: Given an MEC network G = (V,E) with
a set V of cloudlets, each v ∈ V has computing capacity

Cv , and each link e ∈ E has bandwidth capacity Be.
Let r1, r2, . . . , rj be a sequence of NFV-enabled multicast
requests that arrive into the system one by one without the
knowledge of future request arrivals, the online multicasting
throughput maximization problem in G is to maximize the
number of requests admitted, subject to resource capacities on
both cloudlets and links of the network.

The defined two problems are NP-hard, and their NP-hard
proofs are omitted due to space limitation.

IV. AN APPROXIMATION ALGORITHM FOR THE
NFV-ENABLED MULTICASTING PROBLEM

In this section, we deal with the NFV-enabled multicasting
problem. We first devise an approximation algorithm for the
problem, and then analyze the performance of the proposed
algorithm.

A. Algorithm overview

Given an MEC G = (V,E) and a multicast request rj , we
aim to minimize the operational cost of the service provider
by steering the data traffic of request rj from a source
sj to a set of destinations in Dj while each packet must
pass through a sequence of network functions in the service
function chain SFCj demanded by the request. There are two
important challenges to tackle the problem. One is the resource
availability. Given a multicast request rj , whether it should be
admitted or rejected is determined by the availability of its
demanded resources in the network G; the other is which
cloudlets should be selected to implement which network
functions in its service function chain, and whether new VNF
instances to be instantiated or existing VNF instances can
be shared. Addressing these two challenges is essential for
delivering a feasible and cost-efficient solution to the problem.

The basic idea of the proposed approximation algorithm for
the problem is to reduce the cost minimization problem in an
auxiliary acyclic graph for the multicast request rj . Then, if
a multicast tree exists in the auxiliary graph, there will be
sufficient resources in G to meet the resource demands of the
request, and a pseudo-multicast tree T (j) in G for rj can be
derived from the found multicast tree in the auxiliary graph.

B. Approximation algorithm

For a given multicast request rj , we can either make use of
existing network function instances as long as their residual
processing capacities are sufficient to admit request rj . Also,
if there is sufficient available computing resource in a cloudlet,
a new instance for that type of network function can be
instantiated. Thus, there can be multiple candidate instances
of the lth network function fj,l in its service function chain
SFCj in G with 1 ≤ l ≤ Lj .

Define a function λ(j, l) = k, with 1 ≤ k ≤ K, to
represent type k of the lth network function fj,l in SFCj of
request rj . Denote by F (k)

v the set of VNF instances of type
k instantiated in cloudlet v. Let µrei be the residual processing
capacity of VNF instance i ∈ F (k)

v . And let Crev be the residual
computing capacity of cloudlet v ∈ V . Denote by Nl,v the set

of VNF instances that can be employed as the lth network
function fj,l in SFCj in cloudlet v, including both existing
network function instances with sufficient residual processing
capacities, i.e., µrei ≥ ρj with i ∈ F (λ(j,l))

v , as well as a new
VNF instance i′ to be created providing sufficient computing
resource in cloudlet v, i.e, Crev ≥ C(f (λ(j,l))). Then Nl is
the set of VNF instances that can be employed as the lth
network function fj,l in SFCj among all cloudlets in V , i.e.,
Nl = ∪v∈VNl,v. We assume that the number of VNF instances
of the same type in each cloudlet is a small constant.

To this end, we construct an auxiliary directed graph
G′j = (V ′j , E

′
j) from G for request rj as follows. We first

remove all links from G if their residual bandwidth is less
than ρj . The node set V ′j of G′j is the union on sets Nl
of VNF instances for 1 ≤ l ≤ Lj , with the source node
sj , the destination node set Dj of multicast request rj , i.e.,
V ′j = ∪Ljl=1Nl∪{sj}∪Dj . In order to make sure that network
functions of SFCj = 〈fj,1, . . . , fj,l, . . . , fj,Lj 〉 are traversed
in this specified order, we add a directed edge from a node
x ∈ Nl−1 to each node y ∈ Nl for 2 ≤ l ≤ Lj if a path in G
between x and y exists, and a weight w(x, y) is assigned to
this edge, which is the communication cost along the shortest
path between the cloudlets that implementing VNF instances x
and y, and the processing and VNF instance instantiation cost
of network function y. Notice that if the VNF instance is an
existing instance, the VNF instance instantiation cost is 0; and
if two network functions x, y resides in the same cloudlet, the
communication cost between them is 0. We then add a directed
edge from sj to each node y ∈ N1 if such a path in G exists. A
weight assigned to it is the cost of communication cost along
the path and the processing and VNF instance instantiation
cost of the network function y. Notice that the type of network
function y is λ(j, 1). Also, we add a directed edge from a
node x ∈ NL to a node y ∈ Dj , and set the communication
cost along the shortest path from a cloudlet that implement
network function x to AP node y as its weight if such a
path exists in G. Thus, E′j = ∪Ljl=2{〈x, y〉 | x ∈ Nl−1, y ∈
Nl} ∪ {〈sj , y〉 | y ∈ N1} ∪ {〈x, y〉 | x ∈ NLj , y ∈ Dj}.
In order to make sure a multicast request can be admitted
without violating computing capacity of any cloudlet, we adopt
a conservative strategy such that only if the residual computing
capacity of a cloudlet is sufficient to create all necessary VNF
instances (VNF instances that do not have enough residual
processing capacity or do not exist in this cloudlet), this
cloudlet will be selected to create new VNF instances. Fig. 3
shows the construction of G′j .

