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Abstract With the growing popularity of cloud-based data center networks (DCNs), task resource allocation has become

more and more important to the efficient use of resource in DCNs. This paper considers provisioning the maximum admissible

load (MAL) of virtual machines (VMs) in physical machines (PMs) with underlying tree-structured DCNs using the hose

model for communication. The limitation of static load distribution is that it assigns tasks to nodes in a once-and-for-all

manner, and thus requires a priori knowledge of program behavior. To avoid load redistribution during runtime when the

load grows, we introduce maximum elasticity scheduling, which has the maximum growth potential subject to the node

and link capacities. This paper aims to find the schedule with the maximum elasticity across nodes and links. We first

propose a distributed linear solution based on message passing, and we discuss several properties and extensions of the

model. Based on the assumptions and conclusions, we extend it to the multiple paths case with a fat tree DCN, and discuss

the optimal solution for computing the MAL with both computation and communication constraints. After that, we present

the provision scheme with the maximum elasticity for the VMs, which comes with provable optimality guarantee for a fixed

flow scheduling strategy in a fat tree DCN. We conduct the evaluations on our testbed and present various simulation results

by comparing the proposed maximum elastic scheduling schemes with other methods. Extensive simulations validate the

effectiveness of the proposed policies, and the results are shown from different perspectives to provide solutions based on

our research.
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1 Introduction

With the increasing popularity of cloud-based data

center networks (DCNs), task resource allocation has

become more and more important to the efficient use

of resource in DCNs. Virtual machines (VMs) schedul-

ing is one popular model that optimizes a chosen metric

subject to the resource limitations of both physical ma-

chines (PMs) and links[1,2]. This paper is focused on

a new quality of service (QoS) metric called maximum

elastic scheduling, a task-assignment scheme that sup-

ports maximum uniform growth in both computation

and communication without resorting to task reassign-

ment. This model was originally proposed in [3], but

its optimal solution is limited to a semi-homogeneous

tree structure. In this paper, we extend the optimal

solutions to two general cases which can be used on

the heterogeneous tree (single path) and the fat tree

(multiple paths).

1.1 Motivational Example

We first model the network as a tree-structured T

in a typical DCN, as shown in Fig.1. Each leaf node is

a physical machine and each internal node is a switch.
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A load at a leaf node is called a computation load and

determines the communication load. We use the hose

model[4] for communication where each node has an ag-

gregated performance guarantee corresponding to the

set of all the other nodes.
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means that we can guarantee six simultaneous pairwise

telephone conversations for communication, where each

location (u, v, or w) has an aggregated performance

guarantee corresponding to the set of all the other lo-

cations. However, if we suppose that the link capaci-

ties of u, v, and w are 3, 5, and 2 respectively, then

although there are 12 available slots, the maximum to-

tal occupancy of users is only 10 = 3 + 5 + 2 due to

the link capacity constraint of w. In this case, the first

configuration can support 12 slots, but the second con-

figuration can support 10. Note that, under the same

path capacities, when the numbers of occupants living

at households u, v, and w are changed to 1, 1, and 4

respectively, the maximum total occupancy of users is

6 = 1 + 1 + 4 when the path capacity from w to r is

2. That is the maximum number of pairwise telephone

conversations that go through the path from w to r

when its capacity is 2 under any configuration.

The optimal schedule for the second problem is

called the schedule with the maximum elasticity. As

shown in Fig.2(b), the MAL is 10, with four VMs (also

loads) assigned to the left leaf node and six loads to

the right leaf node. Both the left link and the right leaf

node reach the maximum capacities. Suppose that we

now have a load of 5 to be assigned, which is below the

MAL. The schedule with maximum elasticity assigns

two loads to the left leaf node and three loads to the

right leaf node, as shown in Fig.2(b). The maximum

elasticity is 100%. That is, each side can be doubled

without violating the node or link capacities. To sim-

plify the discussion, we assume B = 1 for each VM.

Although the schedule with the maximum elasticity in

DCNs can be solved by the classic linear programming

(LP), we strive to find simple and efficient solutions,

similar to the Bellman-Ford solution of the shortest

path problem.

The complexities of our solutions are linear to n

where n is the number of leaf nodes in the tree in terms

of both computation and communication complexities.

1.2 Our Contributions

• We first introduce the concept of aggregation tree,

which is used to calculate the maximum link bandwidth

needed for each link under the hose model (given that

the workload at each leaf node is known as a priori).

This aggregation tree gives us a simple iterative solution

that abstracts each two-level, three-node branch (such

as the one in Fig.2(b)) into one virtual node. The ab-

straction is a bottom-up aggregation process that deter-

mines the MAL at the root of the tree, and the schedule

with the maximum elasticity is decided in a top-down

partition process starting at the root.

• We later refine this process, since the orientation

of the aggregationmay not coincide with the traditional

orientation of a full binary tree. We propose a dis-

tributed optimal solution that uses only three copies of

the simple solution to compute different orientations of

a tree with different roots. Both computation and com-

munication complexities are linear to n where n is the

number of leaf nodes in the tree.

• Based on the assumptions and conclusions above,

we extend our model from the tree structure with a

single path to the fat tree DCN with multiple paths.

We also extend our optimal solution on computing the

MAL of a fat tree and present a corresponding place-

ment scheme with maximum elasticity.

• We conduct the evaluations on our testbed, and

present various simulation results by comparing the

proposed maximum elastic scheduling schemes with

other methods. Extensive simulations validate the ef-

fectiveness of the proposed policies. The results are

shown from different perspectives to provide conclu-

sions.

The remainder of our paper is organized as follows.

Section 2 introduces the elastic scheduling of VMs for

the tree-structured DCN. Section 3 presents the elas-

tic scheduling of VMs for the fat tree DCN. Section 4

shows our experiments and simulation results. Sec-

tion 5 overviews the related work. Finally, the paper is

concluded in Section 6.

2 Maximum Elastic Scheduling of VMs for

Tree DCN

In this section, we present the maximum elastic

scheduling of VMs for the tree DCN. We first show

that the maximum elasticity problem can be solved by

the classic LP, and we discuss the inefficiency of this

solution. Then, we study a simple distributed message

passing linear solution with a tree-based topology and

discuss several properties of the model. Based on that,

we further propose a distributed optimal solution that

uses only three copies of the simple solution to compute

different orientations of a tree with different roots.

2.1 Basic Solution Based on LP

We first use an LP approach to maximize the elas-

ticity in trees. Let Ni and xi denote the maximum

space and the used space of the i-th node, respectively.

Let Lj and yj denote the maximum bandwidth and
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the used bandwidth of the j-th link, respectively. A

boolean variable, µij is used to indicate whether the

i-th node belongs to the subtree of the j-th link. We

have the following problem formulation:

maximize e (1)

s.t. e 6 min
i
(1 −

xi

Ni
) and xi 6 Ni for ∀i, (2)

e 6 min
j

(1 −
yj
Lj

) and yj 6 Lj for ∀j, (3)

yj = min(
∑

i

µijxi,
∑

i

(1− µij)xi) for ∀j. (4)

Here, e denotes the elasticity for both nodes and links.

(1) shows the objective of maximizing the elasticity. (2)

and (3) are constraints on nodes and links, respectively.

