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Abstract—Fog computing is an emerging paradigm that brings
the computing capabilities close to distributed IoT devices, which
provides networking services between end devices and traditional
cloud data centers. One important mission is to further reduce
the monetary cost of fog resources while meeting the ever-
growing demand of multiple users. In this paper, we focus on
minimizing the total cost for multiple mobile users to provide
an efficient resource provisioning scheme in fog computing.
The total cost includes two aspects: the replication cost and
the transmission cost. We consider two cases for the resource
provision problem by focusing on different cost models. First,
one simple case where users can only upload one replication
is discussed, and an optimal solution is proposed by converting
the original problem into one of bipartite graph matching. Then
we consider a more complicated case that each user can upload
multiple replications on fog nodes in the resource provisioning.
For different transmission cost models, the transmission cost is
related to the distance of each pair of fog nodes. This problem is
proven to be NP-hard. We first propose a non-adaptive algorithm
which is proved to be bounded by 2

3
W + 1

3
OPT . Another 3+ ε-

approximation algorithm is proposed based on local search,
which has better performance with higher complexity. Extensive
simulations also prove the efficiency of our schemes.

Index Terms—Fog computing, multiple users, resource provi-
sion, mobility, cost efficiency.

I. INTRODUCTION

Fog computing, which is defined as a distributed computing
infrastructure containing a bunch of high-performance physical
machines whose computing, storage, and networking services
are well connected with each other, is an emerging comput-
ing paradigm that brings the computing capabilities close to
distributed IoT devices [1]. Due to the repaid generation of
an unprecedented volume and variety of data, the demand for
high-quality mobile services has been increasing, and how to
realise the resource provision that eases the monetary cost for
mobile users becomes the key issue of the fog computing.
To date, the smartphone penetration in the U.S. has reached
80%. As predicted by Cisco, the average number of connected
devices per person will reach 6.58 in 2020 [2].

Due to the increasing number of connected devices on the
fog nodes, poor resource provision will result in high cost
and heavily unbalanced loads among fog nodes. In this paper,
we focus on the resource provision problem for mobile users
under the capacity constraints of fog nodes, while realizing
the cost efficiency of network operators in fog computing.
Our objective is to find a feasible provision scheme that
minimizes the total monetary cost for the users under the
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(a) Transmission cost minimization.
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(b) Replication cost minimization.
Fig. 1. Illustration of two extreme assignments.

capacity constraints, and the cost is divided into two parts:
replication cost and transmission cost. The replication cost is
the offloading cost of users that place replications on the fog
nodes. The transmission cost is the bandwidth cost associated
with data movement, which only occurs when there is no
replication on the real location of the user. We assume that
there is no capacity limitation on communication resource, and
thus the transmission cost is measured by the shortest distance
between real location and other fog nodes.
A. Motivation and Challenges

We give an example that motivates our work in this paper.
Some assumptions and notations are not explicitly stated and
will be explained in the later section. As shown in Fig 1, there
are five fog nodes v1 to v5, and there are three users u1, u2 and
u3. We define the daily route of each user as the activity track.
According to the activity tracks of these three users, these
six fog nodes are divided into three sets U1 = {v1, v2, v3},
U2 = {v2, v4} and U3 = {v4, v5, v6}. The probability of user
k is represented by the frequency of uk that stays at that fog
node. We use pkj to denote the probability of user k at the jth

fog node. For example, p11 = 0.3, p12 = 0.5, and p13 = 0.2,
which means that the probability of user u1 appearing at three
fog nodes is respectively 0.5, 0.3, and 0.2.