Having the constructed auxiliary graph G′j , the problem is
reduced to find a directed multicast tree T ′(j) in G′j rooted
at sj and spanning all nodes in Dj , such that the weighted
sum of edges in T ′(j) is minimized. This is the classic
Directed Steiner Tree problem, which is NP-hard. There is an
approximate solution which is |Dj |ε times of the optimal [4],
where ε is a constant with 0 < ε ≤ 1.

If a multicast tree T ′(j) in G′j exists, a pseudo-multicast
tree T (j) in G rooted at sj and spanning all nodes in Dj

N1, 1

N1 N2 NLj

sj

Dj

.

. . .

VNF instance
to be

instantiated

existing VNF
instance source node destination

node

N1, 2

N1, 3

N2, 1

N2, 2

N2, 3

NLj, 1

NLj, 2

NLj, 3

..
...

...

Fig. 3. A constructed auxiliary graph G′
j with Lj+2 layers for NFV-enabled

multicast request rj . Layer 0 is the source node sj . Layer Lj + 1 consists
of destination nodes in Dj . Each layer l, with 1 ≤ l ≤ Lj , consists of VNF
instances of type λ(j, l) that can be employed to process data traffic of request
rj in each cloudlet v ∈ V . If there is sufficient residual computing resource
in a cloudlet, a new VNF instance of that type can be instantiated. Notice that,
if there is a path between a VNF instance implemented in cloudlet u ∈ V
and a VNF instance implemented in cloudlet v ∈ V , then there will be a
path between any pair of VNF instances implemented in the two cloudlets
respectively. For simplicity, we use an edge in the graph to represent a set
of edges between each pair of VNF instances resides in the two cloudlets
respectively.

can then be derived, where a pseudo-multicast tree in fact is
a graph in which nodes and links can appear multiple times.
Specifically, we expand each directed edge in the multicast
tree T ′(j) to a set of edges in the corresponding shortest path
of G. The detailed description of the algorithm for the NFV-
enabled multicasting problem is given in Algorithm 1.

Algorithm 1 Finding a minimum-cost multicast tree in G for
request rj
Input: An MEC network G = (V,E) with a set V of cloudlets, a

multicast request rj = (sj , Dj , SFCj , ρj).
Output: Admit or reject request rj . If rj is admitted, a pseudo-

multicast tree T (j) in G is delivered.
1: Remove all edges in G with residual bandwidth less than ρj ;
2: Compute all pairs shortest paths between each pair of AP nodes

in G;
3: Construct the directed auxiliary graph G′

j from G, and assign a
cost weight on each of its edges;

4: Find an approximate multicast tree T ′(j) in G′
j rooted at sj ,

and spanning all nodes in Dj , by applying the algorithm due to
Charikar et al. [4];

5: if T ′(j) in G′
j exists then

6: A pseudo-multicast tree T (j) in G is derived, by replacing
each edge in T ′(j) with its corresponding set of edges of a
shortest path in G;

7: If a selected VNF instance is to be instantiated, create a new
VNF instance in its cloudlet;

8: Update residual resource capacities of links, cloudlets, and
VNF instances in G;

9: else
10: Reject multicast request rj .
11: end if

C. Algorithm analysis

In the following, we show the correctness of the proposed
algorithm, Algorithm 1, and analyze its approximation ratio
and time complexity.

Theorem 1: Given an MEC network G = (V,E) with a
set V of APs each attached with a cloudlet, and a multicast
request rj = (sj , Dj , SFCj , ρj), there is an approximation
algorithm, Algorithm 1, for the NFV-enabled multicasting
problem with an approximation ratio of |Dj |ε, which takes
O((Lj · |V |)

1
ε |Dj |

2
ε + |V |3) time, where Lj is the length of

service function chain SFCj of request rj , and ε is a constant
with 0 < ε ≤ 1.

Proof We first show the solution obtained by the proposed
algorithm is feasible. Following the construction of G′j , G

′
j is

a layered directed acyclic graph, node sj is at layer 0, each
node x ∈ Nl is at layer l, with 1 ≤ l ≤ Lj , and each node
x ∈ Dj is at layer Lj + 1, assuming that |SFCj | = Lj . If
T ′(j) is the found multicast tree in G′j , it can be seen that
there is a corresponding pseudo-multicast tree in G rooted
at sj and spanning all nodes in Dj . Since G′j is a layered
directed acyclic graph, the multicast tree T ′(j) passes through
a cloudlet in layer l for implementing network function fj,l
in its service function chain SFCj , with 1 ≤ l ≤ Lj . The
VNF instance for fj,l can be an existed VNF instance with
sufficient residual processing capacity or a new VNF instance
to be instantiated.

The admission cost of multicast request rj consists of
three components, the VNF instance processing cost, the VNF
instance instantiation cost, and the bandwidth usage cost. Each
packet of request rj is transferred from the source node sj
to each destination node in Dj while passing through each
VNF instance in its service function chain SFCj . The use
of each VNF instance fj,l in layer Nl for processing data
packets incurs the VNF instance processing cost, and if the
VNF instance is newly instantiated, there is VNF instance
instantiation cost. When data packets are transferred from a
cloudlet (VNF instance) to the next cloudlet (VNF instance),
there is communication cost in links. The summation of all
these costs are assigned to each directed edge in E′j . Thus,
the cost of the minimum steiner tree T ′(j) found in G′j from
sj while spanning all nodes in Dj , is the minimum admission
cost of rj in G. Following [4], the approximation ratio of the
proposed algorithm for NFV-enabled multicast problem for
a multicast request rj is |Dj |ε, where ε is a constant with
0 < ε ≤ 1.