(4) computes the bandwidth consumption based on the

hose model. This formulation is not linear; however, it

can be converted to an LP formulation as follows:

maximize e (5)

s.t. e 6 1−
xi

Ni
and xi 6 Ni for ∀i, (6)

e 6 1−
yj
Lj

and yj 6 Lj for ∀j, (7)

yj 6
∑

i

µijxi and yj 6
∑

i

(1− µij)xi for ∀j.

(8)

(5) is the same as (1). (6) converts (2) by separating

the minimum constraint of each node. Similarly, (7)

converts (3) by separating the minimum constraint of

each link. (8) converts (4) by separating the minimum

constraint to two parts. Let n denote the number of

leaf nodes in the tree, and then the number of links

in a full binary tree is 2n − 2. (6) contains 2n con-

straints, (7) includes 4n − 4 constraints, and (8) in-

cludes 4n− 4 constraints. In total, the LP formulation

has 1 + n+ 2n− 2 = 3n− 1 variables and 10n− 8 con-

straints. In general, LP solutions require a complexity

of a polynomial function of n. Using the latest result

such as [5], it is still unclear that the LP formulation

of our problem can be reduced to Θ(n). It means that

our problem cannot be efficiently solved by the sim-

plex method or the eclipse method. Such inefficiency

motivates us to find other direct solutions for elasti-

city maximization in Subsection 2.2 and Subsection 2.3.

The proposed direct optimal solution will provide more

insights and it has the linear complexity in terms of n.

2.2 A Simple Up-Down Solution

We first propose a simple distributed message pass-

ing linear solution with a tree-based topology and dis-

cuss several properties of the model. Given a binary

tree (or simply a tree) T with available node space

and link bandwidth, our objective is to find an admissi-

ble scheduling with maximum elasticity under the hose

model. A schedule is admissible if the corresponding

scheduling of tasks to leaf nodes does not exceed the

available node capacity. In addition, no communica-

tion link exceeds its available link bandwidth under the

hose model. By the maximum elasticity, we mean that

a schedule with the maximum uniform growth at each

leaf node does not violate the node and link capaci-

ties. In fact, the maximum elasticity includes both the

maximum computation elasticity at leaf nodes and the

maximum communication elasticity at links.

2.2.1 Bottom-Up Abstraction

The simple solution iteratively abstracts the given

tree in a bottom-up manner. As shown in Fig.2(c), the

basic unit of the abstraction is a two-level, three-node

branch that becomes one virtual node at the higher

level. In this abstraction, one internal node and two

virtual nodes serve as the children of the internal node.

At the bottom level of the tree, a virtual node is a

leaf node. At all the other levels, a virtual node is

abstracted from the branch rooted at the same node.

Suppose Nl (Ll) and Nr (Lr) have available node space

(link bandwidth) for the left and the right virtual nodes,

respectively, as shown in Fig.2(c). The middle node in

the abstraction serves two purposes. First, the mid-

dle node is a “connector” between two branches. A

cut to either the left or the right link has a value of

min{min{Nl, Ll},min{Nr, Lr}}. This is the commu-

nication load between the left and the right branches.

This load is clearly not more than Ll and Lr. In Fig.2,

the link cut value is min{min{5, 4},min{6, 7}} = 4,

which is not more than Ll = 4 and Lr = 7. Sec-

ond, the middle node is also an “aggregator” for two

branches. It is used to calculate the value of the

cut at an upper level of the tree. The capacity of

the aggregation virtual node is determined as follows:

N = min{Nl, Ll} + min{Nr, Lr}. The minimization

operation ensures that the value of each branch satis-

fies both node space and link bandwidth requirements.

This abstraction process continues level by level until G

is reduced to a single virtual node. The available node

capacity of this virtual node is the MAL. Fig.3 shows

this process on a three-level full binary tree. The load of

the left virtual node in Fig.3(a) is determined through

the left-subtree: 10 = min{5, 4}+min{6, 7}. Similarly,

the final load of the virtual node shown in Fig.3(c) is
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decided by abstraction from Fig.3(b). In this case, the

MAL is 16 = min{10, 11}+min{6, 6}.

4 7

11

5 6

2 5

6 4

6

11

10

6

6 16

v

v

v v v v

v

(b)

(a)

(c)

Fig.3. MAL calculation of a (a) binary tree, (b) three-node
branch, and (c) virtual node.

2.2.2 Top-Down Schedule

Once the MAL is determined, we can iteratively de-

termine the actual schedule that achieves the maximum

elasticity. The process is now top-down. An example

for a complete binary tree is shown in Fig.3. Suppos-

ing that N is a given load that is not more than the

MAL, we partition the load into two parts. The left

and the right subtrees are assigned min{Nl, Ll}/N and

min{Nr, Lr}/N portions of the total load, respectively.

This process continues for each of the subtrees until

the given load is eventually assigned to all leaf nodes.

In Fig.3, let 8 be a given load that is less than the

MAL 16. Based on Fig.3(b), the load ratio of the left

subtree to the right subtree should be 10 : 6. This

means that the left subtree is assigned a load of 5 and

the right subtree is assigned a load of 3. This process

continues at the next level. The final assignment is in

Fig.3(a), and the load assignment is shown as shaded

slots. This schedule corresponds to the one with the

maximum elasticity, which is 100% of the current load.

The load assignments to v6 and v7 are 1 and 2, respec-

tively. These are not proportional to their available

node spaces. The hose model provides aggregate per-

formance requirements for each hose connected to an

endpoint. On the other hand, the pipe model offers a

specific performance requirement for each pair of end-

points. The provisioning of a hose structure can be in-

terpreted as many different pipe structures. Using Fig.3

as an example, we suppose that each pipe consumes one

unit of space and bandwidth. The hose structure of

Fig.3 can be viewed as two pipes for (v4, v5), one pipe

for (v5, v7), and one pipe for (v6, v7). Another possible

pipe structure can be one pipe for (v4, v5), two pipes

for (v5, v7), and one pipe for (v5, v6). Different pipe

configurations generate different communication loads

at links.

2.3 An Optimal Solution

The simple solution gives us some key ideas about

iterative abstractions. The complexity is O(n), where

n is the number of leaf nodes. In fact, each internal

node (out of n−1) needs to calculate twice, performing

one bottom-up aggregation for the maximum admissi-

ble load and one top-down load distribution. However,

the simple solution may not generate the schedule with

the maximum elasticity. Fig.4 shows a slightly revised

version of the example in Fig.3, changing the upper left

link capacity from 11 to 8. In this case, the MAL re-

duces to 8 + 6 = 14 based on the simple solution. As

shown in Fig.4, if we use node v2 as the “root” instead

of node v1 (the binary tree becomes a ternary tree), the

new MAL is 16 when using the same approach.

v

v v

v v v v

(b)

(a)

(c)

11 8
6

5

4

27

7 min{8, 6}

4

4

5

5 6 6
16

6 6

Fig.4. Optimal solution through different orientations of aggre-
gation at one node in a (a) binary tree, (b) three-node branch,
and (c) virtual node.
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2.3.1 Aggregation Tree

Now we introduce a new notation called aggrega-

tion tree based on the hose model. We suppose that

the workload of each node is given for a binary tree (or

simply tree). The hose model based orientation of each

link is determined as follows: if the link is used as the

cut, the graph can be partitioned into two parts: the

link orientation is the end node that has no more than

50% of the workload, and the other end node has no less

than 50% of the workload. In the case of a tie (where

each end node has exactly 50% of the workload), the

node with the smaller ID points towards the one with

a larger ID. Note that under the hose model B = 1,

the communication load is determined through a cut

on the link: it is the less one of the two computation

loads that come from both sides of the cut. In Fig.5,

the root is represented as a double cycle supposing that

the link bandwidth is infinity. The workload from the

left branch pointing towards the root is 2 + 4 + 2 = 8,

and the right branch has the same workload.