As shown in Fig. 1(a), one extreme assignment is the
solution with minimal transmission cost for users u1, u2
and u3. We offload the replications of the workload on all
fog nodes that users are connected to in the graph. For this
case, users can do the operation on any fog node where
they may stay, and the total cost of the user is the sum
of the replication costs. However, the total cost under this
solution is the maximum among all possible assignments if the
replication cost is extremely high. Another extreme assignment
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TABLE I
NOTATIONS

G Substrate topology of fog nodes, where G = {V,E}.
V Set of fog nodes in G, where V = {vi}, 1 ≤ i ≤ n.
vi The ith fog node in V .
E Set of connections of fog nodes in G, where E = {eij}.
eij The connection between fog nodes vi and vj in E.
U Set of users, where U = {uk}, 1 ≤ k ≤ n.
uk The kth user in U .
Gk The activity track of uk , Gk = {Vk, Ek}, where Gk ⊆ G.
pki The probability of uk on vi.
rki The replication cost of uk on vi.
fR(uk) Replication cost of uk , where fR(uk) =

∑
i∈Xk

rki.
σ(vi) The closest fog node of vi
tij The transmission cost between vi and vj , where vj =σ(vi).
fT (uk) Transmission cost of uk , fT (uk)=

∑
i∈{Vk\Xk}pki ·tij .

fC(uk) The total cost of uk .
Xk Set of fog nodes with replications of uk , where Xk ⊆ V .

is to minimize the replication cost, which means reducing the
number of replications on the fog nodes. In Fig. 1(b), we only
offload one replication on one fog node for each user. Take u2
as an example: if the real location of u2 is v4, the total cost
will be the sum of the replication cost and the transmission
cost between v4 and v6. Thus, when the transmission cost is
large, the total cost of users is extremely high for this solution.

This problem is non-trivial mainly due to the following
challenges: (i). Each user has its own activity track. Therefore,
to describe the trajectory and formulate the impact of replica-
tions on user’s total cost is non-trivial. (ii). Users can move
between fog nodes in its own fog node set, and the probability
of staying at each fog node is different. How to find a feasible
provision of the users that can realize the cost minimization
within the limited replicate copies is non-trivial. (iii). We need
to balance the trade-off between the replication cost and the
transmission cost, while guaranteeing the users demand with
lowest costs. There is a trade-off between the replication cost
and the transmission cost, which means that more replications
on fog nodes can reduce the transmission cost of users while
increasing the replication cost and the chance of exceeding the
capacity constraints.

B. Contributions and Paper Organization
In this paper, we focus on the resource provision problem

for multiple users under the capacity constraints while realiz-
ing the cost efficiency of network operators in fog computing.
Our contributions can be summarized as follows:
• We consider the resource provision problem for users

with cost minimization and model the identified prob-
lem by considering two types of cost: replication cost
and transmission cost. We first discuss a simple case
where users can only upload one replication, and one
optimal solution is proposed. We then consider a more
complicated case, which means that each user can upload
multiple replications on fog nodes in the provisioning
process. Then the problem will be transformed to finding
the number of replications and their optimal provision.

• Then we prove that the problem under the different
transmission cost model is NP-hard. We first propose a
non-adaptive algorithm which is proved to be bounded by
2
3W + 1

3OPT . Another 3 + ε-approximation algorithm

is proposed based on local search, which has better
performance with higher complexity.

• We conduct various simulations to compare our joint
optimization methods with several state-of-the-art ones
based on two real datasets: one is the published dataset of
Mobike company constructed by 16680 users and another
is the Microsoft GPS trajectory dataset constructed by
182 users. The results are shown from different perspec-
tives to provide conclusions.

II. RELATED WORK
The concept of fog computing was introduced by Cisco Sys-

tems, and it is used to extend the cloud computing paradigm
to the edge of the network, thus enabling a new breed of
applications and services. There are a lot of extensions and
application scenarios on fog computing, three of which are
highlighted in [3], including connected vehicle, smart grid,
and wireless sensor networks.

Although numerous novel architectures for fog computing
[4–6] have been proposed, the resource provision problem
in such systems remains a critical challenge. A bundle of
existing research in this area are on provisioning fog resources
to computational tasks offloaded from mobile devices. Yu et
al. [4] studied joint application placement and data routing
to support all data streams with both bandwidth and delay
guarantees, which consider IoT applications that receive con-
tinuous data streams from multiple sources in the network.
Skarlat et al. [5] have presented a conceptual framework for
fog resource provisioning, which can provide delay-sensitive
utilization of available fog-based computational resources
with existing constraints. Chen et al. [6] focused on game-
theoretical mechanisms for offloading decision making in the
presence of multiple users, taking into account the energy
consumption and the delay. Similar to the fog computing,
Wang et al. [7] focused on the service entity replication for
social virtual reality applications in edge computing. Zhang et
al. [8] studied the reconfiguration in edge clouds and proposed
an efficient online algorithm for configuration updating. These
works have considered the performance guarantee for each
mobile user while ignoring the interdependent relationship of
multiple users between different costs.