The time complexity analysis of Algorithm 1 is omitted,
due to space limitation.

V. AN ONLINE ALGORITHM FOR THE ONLINE
MULTICASTING THROUGHPUT MAXIMIZATION PROBLEM

In this section, we study the online multicasting throughput
maximization problem, by assuming that requests arrive one
by one without the knowledge of future request arrivals. We
first propose an efficient online algorithm for the problem, by
building a novel cost model to capture the dynamic resource

consumptions in G and performing resource allocation to
admit requests based on the cost metric. We then analyze the
competitive ratio and time complexity of the proposed online
algorithm.

A. Resource usage cost model

The basic idea of the proposed online algorithm is to
regulate an online admission control policy to respond to each
incoming NFV-enabled multicast request by either admitting
or rejecting it, depending on the availability of its demanded
resources. We still make use of the constructed auxiliary graph
G′j for the NFV-enabled multicasting problem in the previous
section. However, the weight assigned to each node and each
edge in G′j will be dynamically determined.

As a VNF instance can be shared by multiple requests
provided that the sum of packet rates going through the
instance is no greater than its processing capacity, we treat the
VNF instance processing capacity of each VNF instance as a
type of resource, as well as computing resource in cloudlets,
and bandwidth along links. We start by introducing a resource
usage cost model to measure the resource consumption by each
VNF instance (processing capacity), each cloudlet (computing
resource) and each link (bandwidth) when admitting multicast
requests, in which if a specific type of resource has been highly
utilized, it should not be encouraged to be used in the near
future, and the use of it will result in a higher cost. Otherwise,
if a resource that has rarely been used should be encouraged
to use by assigning it a lower cost. Thus, the resources in
the network can be optimally utilized among user requests to
maximize the network throughput. We here treat processing
capacity of VNF instances and computing resource in cloudlets
for creating VNF instances as different type of resources.

The proposed online algorithm examines each arrived mul-
ticast request one by one. When a request rj arrives, the
resource availability of VNF instances, cloudlets and links will
determine whether rj should be admitted. Recall that F (k)

v

the set of VNF instances of type k in cloudlet v. If there
is sufficient computing resource in cloudlet v, a new VNF in-
stance of type k can be instantiated. Here, let F (k)

v include the
new VNF instance of type k to be created. Denote by µ(k)

v,i (j)
the residual processing capacity of VNF instance i of type k
in cloudlet v when request rj arrives, with µ

(k)
v,i (0) = µ(k),

i ∈ F (k)
v . If request rj is admitted and its packets is processed

by the VNF instance, then µ
(k)
v,i (j + 1) = µ

(k)
v,i (j) − ρj ;

otherwise, the residual computing capacity is unchanged, i.e.,
µ
(k)
v,i (j + 1) = µ

(k)
v,i (j). Similarly, denote by Cv(j) and Be(j)

the residual computing capacity at cloudlet v and residual
bandwidth in link e, when request rj arrives.

To capture the resource usage of rj , we use an exponential
function to model the cost W (k)

v,i (j) of processing packets of
rj by VNF instance i ∈ F (k)

v as follows,

W
(k)
v,i (j) = µ(k)(α

1−
µ
(k)
v,i

(j)

µ(k) − 1), (1)

where α (> 1) is a tuning parameter to be decided later, and

1− µ
(k)
v,i (j)

µ(k) is the processing capacity utilization ratio in VNF
instance i when request rj is considered.

Similarly, the cost Wv(j) of instantiating a new VNF
instance at cloudlet v ∈ V and the cost We(j) of using
bandwidth resource at link e ∈ B are defined, respectively,

Wv(j) = Cv(β
1−Cv(j)

Cv − 1), (2)

We(j) = Be(γ
1−Be(j)Be − 1), (3)

where β (> 1) and γ (> 1) are tuning parameters to be
decided later, and 1 − Cv(j)

Cv
and 1 − Be(j)

Be
are the resource

utilization ratios in cloudlet v and in link e, respectively, when
request rj is considered. In order to encourage the sharing of
VNF instances among multicast requests, we assume that the
cost of creating a new VNF instance much higher than the
cost of processing capacity usage, i.e., β � α.

We then define the normalized usage cost of each VNF
instance i ∈ F (k)

v in cloudlet v for request rj as,

ω
(k)
v,i (j) =W

(j)
v,i (j)/µ

(k) = α
1−

µ
(k)
v,i

(j)

µ(k) − 1. (4)

Similarly, the normalized usage costs ωv(j) at each cloudlet
v ∈ V and ωe(j) at each link e ∈ E for request rj are defined
as follows,

ωv(j) =Wv(j)/Cv = β1−Cv(j)
Cv − 1, (5)

ωe(j) =We(j)/Be = γ1−
Be(j)
Be − 1. (6)

For each request rj , we construct an auxiliary graph G′j =
(V ′j , E

′
j) similar as the one for the NFV-enabled multicasting

problem. The difference is the weight assigned to each directed
edge in E′j is the sum of three normalized usage costs defined
in (4), (5), (6), respectively. Similar as before, if the VNF
instance is an existing instance, the VNF instance instantiation
cost is 0; and if two network functions resides in the same
cloudlet, the communication cost between them is 0.