2

4
2 5

1

2
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a cut to one of the three adjacent links, say, on

the branch with index 1. Based on the hose model,

the computational load on branch 1 is the cut value:

min{min{N1, L1},min{N2, L2} + min{N3, L3}} (this

is not more than L1). In Fig.4(b), the commu-

nication load at the middle branch is bounded by

min{min{6, 7},min{5, 4} + min{6, 6}} = 6, which is

not more than its available communication bandwidth.

A root selection example for a two-level, three-node

tree is illustrated in Fig.2(c). The MAL at the center

node is min{Nl, Ll} + min{Nr, Lr}. The MAL at the

left leaf node is min{Nl,∞} + min{min{Nr, Lr}, Ll}.

The MAL at the right leaf node is min{Nr,∞} +

min{min{Nl, Ll}, Lr}. The internal load of a leaf node

can be considered as a branch with infinite bandwidth.

When Nl, Nr, Ll, and Lr are 8, 4, 5, and 4 respec-

tively, the MALs at the left leaf node, center node, and

right leaf node are 12, 9, and 8, respectively. In this

case, the left leaf node is the root and has a maximum

MAL of 12. When the load is 6, a load (6× 8/12 = 4)

is assigned to the left leaf node. The remaining load,

6 × 4/12 = 2, is assigned to the right leaf node. The

maximum growth rate is 100%.

In the following optimal solution, each leaf node ini-

tiates its calculation by sending the available load to the

connected internal node. Table 1 shows an example of

a step-by-step calculation of the MAL for each node in

Fig.4. The final MAL is the maximum one among the

MALs calculated at all internal nodes. Once the MAL

is determined with the selected root node, the schedule

with the maximum elasticity is the same as the schedule

in the simple solution, that is, the schedule is based on

the proportion of the virtual load at each branch. In the

example in Fig.4, we suppose that 8 is the given load.

The load distribution is based on the branch capacities

(i.e., min{Ni, Li} for i ∈ {1, 2, 3}) of three branches, as

shown in Fig.4(b). The left, middle, and right branches

are assigned 8×4/16 = 2, 8×6/16 = 3, and 8×6/16 = 3,

respectively. The right branch further partitions its as-

signed load to nodes v6 and v7 using the same method.

Eventually, v4, v5, v6, and v7 are assigned loads of 2, 3,

1, and 2, respectively. Each of these loads can grow at

a maximum rate of (16− 8)/8× 100 = 100%.

2.4 Properties and Extensions

This subsection studies several properties and tri-

vial extensions of the optimal solution and the simple

solution for the tree DCN (Algorithm 1).

2.4.1 Properties

Theorem 2. The optimal solution determines the

MAL for a given binary tree under the hose model.

Proof. Based on the optimal solution and Theorem

1, we only need to show that the MAL determined at

each node v is the MAL with v as the root in the corre-

sponding orientation tree. We prove by induction from

the bottom level to the top level. Considering each

two-level, three-node tree at the bottom two levels of

the tree, we first show that min{Nl, Ll}+min{Nr, Lr}

Table 1. Step-by-Step Calculation of MALs for the Example of Fig.4

v1 v2 v3 v4 v5 v6 v7

Step 1 - - - Send 5 to v2 Send 6 to v2 Send 6 to v3 Send 4 to v3

Step 2 - Send
min{5, 4}+
min{6, 7} = 10
to v1

Send
min{6, 2}+
min{4, 5} = 6
to v1

- - - -

Step 3 Send
min{6, 6} = 6
to v2
Send
min{10, 8} = 8
to v3

- - - - - -

Step 4 - Send
min{6, 8}+
min{6, 7} = 12
to v4
Send
min{6, 8}+
min{5, 4} = 10
to v5

Send
min{8, 6}+
min{4, 5} = 10
to v6
Send
min{8, 6}+
min{6, 2} = 8
to v7

- - - -

MAL min{10, 8}+
min{10, 8}+
min{6, 6} = 14

min{5, 4}+
min{6, 7}+
min{8, 6} = 16

min{6, 2}+
min{4, 5}+
min{8, 6} = 12

min{12, 4}+
min{12, 4}+
min{5,∞} = 9

min{10, 7}+
min{10, 7}+
min{6,∞} = 13

min{10, 2}+
min{10, 2}+
min{6,∞} = 8

min{8, 5}+
min{8, 5}+
min{4,∞} = 9
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is the maximum virtual load. We prove this by contra-

diction. Suppose we can add a small δ to this virtual

load, at least a portion of δ is added to one branch, say,

the left branch in this example, without loss of genera-

lity. This portion plus min{Nl, Ll} overloads either the

virtual node (leaf node in this case) or the left link.

Suppose the theorem holds for up to the level k − 1,

for k > 2. At level k, we again consider two levels:

level k with internal nodes and level k − 1 with virtual

nodes. The argument for the base case still applies to

each two-level, three-node tree, and thus this theorem

is proved through induction. �

Algorithm 1 . Optimal Solution for Tree DCN

Input: tree DCN;
Output: MAL for the tree;

(at a leaf node with node capacity N)
1: Send its load to the connected internal node.

/*Upon receiving a virtual load N1 from the only branch with
available link bandwidth L1*/

2: Calculate its MAL: min{N,∞}+min{N1, L1}
/*at the internal node with two branches*/
/*Upon receiving a virtual load Ni from a branch with availa-
ble link bandwidth Li, i : 1, 2*/

3: Send virtual load min{Ni, Li} to the other branch.
/*Upon receiving virtual load, N1 and N2, from two
branches*/

4: Calculate its MAL: min{N1, L1}+min{N2, L2}.
(at an internal node with three branches)
/*Upon receiving virtual load, Ni and Nj , from two branches,
with i, j(6= i) : 1, 2, 3*/

5: Send min{Ni, Li}+min{Nj , Lj} to the third branch /*Upon
receiving virtual load, N1, N2, and N3, from all branches*/

6: Calculate its MAL: min{N1, L1} + min{N2, L2} +
min{N3, L3}.

Theorem 3. For a given admissible load, the hier-

archical load distribution from the root to the leaf nodes,

based on the virtual load proportions of each branch,

generates a schedule with maximum elasticity.

Proof. Similar to Theorem 2, we prove Theorem 3

by induction. The key difference is that for each two-

level, three-node subtree, the load distribution based on

the load proportion of the left and the right branches is

optimal. The fact that the proportions are determined

by the maximum load of both the left and the right

branches proves this. Any deviation from this propor-

tion reduces the growth rate of either the left or the

right branch. As a result, the elasticity is reduced in

either case. �

Theorem 4. The optimal solution uses 2 logn+ 1

steps, where n is the number of leaf nodes for a given

full-binary tree. The computation complexity is 5(n−1),

and the communication complexity is 4(n− 1).

Proof. In the optimal solution, all information

propagation is loop-free starting from a leaf node and

ending at an internal node or a leaf node. The longest

distance is the diameter of the tree. Since each node,

internal or leaf, needs to determine its MAL, one extra

step is needed. In a full binary tree, the diameter is

2 logn where n is the number of leaf nodes. Therefore,

the optimal solution uses 2 logn + 1 steps. Since n is

the number of leaf nodes in the tree, the number of in-

ternal nodes is n−1. Each internal node computes only

when it passes virtual load information to another node.