Quite a few works have been carried out on the effect of
cost efficiency in fog computing networks for mobile users.
Arkian et al. [9] have proposed a fog computing based scheme
on supporting crowd sensing applications, which jointly inves-
tigates data consumer association, task distribution, and vir-
tual machine placement for cost-efficient limited provisioning
resources. Pham et al. [10] formulated the task scheduling
problem in a cloud-fog computing system and have proposed a
heuristic-based algorithm, whose major objective is to achieve
the balance between the makespan and the monetary cost
of cloud resources. Gu et al. [11] are motivated to integrate
fog computation and medical cyber-physical systems and then
linearize it into a mixed integer linear programming problem.
Most of these works have focused on the cost-efficient re-
source provision placement problem by only considering the
fixed distribution of users; however, they ignored the mobility
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of multiple users between fog infrastructures. In this paper, we
focus on the resource provision problem for multiple mobile
users in fog computing. Our objective is to find an appropriate
assignment of the workload for users that minimizes the
cost and satisfies the constraints on the computation and
communication resources.

III. MODEL AND PROBLEM FORMULATION

A. Fog Node
Given a substrate distribution of the fog nodes which is

modeled as a weighted undirected graph G with a set of fog
nodes V and a set of connections E, i.e., G = {V,E}, let
V = {vi} denote the set of fog nodes, and vi be the ith

fog node in V . Let E = {eij} denote the set of connections
between fog nodes, and eij be the connection between fog
node i and j in E. Let |eij | be the weight of the connection
eij , which denotes the distance between fog nodes vi and vj .
B. Users Model

We use a set U = {uk} to denote the users who have
mobilities. Each user with mobile devices is moving around
in the fog computing system. We define the daily route of
each user as the activity track, and each user uk has its own
activity track which is constructed by a set of fog nodes Gk,
where Gk ⊆ G. The number of times that the user appears at
that fog node is represented by the frequency of the user who
stays at that point, and we use pki to denote the probability
of user uk at fog node vi.
C. Problem Formulation

In this subsection, we formulate the resource provision
problem for multiple users in fog computing. Our goal is
to find an appropriate scheme which takes the set of users’
workloads as input and decides the amounts and locations of
the replications for users’ workloads in the fog computing
system accordingly such that the total cost is minimized. Let
fC(uk) denote the total cost of kth user uk. We consider
two aspects: the replication cost fR(uk) and transmission cost
fT (uk). The replication cost fR(uk) of user uk is associated
with the creation of fog applications, which is fixed and
determined by the fog computing platform based on the
requirements [12]. We use X to denote the resource provision
of fog nodes for user set U , and Xk to denote the set of
chosen fog nodes that offload the replications of user uk. Let
rki denote the cost for user uk that offloads its replication
on fog node vi. Each user can offload its replications onto
several fog nodes in set Gk, and the replication cost of uk can
be calculated as fR(uk) =

∑
i∈Xk

rki, which is the sum of
replication with chosen fog nodes in Xk. Let fT (uk) be the
transmission cost, which is the bandwidth cost associated with
data movement. It only occurs when there is no replication on
the real location of uk. We assume that the transmission cost
is positively proportional to the distance between every pair of
fog nodes, which is comprehensive yet practical. We assume
that there is no capacity limitation on communication resource,
and thus the transmission cost is measured by the shortest path
between real location and other fog nodes. Let σ be the best
assignment of users’ workload replications, where U → X
for the customers. σ(vi) denotes the fog node closest to the

current location of uk that holds the replication. It satisfies
tσ(i)i = minj∈Xk

pij · tij , where tij is the transmission cost
between fog nodes i and j, and vj = σ(vi). Since pki is the
probability of user k at the ith fog node, the transmission cost
is the mean value that is transmitted from the other fog nodes
in Xk, fT (uk) =