To avoid admitting requests that consume too much re-
sources, thereby undermining the performance of the MEC,
we adopt the following admission control policy: If (i) the
sum of normalized usage costs of the VNF instances in
its service function chain of request rj is greater than σ1,
i.e.,

∑
v∈V

∑Lj
l=1

∑
i∈F (λ(j,l))

v
ω
(λ(j,l))
v,i (j) > σ1, where Lj =

|SFCj |; or (ii) the sum of normalized usage costs of VNF
instantiation for request rj is greater than σ2,

∑
v∈V ωv(j) >

σ2; or (iii) the sum of normalized usage costs of links for
request rj is greater than σ3,

∑
e∈E ωe(j) > σ3, rj will be

rejected, where σ1, σ2, σ3 are the admission control thresholds
of resource usages in VNF instances, cloudlets, and links,
respectively, where σ1 = σ2 = σ3 = n, and n = |V |.
The detailed algorithm for the online multicasting throughput
maximization problem is detailed in Algorithm 2.

B. Algorithm analysis

We now analyze the competitive ratio and time complexity
of the proposed online algorithm, Algorithm 2. We first

Algorithm 2 Online algorithm for the online multicasting
throughput maximization problem
Input: An MEC network G = (V,E) with a set V of APs each

v ∈ V attached with a cloudlet with computing capacity Cv , a
sequence of multicast requests rj = (sj , Dj , SFCj , ρj).

Output: A solution to maximize the network throughput, by admit-
ting or rejecting each arriving multicast request rj . If rj admitted,
a routing multicast tree for rj from source node sj to a set of
destination nodes in Dj will be delivered.

1: while request rj arrives do
2: Remove all edges with residual bandwidth less than ρj ;
3: Construct the auxiliary graph G′

j = (V ′
j , E

′
j) for request rj ,

assign weight to each edge in E′
j as stated;

4: Find an approximate multicast tree T ′(j) in G′
j rooted at sj

and spanning all nodes in Dj , by applying the algorithm due
to Charikar et al. [4];

5: if T ′(j) does not exist then
6: Reject multicast request rj ;
7: else
8: Determine whether rj should be accepted or not by the

admission control policy;
9: if rj is admitted then

10: A pseudo-multicast tree T (j) in G is derived, by re-
placing each edge in T ′(j) with its corresponding set of
edges in G;

11: If a selected VNF instance is to be instantiated, create a
new VNF instance;

12: Update residual resource capacities of VNF instances,
links and cloudlets in G;

13: end if
14: end if
15: end while

show the upper bound on the total cost of admitted requests.
We then provide a lower bound on the cost of a rejected
request by Algorithm 2 but admitted by an optimal of-
fline algorithm. We finally derive the competitive ratio of
Algorithm 2.

As for each network function in service function chain
SFCj of rj , a new VNF instance can be instantiated or an
existing VNF instance can be shared, we introduce a binary
variable x(λ(j,l))v with x(λ(j,l))v = 1 if the lth VNF instance is
newly instantiated in cloudlet v; otherwise, it is 0.

Lemma 1: Given an MEC network G = (V,E) with a set
V of APs that each v ∈ V is attached with a cloudlet with
computing capacity Cv and link bandwidth capacity Be for
each link e ∈ E, denote by A(j) the set of NFV-enabled
multicast requests admitted by the algorithm, Algorithm 2,
until the arrival of request rj . Then, the cost sums of VNF
instances, cloudlets, and links when multicast request rj
arrives are∑

v∈V

Lj∑
l=1

∑
i∈F (λ(j,l))

v

W
(λ(j,l))
v,i (j) ≤ 2n logα · B(j), (7)

∑
v∈V

Wv(j) ≤ 2nLmax log β · |A(j)| · C(fmax), (8)∑
e∈E

We(j) ≤ 2n log γ · B(j), (9)

respectively, provided that the maximum length of any ser-
vice function chain is no greater than n, i.e., Lmax =

max1≤j′≤j |SFCj′ | ≤ n, and ρj′ ≤
min1≤l≤L

j′
µ(λ(j′,l))

logα ,∑Lj′

l=1 C(f
(λ(j′,l))) · x(λ(j

′,l))
v ≤ minv∈V Cv

log β , ρj′ ≤ mine∈E Be
log γ

with 1 ≤ j′ ≤ j, where
∑Lj′

l=1 C(f
(λ(j′,l))) · x(λ(j

′,l))
v is the

computing resource being occupied by newly instantiated VNF
instances in cloudlet v for request rj′ , B(j) is the accumulative
bandwidth resource being occupied by the admitted requests,
i.e., B(j) =

∑
rj′∈A(j) ρj′ , and C(fmax) is the maximum

computing resource required among all VNF instance types,
i.e., C(fmax) = max1≤k≤K{C(f (k))}.