Since there are n−2 links connecting internal nodes and

each link is bi-directional, there are 2(n− 2) computa-

tion steps for virtual load calculation. Each leaf node

receives virtual load information from an internal node

after a total of n times computation. In addition, each

node calculates its MAL once, which means 2n−1 times

computation in the binary tree in total. Therefore, the

computation complexity is 5(n − 1). Each leaf node

communicates once for a total of n times computation.

Each link that connects two internal nodes communi-

cates twice (once in each direction) to pass along virtual

load information for a total of 2(n− 2) times communi-

cation. Each leaf node receives virtual load information

once from an internal node for a total of n times com-

munication. �

When we consider elasticity, the bottleneck must be

either in the link or in the node in terms of capabi-

lity of growth. Next, we consider two special sit-

uations under which the simple solution is optimal.

Let us first introduce two special structures. A given

tree infrastructure is a computational-bottleneck if for

any two-level, three-node subtree (shown in Fig.2(b)),

Nl = min{Nl, Ll} and Nr = min{Nr, Lr}. The in-

tuition behind the computational-bottleneck structure

is that elasticity bottlenecks appear at the leaf nodes.

A given tree is called a fat tree[6] if for any two-level,

three-node subtree, L > Ll+Lr. This fat tree structure

is frequently used in DCNs because upper links usu-

ally carry more traffic and a higher bandwidth must be

used. In order to distinguish with the fat tree[7] we use

in Section 3, we use fat tree* to denote the two-level

topology in [6].

Theorem 5. Given a binary tree that has a

computational-bottleneck or is a fat tree*, the simple

solution is optimal.

Proof. When the tree is a computational-bottleneck

structure, we can see that tree orientation does not

change the maximum elasticity of the tree; therefore

the simple solution works. In fact, link bandwidth does

not play any role in the calculation. When the tree is

a fat tree, the bottleneck links are always at the lowest
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levels. Again, the tree orientation does not change the

maximum elasticity. �

2.4.2 Extensions

General Trees. The optimal solution can be easily

extended to any k-ary tree structure with up to k + 1

branches at an internal node. The key difference is

that each internal node needs to keep track of the vir-

tual load value for each branch. Whenever a node re-

ceives a virtual load from all branches except itself, it

determines the aggregate value of these virtual loads

and sends the value to the branch that is not involved

in the aggregation process. The aggregation process is

the same as the proposed method for an abstraction of

a two-level, (k + 1)-node subtree. In Section 3, we fo-

cus on extension to other structures, fat tree[7] (see the

example in Fig.7, which includes an aggregation layer

consisting of the pods and a core layer). An interesting

future study would be the extension to an infrastruc-

ture with a regular graph. We can also explore elasti-

city in multiple path routings like multi-protocol label

switching (MPLS)[8].

Developing Other Communication Load Models. To

generalize the communication load models, we set L =

f(N), where f(·) is a constant multiplier with a con-

stant coefficient c. For example, L = 2N when c = 2.

To avoid remapping f , we first scale down the availa-

ble link bandwidth by a factor of c. Thus, the same

optimal solution can be applied. Our approach can-

not be directly applied when the mapping function is

non-linear because the total communication load gene-

rated depends on the way the computation load is parti-

tioned, which is the case when f is a quadratic function.

For the co-existence of multiple requests, we consider

applying two cases to our approach. If each request is

independent, then one distinct virtual private network

(VPN) is used for each request. For multiple requests

that belong to the same application, no new VPN is

needed. Instead, both the existing and the new work-

loads are combined for distribution as a virtual load,

and then the optimal virtual load for each leaf node is

determined based on the proposed method. The actual

new load assignment to each leaf node is calculated by

abstracting the existing load for that leaf node.

Special Configurations for Efficiency Gain. When

we consider elasticity, the bottlenecks must be either in

links or in nodes in terms of capabilities of growth. In

this thrust, we consider special situations under which

the simple solution is optimal. The focus of this thrust

will be the structure of the network and the capacity

of the load/bandwidth. Next, we consider two special

situations under which the simple solution is optimal.

Let us first introduce two special structures (refer to

Fig.2(a) for an illustration). A given tree infrastructure

is a computational-bottleneck if for any two-level, three-

node subtree (shown in Fig.2(c)), Nl = min {Nl, Ll}

and Nr = min {Nr, Lr}. The intuition behinds the

computational bottleneck structure is that elasticity

bottlenecks appear at the leaf nodes. For example,

for any two-level, three-node subtree in a fat tree*[6],

L > Ll + Lr, as shown in Theorem 5.
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Fig.7. Example of a fat tree.
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3 Maximum Elastic Scheduling of VMs for Fat

Tree DCN

In this section, we extend our optimal solution to

the fat tree DCN[7,9] 1○. The aggregation process is

similar to the proposed method for an abstraction of

a tree-structured DCN. As we discussed in Subsection

2.4, the optimal solution can be easily extended to any

tree structure. The key difference is that each inter-

nal node needs to keep track of the virtual load value

for each branch. Whenever a node receives a virtual

load from all other branches except itself, it determines

the aggregate value of these virtual loads and sends the

value to the branch that is not involved in the aggrega-

tion process. The difference during the VMs provision-

ing process in fat tree is in determining how to evaluate

the MAL value for both the occupancy and the actual

assignment under the multiple path routing. Linear

programming is the most typical approach to calculat-

ing the value of MAL. Since there are many variables

in the fat tree DCN, either the PM or the link capacity

constraints may be the bottleneck. When the construc-

tion of the DCN is extremely large-scale, using linear

programming to obtain the optimal solution is slow and

inefficient.

3.1 Optimal Solution of the Fat Tree DCN

We consider the VMs provisioning problem based

on the hose model in the fat tree DCN and divide this

problem into two steps. 1) We first consider provision-

ing the MAL for the fat tree DCN based on the ag-

gregation method of different orientations. 2) Next, we

find the provisioning for the VMs with the maximum

elasticity, which comes with provable optimality gua-

rantees for a fixed flow scheduling strategy in the fat

tree DCN. Our objective is to find an admissible pro-

visioning for the VMs with maximum elasticity in the

fat tree DCN at the allocated PMs and links. Suppose

that the flow scheduling rule for each set of VMs is

fixed; therefore the capacities of links are only related

to the distribution of VMs on the PMs.

3.1.1 Aggregation of the Fat Tree DCN

In this subsection, we extend our optimal solution

on calculating the MAL of the fat tree DCN. Given a fat

tree, our objective is to find the MAL without the com-

putation and communication capacity constraints. The

main idea of this solution is to do the iterative aggrega-

tion on different orientations and select the maximum

one as the MAL. We first do the aggregation bottom-

up to send information to the upper switches and use

the received virtual loads to determine the orientation.

Since the orientation of each link in the hose model is

determined by the less computation load that comes

from both sides of the cut, we use the orientation to

select the root of the fat tree. We use r to denote the

real root in the fat tree DCN. If the abstraction value of

V0 is larger than V1, then the orientation would be from

right to left and root r would exist on the left side (Si2).