∑
i∈Vk\Xk

pki · tij . Let fC(uk) denote the
total cost of user k, where fC(uk) = fR(uk) + fT (uk).

minimize
∑
k∈U fC(uk) (1)

subject to fC(uk) = fR(uk) + fT (uk) (2)
fR(uk) =

∑
i∈Xk

rki (3)
fT (uk) =

∑
j∈Vk/Xk

pki · tij (4)

0 ≤ pki ≤ 1,
∑
i∈Vk

pki = 1 (5)
Equation 1 shows the objective of minimizing the total

provision cost for the users. Equation 2 shows that the total
provision cost is divided into two parts: replication cost and
transmission cost. Equation 3 is the constraint on the total
replication cost, which is the sum of the replication cost of fog
nodes that offload the workload of user k. Since the replication
cost rki of uk is the same, we use Xk to denote the set of the
chosen fog nodes that offload the replications of user k, and
|Xk| to denote the number of fog nodes in set Xk. Equation 4
is the constraint on the transmission cost of the fog nodes,
which means the resource provision on each fog node will
be transmitted to the real user’s location. It is the sum of the
production of the probability of user uk at fog node vi and the
shortest distance among the rest of the fog nodes. Equation 5
is the constraint on the value of the probabilities.

IV. PROVISION WITH SINGLE REPLICATION (PSR)
In this section, we discuss a simple scenario that each user

can only offload single replication on fog nodes during the
resource provision. In this scenario, we consider three cases,
in which the capacities of fog nodes are limited to 1, a constant
value η>1, and∞. For three cases, we have optimal solutions.

We first consider one simplest case where the capacities
of fog nodes are limited to 1, which means that each fog
node can only serve one replication of users. We transform
our original problem into a bipartite graph, with the set of
users in the left and the set of fog nodes on the right. The
connections between the user and fog nodes are the activity
track of each user, and the weight wki is the reward when
user uk chooses the ith fog node vi as the location of the
replication. The total cost fC(uk) is the sum of the product
of the probability pki of user k at the fog node vi and the
shortest distance between fog node vi and the rest of possible
fog nodes, i.e., fC(uk) = rki+

∑
i∈Vk/vi

pki ·tσ(i)i. Let α be a
constantly expected reward of the user that is much larger than
the total cost fC(uk), where α� fC(uk). We define the value
of weight wki by using the constant reward α minus the total
cost, where wki = α−fC(uk). Then, our problem is converted
from minimizing the total cost to finding the maximum weight
matching of the bipartite graph.

As shown in Algorithm 1, we take the topology of fog
nodes G, and the set of users U as our inputs. The output
is the provisioning scheme X for the set of users U . In lines
1 to 3, we first calculate the value of weight wki according to
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Algorithm 1 Provision with Single Replication (PSR)
Input: Topology G, set of users U ;
Output: Provision Scheme X of U ;

1: for user k = 1 to k = |U | in U do
2: for fog node i = 1 to i = |Vk| in Gk do
3: Calculate wij according to the activity track Gk of

each user;
4: Construct a bipartite graph with respect to wki;
5: Obtain the maximum weight matching;
6: return Provision Scheme X of U ;

the activity track Gk of each user. In line 4, we construct a
bipartite graph with respect to wki. We transform our problem
from minimizing the total cost to finding the maximum weight
matching of the bipartite graph. In line 5, we calculate
the maximum weight matching by using the kuhn-munkras
algorithm, and the provisioning scheme X of U is returned
in line 6. For the case that the capacity of each fog node is
limited by a constant η > 1, the optimal solution still can be
calculated by applying the bipartite matching. The difference
is that each fog node should be duplicated by η−1 times. Then
the problem is converted to the case that the capacity of each
fog node is 1. When the capacity of each fog node is unlimited,
i.e., capacity of each fog node is ∞, the optimal solution can
be calculated by a greedy approach. That is, each user offloads
his/her workload to the fog node with the smallest cost that
contains the transmission and replication cost wki. The time
complexity of PSR algorithm is O(|U | · |V | · (|U | + |V |)4),
where |U | is the number of users in set U , and |V | is number
of fog nodes in the activity tracking set of one user.