Proof Consider a request rj′ ∈ A(j) admitted by
Algorithm 2. For any VNF instance i ∈ F (k)

v , we have

W
(k)
v,i (j

′ + 1)−W (k)
v,i (j

′)

= µ(k)(α
1−

µ
(k)
v,i

(j′+1)

µ(k) − 1)− µ(k)(α
1−

µ
(k)
v,i

(j′)

µ(k) − 1)

= µ(k)α
1−

µ
(k)
v,i

(j′)

µ(k) (α
µ
(k)
v,i

(j′)−µ(k)
v,i

(j′+1)

µ(k) − 1)

= µ(k)α
1−

µ
(k)
v,i

(j′)

µ(k) (α
ρ
j′

µ(k) − 1)

= µ(k)α
1−

µ
(k)
v,i

(j′)

µ(k) (2
ρ
j′

µ(k)
logα − 1)

≤ µ(k)α
1−

µ
(k)
v,i

(j′)

µ(k) · ρj
′

µ(k)
· logα (10)

= α
1−

µ
(k)
v,i

(j′)

µ(k) · ρj′ · logα, (11)

where Ineq. (10) holds due to that 2a − 1 ≤ a for 0 ≤ a ≤ 1.
Similarly, for any cloudlet v ∈ V , we have Wv(j

′ + 1) −
Wv(j

′) ≤ β1−Cv(j′)
Cv (

∑Lj′

l=1 C(f
(λ(j′,l))) · x(λ(j

′,l))
v) log β and

for any link e ∈ E, we have We(j
′+1)−We(j

′) ≤ γ1−
Be(j

′)
Be ·

ρj′ · log γ.
We then calculate the cost sum of all VNF instances when

admitting request rj′ . The difference of the cost sum of VNF
instances before and after admitting request rj′ is

∑
v∈V

Lj′∑
l=1

∑
i∈F (λ(j′,l))

v

W
(k)
v,i (j

′ + 1)−W (k)
v,i (j

′)

=

Lj′∑
l=1

W
(k)
v,i (j

′ + 1)−W (k)
v,i (j

′) (12)

≤
Lj′∑
l=1

α
1−

µ
(λ(j′,l))
v,i

(j′)

µ(λ(j
′,l)) · ρj′ · logα, by Ineq. (11)

= ρj′ · logα

Lj′∑
l=1

(α
1−

µ
(λ(j′,l))
v,i

(j′)

µ(λ(j
′,l)) − 1) +

Lj′∑
l=1

1

= ρj′ · logα

Lj′∑
l=1

ω
(k)
v,i (j

′) + Lj′

 ≤ 2nρj′ · logα (13)

Eq. (12) holds due to that for each network function fj′,l,
only one VNF instance is employed to process data traffic of

request rj′ . Ineq. (13) holds due to the fact that if request
rj′ is admitted, the admission control policy is met, i.e.,∑Lj′

l=1 ω
(λ(j′,l))
v,i (j′) ≤ σ1 = n, and the length of service

function chain of request rj′ is less than the number of APs,
i.e., |SFCj′ | = Lj′ ≤ Lmax ≤ n.

Similarly, the difference of the cost sum of cloudlets before
and after admitting request rj′ is

∑
v∈V Wv(j

′+1)−Wv(j
′) ≤

2nLj′ · C(fmax) · log β, where C(fmax) is the maximum
computing resource consumption of any VNF instance f (k),
1 ≤ k ≤ K in the system. And the difference of the
cost sum of links before and after admitting request rj′ is∑
e∈EWe(j

′ + 1)−We(j
′) ≤ 2nρj′ · log γ.

The cost sum of VNF instances for request admissions when
rj arrives thus is

∑
v∈V

Lj∑
l=1

∑
i∈F (k)

v

W
(k)
v,i (j)

=

j−1∑
j′=1

∑
v∈V

Lj′∑
l=1

∑
i∈F (k)

v

W
(k)
v,i (j

′ + 1)−W (k)
v,i (j

′) (14)

=
∑

rj′∈A(j)

∑
v∈V

Lj′∑
l=1

∑
i∈F (λ(j′,l))

v

(W
(k)
v,i (j

′ + 1)−W (k)
v,i (j

′))

≤
∑

rj′∈A(j)

2nρj′ · logα = 2n logα · B(j), by Ineq. (13)

where Eq. (14) follows from the fact that if a request is not
admitted, none of the processing capacity of any VNF instance
will be consumed.

Similarly, the cost sum of cloudlets for request admissions
when rj arrives is

∑
v∈V Wv(j) ≤ 2nLmax log β · |A(j)| ·

C(fmax). And, the cost sum of links for request admissions
when rj arrives is

∑
e∈EWe(j) ≤ 2n log γ · B(j).

We now provide a lower bound on the weight of a rejected
request by Algorithm 2 but admitted by an optimal offline
algorithm denoted by OPT . Before we proceed, we choose
appropriate values for α, β, and γ prior to the arrival of any
request rj and VNF instance k, 1 ≤ k ≤ K as follows.

2n+ 2 ≤ α ≤ min
1≤k≤K

{2
µ(k)

ρj } (15)

2n+ 2 ≤ β ≤ min
1≤k≤K

min
v∈V
{2

Cv

C(f(k)) } (16)

2n+ 2 ≤ γ ≤ min
e∈E
{2

Be
ρj } (17)

Lemma 2: Let T (j) be the set of requests that are rejected by
Algorithm 2 but admitted by the optimal offline algorithm
OPT prior to the arrival of request rj . Then, for any request
rj′ ∈ T (j), we have

∑
v∈V

∑Lj′

l=1

∑
i∈F (λ(j′,l))

v
ω
(λ(j′,l))
v,i (j′)+∑

v∈V ωv(j
′) +

∑
e∈E ωe(j

′) > min{σ1, σ2, σ3} = n.
The proof of Lemma 2 is omitted, due to space limitation.
Theorem 2: Given an MEC network G = (V,E) with a set

V of APs in which each v ∈ V is attached with a cloudlet
with computing capacity Cv , each link e ∈ E has bandwidth

capacity Be, there is an online algorithm, Algorithm 2,
with competitive ratio of O(log n) for the online multicasting
throughput maximization problem, and the algorithm takes
O((Lj · |V |)

1
ε |Dj |

2
ε) time to admit each request rj when

α = β = γ = O(n), where n = |V |, Lj = |SFCj |, and
ε is a constant with 0 < ε ≤ 1.