Otherwise, it may be on the right side (Si3). We take

the whole fat tree as the input, which contains the com-

putation and communication capacities for both PMs

and links. The output is the MAL for the fat tree,

and the fat tree is constructed by two types of nodes,

PMs and physical switches (the edge switches, aggre-

gation switches, and core switches). Each switch with

m branches has m orientations, and the orientation of

each branch points towards the selected root r for ag-

gregation. The abstraction of the branches under one

switch is defined as one virtual load Vij . m-branch node

receives virtual load information from m− 1 branches,

and it passes the information on to the connected node

in the remaining branch.

In lines 1–3 of Algorithm 2, we start to do the aggre-

gation from PMs. The MAL at a PM is the summation

of its branches and its local computation load. There

are m/2− 1 branches for each PM in the fat tree, and

each PM receives a virtual load Vij from the only branch

with available upper link bandwidth Lij . The MAL at

one PM is min{Nij ,∞} + min{Vij , Lij}. In lines 4–7,

we calculate the MAL for the edge switch. The MAL

at an edge switch is the summation of its branches and

its virtual loads. The edge switch upon receiving vir-

tual loads fromm/2 branches with available lower links’

bandwidth, and each of the edge switches sends the vir-

tual load min{Vij , Lij} to other branches. Since each

switch has m ports, each of them receives virtual loads

from the otherm/2 branches with available upper links’

bandwidth. The MAL at one edge switch would be (9).

j=m/2∑

j=1

min{Nij , Lij}+

j=2m−1∑

j=m

min{Vij , Lij}. (9)

In lines 8–11, we calculate the MAL for the aggrega-

tion layer, which is the same process as for the edge

1○This fat tree DCN is different from the fat tree* discussed in Section 2. For historical reason, this phrase fat tree is used to
represent two different structures.
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layer. The difference lies in the adjacent points of the

aggregation layer, which are all switches; thus all the

information they receive is in the form of virtual loads.

The MAL at one edge switch is
∑i=m

i=1 min{Vij , Lij}.

In lines 12–14, we calculate the MAL for core switch.

Since each core switch has m branches, upon receiving

virtual loads from these branches with available lower

links’ bandwidth, it will send virtual load min{Vij , Lij}

to other branches. The MAL at one core switch is also∑i=m
i=1 min{Vij , Lij}. The MAL of the fat tree may be

located on either the PM or the switch node with the

maximum value. Since communication in this paper

uses the hose model, the location of the final MAL de-

pends on the link orientation.

Algorithm 2 . Optimal Solution for Fat Tree DCN

Input: fat tree DCN;
Output: MAL for the fat tree;
1: Send its load to the connected edge switch;
2: Calculate its MAL:

min{Nij ,∞}+min{Vij , Lij};
/*Edge switch with m branches*/
/*Upon receiving virtual loads Vij from m/2 branches with
available lower links’ bandwidth Lij , j ∈ [0,m/2];*/

3: Send virtual load min{Vij , Lij} to other branches; /*Upon
receiving virtual loads Vij from m/2 branches with available
upper links’ bandwidth Lij , j ∈ [m, 2m − 1];*/

4: Calculate its MAL:
∑j=m

2

j=1
min{Nij , Lij}+

∑j=2m−1

j=m
min{Vij , Lij};

/*Aggregation switch with m branches*/
/*Upon receiving virtual loads Vij from m/2 branches with
available lower links’ bandwidth Lij , j ∈ [0,m/2];*/

5: Send virtual load min{Vij , Lij} to other branches; /*Upon
receiving virtual loads Vij from m/2 branches with available
upper links’ bandwidth Lij , j ∈ [m, 2m − 1];*/

6: Calculate its MAL:
∑i=m

i=1
min{Vij , Lij};

/* Core switch with m branches*/
/*Upon receiving virtual loads Vij from m branches with
available lower links’ bandwidth Lij , j ∈ [0,m];*/

7: Send virtual load min{Vij , Lij} to other branches;

8: Calculate its MAL:
∑i=m

i=1
min{Vij , Lij}.

We consider an example to illustrate our solution in

Fig.7, and the conversion is shown in Fig.8. We do the

calculation for the MALs in Fig.7 step by step follow-

ing the process of the optimal solution for the fat tree

DCN.

• Step 1. Send the computation capacities to PMs,

e.g., send 4 to N00, and send 6 to N01.

• Step 2. Upon receiving the virtual loads from

leaf nodes, send them to the edge switches, e.g., send

min{4, 5}+min{6, 5} = 9 to S00, and send min{6, 5}+

min{4, 5} = 9 to S01.

• Step 3. Upon receiving the virtual loads from the

edge switches, send them to the aggregation switches,

e.g., send min{9, 10}+min{9, 10} = 18 to S02, and send

min{9, 10}+min{9, 10} = 18 to S03.

• Step 4. Upon receiving the virtual loads, send

them to the core switches, e.g., send min{18, 20} +

min{19, 20}+min{14, 20}+min{19, 20} = 70 to S0.

• Step 5. Send virtual loads to other branches (ag-

gregation switch) from up to bottom, e.g., send S0 and

S1 to S02. S0 = S1 = min{19, 20} + min{14, 20} +

min{19, 20} = 52. Combine the virtual loads based

on the equal split flow schedule, where min{S0, 20} +

min{S1, 20} = 40.

• Step 6. Send virtual loads to other branches (edge

switch) from up to bottom, e.g., send min{52, 20} +

min{52, 20}+min{10, 9} = 49 to S00.

• Step 7. Send virtual loads to other branches

(PMs), e.g., send min{49, 10} + min{49, 10} +

min{6, 5} = 25 to N00.

• Step 8. Calculate the MAL at each node and the

maximum MAL among the MALs calculated at all in-

ternal nodes is S12. Thus, the MAL is min{51, 20} +

min{51, 20}+min{9, 10}+min{10, 10} = 59.

3.1.2 Elastic Schedule for VMs in Fat Tree

In this subsection, we propose a centralized provi-

sioning scheme for VMs with maximum elasticity based

on the MAL, which is called Proportion with Physi-

cal Combinational Capacities (PPCC). This comes with

provable optimality guarantees for a fixed flow schedul-

ing strategy in the fat tree.

We take a tuple as our input, which includes both

the computation demandN and the communication de-

mand B. In addition, we take the occupation state of

the fat tree DCN as our output. Let R denote the value

of the MAL. In line 1 of Algorithm 3, we initialize the

value of R by using the optimal solution for the fat tree,

as shown in Algorithm 2. Since the communication de-

mand B of each VM is unique, we compare the number

of VMs N of the set C with the MAL in line 2. If the

total number of available physical resources of fat tree

cannot satisfy the computation demand (N > R), we

will reject it directly. Otherwise, we start to place N

VMs. In line 3, we first find and determine the loca-

tion of the root r for the fat tree DCN. Based on the

functions of nodes in the DCN, we divide them into two

types of root: root of a server node and root of a switch

node. If r is a server node, we first allocate N ×Nij/R

VMs into root r. After that, we allocate the remaining

N−N×Nij/R VMs based on the proportion of virtual

load at each branch of the upper edge switch of root r,

iteratively. If r is a switch node, then we determine the

allocation of the VMs based on the proportion of vir-

tual load at each branch from the root r to the bottom,
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Fig.8. Conversion of example in Fig.7.

iteratively. Once the allocation of VMs is determined,

the communication demands of placed VMs are split

into paths based on the previously fixed flow schedule

rule in line 9. After that, we update the value of R

according to the distribution of existing loads in line

10.