V. MULTIPLE REPLICATIONS WITH DIFFERENT
TRANSMISSION COST MODEL (D-PMR)

In this section, we discuss a more complicated and realistic
scenario where users can offload multiple replications on
several fog nodes during the resource provision, and the
transmission cost is related to the distance of fog nodes. In this
scenario, we assume that each fog node has unlimited capacity.
This problem is defined as a D-PMR problem. We first prove
that the D-PMR problem is NP-hard. Then, we propose two
efficient algorithms. One is a non-adaptive algorithm based
on submodular function, and another one is an approximation
algorithm based on local search.
A. NP-hard

Theorem 1: The D-PMR problem is NP-hard.
Proof: We conduct the proof via a polynomial-time reduction
from the weighted set covering problem, which is known
to be NP-hard [13]. A set covering problem is to find a
minimum-weight cover C ⊆ F whose members cover all
elements of X , i.e., X =

⋃
S∈C S, An instance (X ,F) of

the set-covering problem consists of a finite set X and a
family F , and every element of X belongs to at least one
subset in F : X =

⋃
S∈F S. Each set S in family F has an

associated weight w, and the weight of a cover C is
∑
S∈C w

[13]. The reduction from the set covering problem to our D-
PMR problem can be built by treating users in set U as a

finite set X , and we reduce all provision schemes of user
replications that offload on corresponding fog nodes as a
family of X =

⋃
Xk⊆U Xk as F . It means which users are

offloading replications on the corresponding fog nodes. Xk

covers the users, which is treated as S. The cost of Xk is
fC(uk) =

∑
i∈Xk

rki +
∑
j∈Vk/Xk

tij , which can be treated
as w. Our D-PMR problem with minimum cost is to find a
minimum-cost subset X ⊆ U , whose replications on fog nodes
serve all users of U , i.e.,

∑
Xk∈X fC(uk). Since the weighted

set covering problem is NP-hard, our D-PMR problem with
the minimum cost is NP-hard. �
B. Non-Adaptive Algorithm based on Submodular

In this subsection, we propose a non-adaptive algorithm
with bound 2

3W+ 1
3OPT . Before presenting the algorithm, we

first carry out a transformation by introducing a new reward
function for each user, i.e., f(Zk) = Wk−C(Zk). We use a set
Zk to denote the chosen fog nodes which hold the replications
of one unique user k in the system, where Zk ⊆ Xk. The cost
of setting Zk is C(Zk) =

∑
i∈Zk

ri +
∑
i∈{Xk\Zk} pi · tσ(i)i,

where tσ(i)i is the minimum transmission cost between fog
node σ(i) ∈ Zk and i. Wk is a constant which denotes the
expected cost of users. Then, our original problem of minimiz-
ing the total cost is transformed into maximizing the reward
of users instead. We first prove that our new function f(Zk)
is a submodular function. In order to simplify the proof in
Theorem 2, we use DZk

i to denote the minimum transmission
cost between fog node k and set Zk, i.e., DZk

i = tσ(i)i|σ(i)∈Zk
.

Theorem 2: The reward function f(Zk) = Wk−C(Zk) of
the D-PMR problem is a submodular function.
Proof: We first define the reward of one user as f(Zk) =
Wk − C(Zk), where Wk is the expected cost of the user.
Suppose Xk is the provision set of user k, and Yk is a subset
of Xk, where Yk ⊆ Xk. We choose any fog node in graph G
which is denoted as b to be the newly added one. If the reward
function of the D-PMR problem is a submodular function, we
need to prove that f(Xk ∪ b)− f(Xk) ≤ f(Yk ∪ b)− f(Yk).
Since this equation can be converted to C(Xk)−C(Xk∪b) ≤
C(Yk)−C(Yk∪b), we can prove it. For the left part of subset
Xk, we convert it into∑

i∈Zk−Xk
pi ·DXk

i −
∑
i∈Zk−(Xk∪b) pi ·D

Xk∪b
i (6)