Proof Denote by Dmax and ρmax the maximum cardinality of
destination set Dj′ and the maximum bandwidth requirement
of request rj′ among all requests respectively, prior to the
arrival of request rj , i.e., Dmax = max1≤j′≤j{Dj′}, and
ρmax = max1≤j′≤j{ρj′}. We first analyze the competitive
ratio of the proposed online algorithm. We here abuse the
notation OPT to denote the optimal offline algorithm OPT
and the number of requests admitted by it. Let A(j) be the
set of admitted requests when request rj arrives, we have
n

Dε
max

(OPT − |A(j)|)

≤ n

Dε
max

∑
rj′∈T (j)

1 ≤
∑

rj′∈T (j)

n (18)

≤
∑

rj′∈T (j)

∑
v∈V

Lj′∑
l=1

∑
i∈F (λ(j′,l))

v

ω
(λ(j′,l))
v,i (j′) +

∑
v∈V

ωv(j
′) +

∑
e∈E

ωe(j
′)

≤

∑
rj′∈T (j)

∑
v∈V

Lj∑
l=1

∑
i∈F (λ(j,l))

v

ω
(λ(j,l))
v,i (j) +

∑
rj′∈T (j)

∑
v∈V

ωv(j) +
∑

rj′∈T (j)

∑
e∈E

ωe(j), (19)

=
∑

rj′∈T (j)

∑
v∈V

Lj∑
l=1

∑
i∈F (λ(j,l))

v

W
(λ(j,l))
v,i (j)

µ(λ(j,l))
+

∑
rj′∈T (j)

∑
v∈V

Wv(j)

Cv
+

∑
rj′∈T (j)

∑
e∈E

We(j)

Be

=
∑
v∈V

Lj∑
l=1

∑
i∈F (λ(j,l))

v

W
(λ(j,l))
v,i (j)

∑
rj′∈T (j)

1

µ(λ(j,l))
+

∑
v∈V

Wv(j)
∑

rj′∈T (j)

1

Cv
+
∑
e∈E

We(j)
∑

rj′∈T (j)

1

Be
(20)

≤
∑
v∈V

Lj∑
l=1

∑
i∈F (λ(j,l))

v

W
(λ(j,l))
v,i (j) +

∑
v∈V

Wv(j) +
∑
e∈E

We(j)

(21)
≤ 2nB(j) logα+ 2nLmaxC(fmax) log β · |A(j)|+ 2nB(j) log γ
≤ 2n|A(j)|

(
ρmax logα+ Lmax · C(fmax) log β + ρmax log γ

)
(22)

Ineq. (18) holds since Dmax ≥ 1, and 0 < ε ≤ 1,
thus Dε

max ≥ 1. Ineq. (19) holds since the resource uti-
lization ratio does not decrease and thus the usage cost
of each VNF instance, each cloudlet, and each link does
not decrease with more request admissions. Ineq. (20) holds
because

∑m
i=1

∑n
j=1Ai · Bj ≤

∑m
i=1Ai ·

∑n
j=1Bj , for all

Ai ≥ 0 and Bj ≥ 0. Ineq. (21) holds because all algorithms,
including the optimal offline algorithm OPT , the accumulated
usage of resources in any VNF instance, cloudlet and link
is no greater than its capacity. Recall that A(j) is the set

of requests admitted by Algorithm 2, and T (j) is the
set of requests rejected by Algorithm 2 but accepted by
the optimal offline algorithm OPT . We have OPT−|A(j)|

|A(j)| ≤
2Dε

max(ρmax logα+ Lmax · C(fmax) log β + ρmax log γ).
Thus, we have OPT

|A(j)| ≤ 2Dε
max(ρmax logα + Lmax ·

C(fmax) log β + ρmax log γ) + 1 = O(log n) when α = β =
γ = O(n).

The time complexity analysis of Algorithm 2 is omitted,
due to space limitation.

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of the proposed
algorithms through experimental simulations. We also inves-
tigate the impact of important parameters on the performance
of the proposed algorithms.

A. Experiment settings

We consider an MEC network G = (V,E) consisting of
from 10 to 250 APs (cloudlets). The computing capacity of
each cloudlet ranges from 3, 000 MHz to 6, 000 MHz [10],
and the bandwidth capacity of each link varies between
2, 000 Mbps and 20, 000 Mbps [11]. The number K of
different types of network functions is set at 20. The com-
puting resource demand of each network function is set from
300MHz to 600MHz, and their processing rate is randomly
drawn from 50 to 100 data packets per millisecond [14]. Given
a cloudlet, the instantiation cost of a VNF instance in it is
randomly drawn from [0.50, 2.0], while the processing cost
of per packet data traffic by a VNF instance is a random
value drawn from [0.01, 0.1] [16]. The routing cost per data
packet along a link is a value drawn from [0.01, 0.1]. For each
generated request rj , one AP node in V is randomly selected
as its source sj , and a set of AP nodes in V are randomly
selected as its destinations Dj . Its data packet rate is drawn
from 2 to 10 packets per millisecond, where each packet is of
size 64KB. The length of its service function chain is set from
1 to 10, and each network function is randomly drawn from
the K types. The value in each figure is the mean of the results
out of 30 MEC instances of the same size. The running time
of an algorithm is obtained on a machine with 3.4GHz Intel i7
Quad-core CPU and 16GB RAM. Unless otherwise specified,
these parameters will be adopted in the default setting.