Algorithm 3 . Proportion with Physical Combina-

tional Capacities (PPCC)

Input: a tuple of demand (N,B);

Output: DCN occupation state for VMs;

1: Calculate the MAL → R;

2: if N 6 R then

3: Determine the location of root r in the fat tree DCN;

4: if r is a server node then

5: Allocate N ×Nij/R VMs into root r;

6: The rest N−N×Nij/R VMs are allocated based on the

proportion of virtual load at each branch of the upper

edge switch of root r iteratively;

7: else if r is a switch node then

8: Allocate the computation demand N based on the pro-

portion of virtual load at each branch from the root r

iteratively;

9: Communication demands of placed VMs are split into

paths based on the previous fixed flow schedule rule;

10: Update the value of R according to the distribution of

existing loads;

11: else if N > R then

12: Reject;

3.2 Properties

This subsection studies several properties of the op-

timal solution for the fat tree DCN.

Theorem 6. The optimal solution determines the

MAL for a given fat tree under the hose model.

Proof. Based on the fat tree topology, our proof

starts at the bottom layer and progresses toward the

core layer. In the bottom layer, we consider m/2

PMs connecting one edge switch. We first prove that∑j=m/2
j=1 min{Nij , Lij} is the maximum virtual load by

contradiction. We suppose that extra VMs can be

placed in this virtual load, and we call the extra part

λ. At least a portion of a branch exists that can

accommodate λ, which is denoted by τ . The load

on that branch is λ plus min{Nτj, Lτj}, which over-

loads either the computation or the communication

capacity. At the edge switch layer, we again con-

siderm/2 branches connecting the aggregation switches∑j=2m−1
j=m min{Vij , Lij}. We apply the same argument

from the bottom layer to the edge layer, and the over-

load occurs on the bottlenecks (PMs or links) of the

virtual load. The argument for the edge layer still can

also be applied to upper layers. �

Theorem 7. Given a fat tree that has a fixed flow

schedule rule, the PPCC can obtain the maximum elas-

ticity.

Proof. Based on Theorem 1, we know that the maxi-

mum load in one layer is determined by the load propor-

tion of branches. Since the flow schedule rule is fixed,

the communication demands are related to the distri-

bution of loads. If there is any deviation from the pro-

portion that reduces the growth rate of other branches,

the elasticity will reduce. Therefore, the PPCC obtains

maximum elasticity for the fat tree that has a fixed flow

schedule rule. �
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4 Experiments

This section discusses the experiments based on our

testbed, and presents various extensive simulations. All

the results are shown from different perspectives to vali-

date the effectiveness of the proposed policies.

4.1 Evaluations on Testbed

4.1.1 Testbed Configuration

Our testbed is constructed by our lab, and the

topology is shown in Fig.9, which contains two Cisco

switches (eight ports) and three Pica switches (48

ports). Each Pica switch connects two 64 bits Dell

Power Edge R210 servers, and each server has 2.4 GHz

CPU and 4 GB memory. All servers are accessible via

the connections offered by the switch connections, and

the capacities of the physical links are 1 Gbps. Each

Pica switch connects two 64 bits Dell Power Edge R210

servers, and each server has 2.4 GHz CPU and 4 GB

memory. Grnlntrn is a controller connected to port

10 on the Cisco switch, which is constructed by a Dell

Power Edge R210 server. All servers are still accessible

via the connections offered by the Cisco switch connec-

tions in Fig.9, and the capacities of the physical links

are the same: 1 Gbps.

4.1.2 Evaluations for the Tree DCN

In this subsection, we focus on the capacity con-

straints which come from the computation and commu-

nication resource in the DCN. We evaluate the perfor-

mance of the DNC by focusing on the transmission time

for files. For each link in the testbed, we use bandwidth

control on the physical ports in the switches Pica8-1,

Pica8-2, and Pica8-3 to create a heterogeneous DCN

topology. According to the example in Fig.7, we set the

capacities of the links between switches and servers to

be 0.7 Gbps, 0.4 Gbps, 0.6 Gbps, and 0.5 Gbps. The up-

per two links that connect two pairs of switches (Pica8-

1 and Pica8-2, Pica8-1 and Pica8-3) are 1 Gbps and

0.6 Gbps respectively. Testbed validation is conducted

in two settings. The first one focuses on performance
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Fig.9. Topology of the testbed.
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comparison between maximum elastic scheduling and

equally distributed placement. As shown in Fig.9, each

of four nodes (servers) receives 25% of load share based

on equal partition. Under elastic scheduling, the op-

timal load distribution among four nodes from left to

right is 41%, 24%, 19%, and 16%, respectively, which is

based on the link bandwidth distribution as shown in

Fig.9. To test scheduling elasticity, we conduct broad-

casting applications (i.e., one node sends a message to

all the other nodes), where the amount of broadcasting

is based on the load share of each node. We increase

the size of broadcast message (called file size) to test

the scheduling elasticity in terms of communication de-

lay. The second test is focused on how the efficiency of

ECMP deteriorates when link bandwidth is no longer

homogeneous at the same layer. We trace the trans-

mission time of the scaling files between server 13 and

servers 14, 25, and 26 respectively. Let each server be

the sender, and the others be the receivers. The size of

the file fluctuates from 2 MB to 1 GB, and the trace re-

sult appears in Fig.10. Equally distributed placement

(EDP) scheme is used for comparison with our pro-

portion with physical combinational capacities (PPCC)

scheme. We analyze the influence on both computation

and communication resource constraints, and we have

two main observations. 1) Either computation or com-

munication constraint may become the bottleneck of

the maximum elasticity. As the setting of our evalua-

tion for the tree DCN, each PM holds one VM with 2

GB memory resource allocation. The maximum elas-

ticity on PM is 100%. However, the maximum elas-

ticity on PL is only 20% of EDP and 50% of PPCC,

respectively. 2) The transmission time of users under

different schemes is significantly different. As shown in

Fig.10(a), the transmission time for the file increases

with the scaling of the file size gradually. When the file

size is under the capacity of the physical links, the per-

formances of EDP and PPCC are nearly the same. If

we scale the size of file without considering the link ca-

pacity, the performance of EDP decreases significantly,

as shown in Fig.10(b).

4.1.3 Evaluations for Fat Tree DCN

In this subsection, we add three virtual switches on

each SDN switch (Pica8-1, Pica8-2, and Pica8-3) to

simulate one pod of the fat tree with k = 4, as shown in

Fig.11. For each switch we have three available physi-

cal ports P1, P2, and P3. We divide the port P1 into

two virtual ports for each switch of Pica-2 and Pica-3.

We also set server 13 as the sender, and servers 14, 25,

and 26 as the receivers. The capacity of the physical

link between Pica8-1 and Pica8-2 is 1 Gbps. We use

bandwidth control to limit the flows passing through

each port. Here, we set an adjustment factor δ, where

0 6 δ 6 1. The capacity of virtual link through port P1

is δ Gbps, and another port P2 is (1− δ) Gbps. Consi-

dering the constraints on the computation and commu-

nication, the size of the files fluctuates from 2 MB to 1

GB, and we set δ = 0.2.

Based on the trace result that appears in Fig.12, we

have the following observations. In our evaluations, we

consider performances of two protocols which are equal

cost multiple path (ECMP) and Non-ECMP. When the
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file size is under 0.5 GB, there is no bandwidth con-

straint on any virtual link. As shown in Fig.12(b), al-

though the transmission time under the Non-ECMP is

shorter than that under ECMP, the gap is only nearly

6.5%. When the file size scales larger than 0.5 GB, one

virtual link with 0.2 GB capacity will be the bottleneck.