= pb ·DXk

b +
∑
i∈Zk−(Xk∪b) pi · (D

Xk
i −DXk∪b

i ) (7)
For the right part of subset Yk, we convert it into∑

i∈Zk−Yk
pk ·DYk

i −
∑
i∈Zk−(Yk∪b) pi ·D

Y ∪b
i (8)

= pb ·DYk

b +
∑
i∈Zk−(Yk∪b) pi · (D

Yk

k −D
Yk∪b
k ) (9)

We compare Equations 7 and 9 by doing subtraction, then we
divide it into two parts, which are Equations 10 and 11.

pb ·DXk

b − pb ·DYk

b (10)∑
i∈Zk−(Xk∪b)

pi ·(DXk
i −D

Xk∪b
i )−

∑
i∈Zk−(Yk∪b)

pi ·(DYk
i −D

Yk∪b
i ) (11)

Since Yk ⊆ Xk, DXk

b ≤ DYk

b , then we have DXk

b −D
Yk

b ≤ 0
of Equation 10. For Equation 11, we convert the first part into∑

i∈Zk−(Yk∪b) pi · (D
Yk
i −DY ∪b

i ) (12)

=
∑
i∈Zk−(Xk∪b)pk·(D

Yk
i −D

Yk∪b
i )+

∑
Xk−Yk

pk·(DYk
i −D

Yk∪b
i )(13)

4



We convert Equations 11 by adding 12. Since
∑
Xk−Yk

pi ·
(DYk

i − DYk∪b
i ) ≥ 0, we only consider the value of∑

i∈Z−(Xk∪b) pi ·(D
Xk
i −D

Xk∪b
i )−

∑
i∈Zk−(Xk∪b) pi ·(D

Yk
i −

DYk∪b
i ). We compare the values of DXk

i − DXk∪b
i and

DYk
i −D

Yk∪b
i . Since DXk

i is the minimum value of shortest
paths between fog node i and the fog nodes in set Xk, where
DXk
i = min{Dvj

i |vj∈Xk
}, there exist two cases after adding

fog node b: one is that the shortest path between b and i is
larger than or equal to DX

i , i.e., Db
i ≥ DXk

i . Another one is
that the shortest path between b and i is smaller than DXk

i , i.e.,
Db
i < DXk

i . In the first case, if the shortest path between b and
i is larger than DXk

i (DXk
i < Db

i ), there will be no decrease of
DXk∪b
i , and DXk

i −D
Xk∪b
i = 0. However, for DYk

i −D
Yk∪b
i ,

if the shortest path between b and i is smaller than DYk
i ,

DYk
i −D

Yk∪b
i > 0. Since DXk

i −D
Xk∪b
i = 0, we can have that

DXk
i −D

Xk∪b
i is smaller than DYk

i −D
Yk∪b
i . If the shortest path

between b and i is larger than DYk
i , and DYk

i −D
Yk∪b
i = 0,

then we have that DXk
i − DXk∪b

i is equal to DYk
i − D

Yk∪b
i .

Thus, we can have that DXk
i − DXk∪b

i ≤ DYk
i − DYk∪b

i .
In the second case, if the shortest path between b and i is
smaller than DXk

i (DXk
i > Db

i ), there will be a decrease
after adding b, DXk

i − DXk∪b
i > 0. Then we have that,

DXk
i − DXk∪b

i < DXk
i − Db

i . Since DXk
i ≤ DYk

i , we have
DXk
i − DXk∪b

i < DXk
i − Db

i ≤ DYk
i − Db

i . For subset Yk,
we have Db

i ≥ DYk∪b
i . Then we have DXk

i − DXk∪b
i ≤

DYk
i −D

Yk∪b
i . Therefore, we can have that the reward function

f(Zk) is a submodular function. �
Theorem 3: The reward function f(Zk) = Wk −C(Zk) is