In the following, we first evaluate the performance
of Algorithm 1 for the NFV-enabled multicasting
problem against three baseline heuristics CostMinGreedy,
ExistingGreedy, and NewGreedy. Algorithm
CostMinGreedy considers network functions in the
service function chain one by one for each arriving request, it
always choose the cloudlet that can achieve the the minimum
cost (including the processing cost, instance instantiation cost,
and routing cost) for the next network function. Algorithm
ExistingGreedy considers network functions one by one
and it tries to admit the request by existing VNF instances
with the minimum admission cost as long as there is a VNF
instance with sufficient residual processing capacity, while
algorithm NewGreedy always tries to create new VNF

instance for the request providing sufficient computation
resource in a cloudlet. We then evaluate the performance of
Algorithm 2 against a benchmark OnlineLinear for
online request admissions, where for each request, algorithm
OnlineLinear first removes all VNF instances, cloudlets
and links that do not have sufficient residual resources to
support the admission of the request, and then assign a cost
of one to each VNF instance, each cloudlet, and each link. It
then constructs an auxiliary graph and finds a single-source
shortest path tree rooted at the source node and spanning all
destination nodes of the multicast request.

B. Performance evaluation

We first investigate the performance of Algorithm 1
against that of three baseline heuristics CostMinGreedy,
ExistingGreedy, and NewGreedy, for the NFV-enabled
multicasting problem for a single request admission, by
varying the network size from 10 to 250. Fig. 4 illus-
trates the admission cost and running time of the four
mentioned algorithms. From Fig. 4 (a), we can see that
Algorithm 1 achieves a much lower admission cost than
its three benchmarks in all cases. Specifically, it can incurs
48.0%, 25.3%, and 14.1% less admission cost than that by
NewGreedy, ExistingGreedy, and CostMinGreedy,
respectively, when the network size is 250. The reason behinds
is that Algorithm 1 jointly considers the placement of
VNF instances and data traffic routing for multicast request
admission, as well as makes a fine decision between using an
existing VNF instance or creating a new instance. Fig. 4 (b)
demonstrates the running time of the four algorithms. It
can be seen that algorithm NewGreedy achieves the least
running time, as it gives priority to create new VNF instances
in cloudlets, thus much smaller solution space is explored.
Algorithm 1 achieves the highest running time due to the
fact that Algorithm 1 strives for finding a multicast tree
with the least cost while passing through VNFs in its service
function chain at the same time, while the counter parts only
try to place its VNF instances in a greedy way, then routing
data packets to the destinations.

10 50 100 150 200 250
network size

0

50

100

150

200

ad
m

is
si

o
n
 c

o
st

Alg01
CostMinGreedy
ExistingGreedy
NewGreedy

(a) The admission cost

10 50 100 150 200 250
network size

0

200

400

600

800

ru
n
n
in

g
 t

im
e

(m
s) Alg01

CostMinGreedy
ExistingGreedy
NewGreedy

(b) The running time

Fig. 4. Performance of Algorithm 1, CostMinGreedy,
ExistingGreedy, and NewGreedy.

We then evaluate the performance of Algorithm 2 by
varying the network size from 10 to 250 for a sequence of
40, 000 requests. Fig. 5 plots the performance curves of dif-
ferent algorithms, from which we can see that Algorithm 2
outperforms the baseline algorithm OnlineLinear in all
cases. Specifically, Algorithm 2 admits 35.4% more re-
quests than that by algorithm OnlineLinear when the net-

work size is 200. The rationale behinds is that Algorithm 2
applies a cost model to assign higher cost to over-utilized
resources and assign lower cost to under-utilized resources,
thus allocating resources more evenly, while algorithm
OnlineLinear does not take into account the utilization
of resources on each cloudlet and each link, thus leading
to overloads on some links and cloudlets. Fig. 5 (c) shows
the running time of the two algorithms. We can see that the
running time of Algorithm 2 is higher than that of algorithm
OnlineLinear, this is because Algorithm 2 admits more
requests, and assigns exponential weights to cloudlets and
links when each request arrives.

10 50 100 150 200 250
network size n

0

5,000

10,000

15,000

20,000

25,000

#
ad

m
it

te
d
 r

eq
u
es

ts Alg02
OnlineLinear

(a) The network throughput

10 50 100 150 200 250
network size n

0

2e+05

4e+05

6e+05

8e+05

1e+06

ad
m

is
si

o
n
 c

o
st

Alg02
OnlineLinear

(b) The admission cost

10 50 100 150 200 250
network size n

1e+04

1e+05

1e+06

1e+07

ru
n

n
in

g
 t

im
e

(m
s)

Alg02
OnlineLinear

(c) The running time

Fig. 5. Performance of Algorithm 2 and OnlineLinear by varying the
network size from 10 to 250.