As shown in Fig.12(a), the transmission time increases

sharply. Combining these two groups of evaluations on

tree and fat tree DCNs, we can see that it is possible

to accurately calculate the MAL for the DCN before

doing the placement by considering both the compu-

tation and the communication constraints. This can

effectively improve the flexibility of the data center and

reduce the transmission delay. According to the obser-

vations of tree and fat tree DCNs, more simulations are

conducted in Subsection 4.2.

4.2 Simulation Comparisons

In this subsection, we conduct various simulations

on tree and fat tree DCNs.

4.2.1 Simulation Comparisons for Tree DCN

Basic Setting. Due to the limited size of our testbed,

we do more simulations on larger-scaled DCNs to il-

lustrate the effectiveness of our solutions. The DCNs

are modeled as strict binary trees with different levels,

where k = 4, k = 5, and k = 6. The number of nodes

(i.e., PMs) ranges from 5 to 30. The node space (i.e.,

PM capacity) is heterogeneous and ranges from 0 to 100

units. The unit of the resource is slotted, which can be

easily interpreted to be a real configuration. Each slot

can hold one VM, and the bandwidth demand between

per-pair of VMs is 1 Gbps. The link bandwidth is uni-

formly random. The ratio of the average node space

to the link bandwidth ranges from 0 to 1. For exam-

ple, if the node space is 20 slots with 0.5 link ratio, the

bandwidth capacity is 10 Gbps. In addition to the pro-

posed scheduling algorithm, three baseline algorithms

are used. 1) Equally distributed placement (EDP): the

VMs are evenly assigned into the nodes in the tree. 2)

Proportion with physical machine capacities (PPMC):

the VMs are assigned into the nodes proportional to

the space. 3) Proportion with physical link capacities

(PPLC): the VMs are assigned into the nodes propor-

tional to the bandwidth.

Analysis of the Maximal MALs. Since the scales

and capacities of the trees are different, the localities

of the maximal MALs may also be different. As shown

in Fig.13, we analyze the probability that the maximal

MAL exists on the root. We find that the probability

decreases as the size of the tree increases. This means

that with the scaling of tree size, bandwidth becomes

the main limitation of communication between PMs.

The probability decreases with an increase in the ratio

between the PMs’ capacities and the physical links’ ca-

pacities. The center point gradually shifts downward

from the root with the bandwidth limitation. Fig.14

presents the comparison of the performances of the sim-

ple and optimal solutions by calculating the mean value

of different DCNs (k = 4, 5, and 6) under various capa-

city ratios ranging from 0 to 1. We have the following

observations. 1) When the ratio of the PMs’ capaci-

ties to the physical links’ capacities is low, meaning the

physical links are not the bottleneck of the available

resource, the values of the maximal MAL may be ap-

proximately equal in both the simple and the optimal

solutions, as shown in Fig.14. 2) When the size of the

tree is scaling, the upper links may be the bottleneck for

communication between PMs. The locality of the maxi-

mal MAL may be shifted downward from the root, and

the gap between the simple and the optimal solutions

increases with the scale of the tree. The admissible

load of the optimal solution is 50% more than that of

the simple solution, as shown in Fig.13 and Fig.14(c).
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Fig.13. Probability that the maximal MAL exists at the root

in tree DCN.

Analysis of Elasticity with Placement Under the

Maximal MAL. We place VMs based on the proportion

with physical combinational capacities (PPCC). Each

virtual request is iteratively placed using the proportion

of the bottleneck resource, which may be either PM ca-

pacities or physical link capacities. The value of the re-

source demand for each request lies within [0, 200]. For

each group, we do the placement based on the available

resource and calculate the elasticities. We average the
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Fig.14. Comparison of the elasticities for simple and optimal solutions. (a) k = 4. (b) k = 5. (c) k = 6.

results of the placement 10 times for virtual requests

with different algorithms. We have the following obser-

vations. 1) As shown in Figs.15(a)–15(c), the elasticity

grows with the scaling of the tree size. 2) The elas-

ticity depends on the capacity ratio. As the blue line

shows in Fig.15, the combinational elasticities under the

strategies decrease with the increasing ratio. We can

have that when the ratio of the average node space is

lower than the average link bandwidth, the bandwidth

is not the bottleneck. 3) The elasticity also depends on

the placement strategy. As shown in the green lines in

Fig.15, when the ratio becomes larger, the performance

of the PPMC decreases. In contrast, the performance

of the PPLC improves with an increase in the capacity

ratio, which means the accuracy of the PPLC depends

on the constraint of physical links. Our strategy has

the best performance in elasticity compared with the

baseline algorithms. It improves the resultant elasti-

city by 16.2%, 17.2%, and 11.9% under k = 4, 5, and

6, respectively.

4.2.2 Simulation Comparisons for Fat Tree DCN

Basic Setting. The DCN is modeled as a fat tree

with the number of ports m = 4, m = 6, m = 8,

m = 10, and m = 12. The number of corresponding

PMs ranges from 16 to 432. The capacity of each PM

is heterogeneous and ranges from 0 to 10 at the bot-

tom layer. The unit of the resource is slot, which can

be easily interpreted to a real configuration. Each slot

can hold on one VM, and the bandwidth demand be-

tween per-pair of VMs is 1 Gpbs. There are k
2 edge

switches connected to an aggregation switch, and the

same amount of aggregation switches are connected to

the core switch. Our evaluation is divided into two

groups according to the configuration of the fat tree

DCN. One evaluation group is the semi-homogeneous

configuration in which the capacities of physical links

in one layer are the same, but the capacities of PMs are

different. For the semi-homogeneous scenario, we vary

the capacities of physical links for each layer, from the

bottom up as 5 Gbps, 10 Gbps, and 20 Gbps, respec-

0.2 0.4 0.6

(a) (b) (c)

0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Capacity Ratio

C
o
m

b
in

a
ti
o
n
a
l 
E
la

st
ic

it
y EDP

PPMC
PPLC
PPCC

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

Capacity Ratio

C
o
m

b
in

a
ti
o
n
a
l 
E
la

st
ic

it
y EDP

PPMC
PPLC
PPCC

0.2 0.4 0.6 0.8 1.0
0.0

0.2

0.4

0.6

0.8

1.0

1.2

Capacity Ratio

C
o
m

b
in

a
ti
o
n
a
l 
E
la

st
ic

it
y EDP

PPMC
PPLC
PPCC

Fig.15. Comparison of the elasticities for baseline and optimal solutions. (a) k = 4. (b) k = 5. (c) k = 6.
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tively. Another evaluation is conducted for the hete-

rogeneous configuration. Setting of the PMs capacities

is the same in the heterogeneous configuration as in

the semi-homogeneous configuration. We set the link

capacity ranges as [0, 10] Gbps, [0, 15] Gbps, and [0, 30]

Gbps in each layer, and the amount of VMs in each set

is evenly distributed between 0 and 100.

Simulation Results. We first analyze the maximal

value of the MALs under both the semi-homogeneous

and heterogeneous cases. Fig.16(a) shows the root dis-

tribution of the different scales of fat tree DCNs, when

the number of the switches’ ports is m = 4, m = 6,

m = 8, m = 10, and m = 12, respectively. For each fat

tree DCN, we generate the fat tree DCNs with various

capacities for 10 times, and we calculate the value and

point out the location of the maximal MALs.
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Fig.16. (a) Root distribution of the different scales of fat tree

DCNs. (b) MALs for fat trees.