C. Parameter impact on the algorithm performance

We finally study the impact of the admission control vari-
ables σ1, σ2, and σ3 on the performance of Algorithm 2.
Fig. 6 demonstrates the performance curves of Algorithm 2
with and without the admission control thresholds, from which
it can be seen that less requests can be admitted if no
admission control policy is applied. We can see that when
the network size is 100, Algorithm 2 can admit 38.4%
more requests than that if no admission control is applied.
Furthermore, the performance gap of Algorithm 2 with
and without the thresholds becomes larger and larger with
the increase in network size. This is due to that in larger
networks, the size of the destination set of a request can
be very large, and the distance between the source and a
destination node can be very long, thus consuming much
more bandwidth resource for routing its data traffic. Under
the admission control policy, Algorithm 2 is able to reject
those requests beyond the given threshold, thereby enable to
admit more future requests and achieving a higher throughput.
Fig. 6 (b) shows the admission cost of Algorithm 2 with
and without admission control thresholds.

VII. CONCLUSION

In this paper, we studied the online NFV-enabled multicast
request admissions in a mobile edge cloud network. We first

10 50 100 150 200 250
network size n

0

5,000

10,000

15,000

20,000

25,000

#
ad

m
it

te
d
 r

eq
u
es

ts σ
1
 = σ

2
 = σ

3
 = n

σ
1
 = σ

2
 = σ

3
 = ∞

(a) The network throughput

10 50 100 150 200 250
network size n

0

2e+05

4e+05

6e+05

8e+05

1e+06

a
d
m

is
s
io

n
 c

o
s
t

σ
1
 = σ

2
 = σ

3
 = n

σ
1
 = σ

2
 = σ

3
 = ∞

(b) The admission cost

Fig. 6. Impact of the admission control policy on the performance of
Algorithm 2.

proposed an approximation algorithm for finding a minimum
cost multicast tree for a single request. We then devised an
online algorithm with a provable competitive ratio for the
online throughput maximization problem where NFV-enabled
multicast requests arrive one by one without the knowledge of
future request arrivals. We finally evaluated the performance
of the proposed algorithms through experimental simulations.
Experimental results demonstrate that the proposed algorithms
are promising, and outperform their theoretical counterparts.

REFERENCES

[1] N. Abbas et al. Mobile edge computing: a survey. IEEE Internet of
Things Journal, vol. 5, no. 1, pp. 450 – 465, 2018.

[2] X. Chen, L. Jiao, W. Li, and X. Fu. Efficient multi-user computation
offloading for mobile-edge cloud computing. IEEE/ACM Transactions
on Networking, vol. 24, no. 5, pp. 2795 – 2808, 2016.

[3] A. Ceselli et al. Mobile edge cloud network design optimization.
IEEE/ACM Transactions on Networking, vol. 25, no. 3, pp. 1818 – 1831,
2017.

[4] M. Charikar et al. Approximation algorithms for directed Steiner
problems. J. Algorithms, vol. 33, no. 1, pp. 73 – 91, Elsevier, 1998.

[5] N. Chowdhury and R. Boutaba. Network virtualization: state of the art
and research challenges. IEEE Commu. Maga., pp. 20 – 26, 2009.

[6] H. Feng et al. Approximation algorithms for the nfv service distribution
problem. Proc. of INFOCOM, IEEE, 2017.

[7] T. He et al. It’s hard to share: joint service placement and request
scheduling in edge clouds with sharable and non-sharable resources. Proc.
of ICDCS, IEEE, 2018.

[8] M. Jia, J. Cao, and W. Liang. Optimal cloudlet placement and user
to cloudlet allocation in wireless metropolitan area networks. IEEE
Transactions on Cloud Computing, vol. 5, no. 4, pp. 725 – 737, 2017.

[9] M. Jia, W. Liang, Z. Xu, and M. Huang. Cloudlet load balancing in
wireless metropolitan area networks. Proc. of INFOCOM, IEEE, 2016.

[10] M. Jia et al. QoS-aware task offloading in distributed cloudlets with
virtual network function services. Proc. of MSWiM, ACM, 2017.

[11] S. Knight et al. The internet topology zoo. IEEE J. on Selected Areas
in Communications, vol. 29, pp. 1765 – 1775, IEEE, 2011.

[12] P. Mach and Z. Becvar. Mobile edge computing: a survey on architecture
and computation offloading. IEEE Commu. Surveys & Tutorials, vol. 19,
no. 3, pp. 1628 – 1656, Jun. 2017.

[13] Y. Mao et al. A survey on mobile edge computing: the communication
perspective. IEEE Commun. Surv. Tutor., vol. 19, pp. 2322 – 2358, 2017.

[14] J. Martins et al. ClickOS and the art of network function virtualization.
Proc. of NSDI 14, USENIX, 2014.

[15] S. V. Rossem et al. Deploying elastic routing capability in an SDN/NFV-
enabled environment. 2015 IEEE NFV-SDN, pp. 22 – 24, Nov. 2015.

[16] Z. Xu et al. Throughput maximization and resource optimization in
NFV-enabled networks. Proc. of ICC’17, IEEE, 2017.

[17] Z. Xu et al. Approximation and online algorithms for NFV-enabled
multicasting in SDNs. Proc. of ICDCS’17, IEEE, 2017.

[18] Z. Xu et al. Efficient NFV-enabled multicasting in SDNs. IEEE
Transactions on Communications, vol. 67, no. 3, pp. 2052 – 2070, 2019.

[19] S. Q. Zhang et al. Network function virtualization enabled multicast
routing on SDN. Proc. of ICC, IEEE, 2015.