We have the following observations based on the

simulation results. 1) As shown in Fig.16(a), for each

group experiment, the probability that the maximal

MAL exists on the core layer decreases with the scal-

ing capacity of the fat tree DCNs in both the semi-

homogeneous and heterogeneous cases. This means

that with the scaling for fat tree DCNs, the bandwidth

of upper links becomes the main limitation for commu-

nication between PMs. Fig.16(b) shows a comparison

of the MALs between the core switch aggregation and

the root r. Two solutions calculate the MALs under

fat tree DCNs with various capacities, where m = 4,

m = 6, m = 8, m = 10, and m = 12, respectively. The

differences between these two solutions increase as the

number of ports increases. Since the orientation of the

aggregation depends on the order in which the virtual

loads are received, and since the upper links have lim-

ited bandwidth, the root gradually shifts down from the

core layer. 2) The localities of the maximal MALs may

be different for different configurations in the fat tree

DCNs. As shown in Fig.16(a), the probability of the

blue columns is higher than that of the green ones. In

the semi-homogeneous case, the capacities of the phys-

ical links in a layer are the same, and thus the single

link between the loads (PMs or virtual loads) and the

switches cannot be the bottleneck. However, they can

be the bottleneck in the heterogeneous case because the

link capacities are determined in a range. Therefore, in

the heterogeneous case, the probability that the max-

imal MALs exist in the core layers is lower than that

in the semi-homogeneous case. Next, we start to an-

alyze the elasticity for placement under the maximal

MAL. In order to simplify our simulation, we use a vir-

tual cluster to denote a set of VMs. We compare our

provisioning algorithm with the same three baseline al-

gorithms, EDP, PPMC, and PPLC.

Fig.17 presents the elasticity of VMs provision un-

der the fat tree DCNs. The group is divided by the

number of the switches’ ports: m = 4, m = 6, m = 8,

m = 10, and m = 12, respectively. For each group, we

use the same four algorithms: EDP, PPMC, PPLC, and

PPCC. We calculate an average of 10 times of the elas-

ticity for various virtual clusters that have the amount

of VMs evenly distributed between 0 and 100. Addi-

tionally, we have the following observations. 1) The

fluctuation of the elasticity depends on the scales of

the virtual clusters. As shown in Fig.17, the elasticities

of all the algorithms decrease with the increase in the

amount of VMs in the virtual cluster. 2) The elasticity

for the virtual cluster depends on the provisioning algo-

rithms. The performance of each algorithm depends on

the provisioning of the virtual cluster. For each group,
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Fig.17. Elasticities for the fat trees. (a) m = 4. (b) m = 6. (c) m = 8. (d) m = 10. (e) m = 12.

we can see that the performance of the greedy algorithm

decreases significantly with the increase in the amount

of VMs in the virtual cluster. The performance of the

PPMC and the PPLC algorithms improve with the scal-

ing of the fat tree DCNs. However, they all have lower

elasticities when the scales are small, i.e., m = 4. The

performance of EDP depends on the capacities of the

PMs. If the distribution of the capacities of the PMs

is uneven, the performance will decrease significantly.

Compared with PPMC, PPLC, and EDP, PPCC has

the best performance in the elasticity across the vari-

ous fat tree DCNs. The gap is more obvious with the

increase in the scale of the fat tree DCN. We can see

that the elasticity between different algorithms for the

virtual cluster is much lower with m = 4 than with

m = 12 in the fat tree DCNs.

5 Related Work

Virtualization technology ensures application, iso-

lation, and at the same time allows for the

utilization of the PM. Much work has been

done in the VM placement in cloud-based DCNs

with constraints that include power[2,10] and per-

formance interference[11,12], reliability[13,14], energy

consumption[15], traffic variability[16,17], and traffic

minimization[18]. [19] also discusses some other prac-

tical factors in VM scheduling.

There are two common models for DCN virtuali-

zation which are the pipe model and the hose model.

In the pipe model, the customer needs to know the com-

plete traffic load between each pair of VPN endpoints[8].

However, in the hose model, the service provider sup-

plies the customer with certain guarantees for the traf-

fic that each endpoint sends to and receives from other

endpoints of the same VPN[4,20]. One extension of the

hose model is the virtual oversubscribed cluster, which

guarantees a specified minimal bandwidth between ten-

ants’ virtual machines based on an over-subscription

factor[21]. Another combination abstraction of the

hose model and the pipe model is tenant application

graph[22], which preserves inter-component structure as

the pipe model in each tier and aggregates pipes as

the hose model between a pair of communicating tiers.

Among many hose model based applications, Kumar et

al.[20] connected VPN endpoints using a tree structure

and aimed to optimize the total bandwidth reserved on

edges of the VPN tree under single path routing. Er-

lebach and Maurice[23] did an extension which presents
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an optimal polynomial-time algorithm for multi-path

routing. The hose model is also applied into the virtual

cluster placement. Ballani et al.[21] and Zhu et al.[24]

aimed to find the smallest subtree using a greedy al-

gorithm that can fit under both the homogeneous and

the heterogeneous bandwidth demands separately. To

optimize resource usage, Dutta et al.[25] presented a dy-

namic programming algorithm for computing the opti-

mal embedding with minimum congestion.

Elasticity has been considered one of the cen-

tral attributes when estimation cannot be easily

obtained[26,27]. In cloud computing, elasticity is de-

fined as the degree to which a system is able to adapt to

workload changes by provisioning and de-provisioning

resources in an autonomic manner[28]. In order to define

a measure of the elasticity, Shawky and Ahmed[29] pro-

vided a set of benchmarks for cloud computing perfor-

mance. In [3, 30], the authors considered the elasticity-

aware VM placement problem in tree-based DCNs, tak-

ing both computation load and communication band-

width into consideration. However, our proposed ap-

proach is the only one to achieve optimality when the

tree is semi-homogeneous, i.e., the bandwidths of the

links at the same level are the same, but the ones at

different levels are different. The scheme proposed in

this paper extends the optimality to general tree struc-

tures.

6 Conclusions

This paper proposed maximum elasticity schedul-

ing that supports maximum future growth without re-

sorting to task re-scheduling. It is based on an ite-

rative abstraction that includes both maximum compu-

tation and communication elasticities. Our insight into

maximum communication elasticity stems from a spe-

cial type of the hose model which determines the com-

munication load based on the underlying computation

load. We first considered the tree-structured DCN and

offered a distributed, optimal solution that computes

the maximum admissible load and performs the maxi-

mum elastic scheduling of any admissible load. Based

on the assumptions and conclusions, we extended it to

the multiple paths case with a fat tree DCN, and we

discussed the optimal solution for computing the MAL

with both computation and communication constraints.

We presented the provisioning scheme with the maxi-

mum elasticity for the VMs, which comes with prov-

able optimality guarantee for a fixed flow scheduling

strategy in a fat tree DCN. Compared with the exist-

ing baseline algorithms, the simulation results showed

that our algorithm can improve the resultant elastici-

ties by 15.1% and 21.8% in the binary tree and the fat

tree DCNs, respectively. Moreover, the evaluation re-

sults on the real testbed validated that our algorithm

can improve the elasticity of the DCN and reduce the

transmission delay.
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