a non-monotone function.
Proof: As the reward Wk is the expected cost of the user,
which is a constant, we only need to prove the cost function
C(Zk) is non-monotone. Since C(Zk) = R(Zk) + T (Zk),
we have C(Zk)− C(Zk + 1) = R(Zk) + T (Zk)− (R(Zk +
1) + T (Zk + 1)) = (T (Zk) − T (Zk + 1)) − rk. |Zk| is the
number of replications of one user, where |Zk| < |Zk| + 1.
Because the reduction of the transmission cost after adding
one replication depends on the distribution of fog nodes and
the tracking activity of users, the relationship of C(Zk) and
C(Zk+1) is uncertain. (i). If the reduction of the transmission
cost is larger than the replication cost rk, we will have (T (Z)−
T (Z + 1)) − rk > 0. Then we have C(Zk) > C(Zk + 1),
f(Zk) is a non-monotone function. (ii). If the reduction of
the transmission cost is smaller than the replication cost R,
we will have (T (Zk)− T (Zk + 1))− rk < 0. Then we have
C(Zk) < C(Zk+1), f(Zk) is a monotone function. Since the
relationship between replication cost and the reduction of the
transmission cost is uncertain, the reward function f(Zk) =
Wk − C(Zk) is a non-monotone function. �

Since the f(Zk) = Wk − C(Zk) is a non-monotone
asymmetric submodular function (f(Zk) 6= f(Xk \ Zk) for
∀Zk ⊆ Xk), we introduce a non-adaptive algorithm for our D-
PMR problem with bound 2

3W + 1
3OPT . Before introducing

the algorithm, we first introduce a new definition.
Definition 1 (additive error): Let Xk = Vk(1/2) denote a

uniformly random subset of Vk of user uk. For each element

Algorithm 2 Non-Adaptive for D-PMR (NA-D-PMR)
Input: Topology G, set of users U ;
Output: Provision Scheme X of U ;

1: for each user uk in U do
2: for each fog node vi in Vk do
3: Use random sampling to find the estimated value

ω̃(vj) for each fog node vi in Vk;
4: Independently, sample a random set with probability

pki = 1/2, where Xk = Vk(1/2);
5: With probability 8/9, return Xk;
6: With probability 1/9, return X ′k={vj ∈Vk : ω̃(vi)>0};
7: return Provision Scheme X of U ;

x, define ω(x) = E[f(Xk

⋃
{x})− f(Xk \ {x})].

The expectation E[f(Xk)] for any distribution of Xk can
be estimated by random sampling up to an additive error. Let
ω̃(x) be the estimated value of ω(x) based on the sample
mean by using point estimation. Based on that, we propose
Algorithm 2 which is inspired by a non-adaptive scheme in
[14]. We use it in each iteration for multiple users in set U
from lines 1-7. We use the topology of fog nodes G and the
set of users U as our input. The provision scheme X of U
is the output. In line 3, we first use random sampling to find
the estimated value ω̃(vi) for each fog node vi in Vk. We use
sk=|Vk|5 to be the number of random samples of each user,
and |Vk| to denote the total number of fog nodes based on
uk’s tracking activity. In line 4, we sample a random set with
probability pki=1/2 independently, where Xk=Vk(1/2). In
lines 5 and 6, for each user, we have a probability of 8/9
returning Xk, and a probability of 1/9 returning X ′k = {vi ∈
Vk : ω̃(vi) > 0}. In line 7, we return the provision scheme.

Theorem 4: The NA-D-PMR algorithm is bounded by
1
3 (2W +OPT ), and the time complexity is O(|U | · |V |6).
Proof: As f(Zk) is the reward of users k, we use f∗(Zk)
to denote the optimal reward. Since the non-adaptive method
we introduce is a 1

3 -approximation algorithm [14] for reward
function f(Zk), we have f(Zk) ≥ 1

3f
∗(Zk). Let |U | be the

number of users in set U , the total reward will be
∑|U |
k=1 f(Zk).

The optimal solution of set U is denoted as OPT , where
OPT =

∑|U |
k=1 C

∗(Z). Then we have |U |W−
∑|U |
k=1C(Z)≥

1
3 (|U |W −

∑|U |
k=1 C

∗(Z)). With simple mathematical trans-
formation, we have

∑|U |
k=1 C(Zk) ≤ 2

3 |U |Wk + 1
3OPT . Let

W = |U |Wk, as the number of users |U | is limited and Wk is
a constant larger than the cost value |Zk|rk, the value of W
is also a constant larger than |U ||Zk|rk. Therefore, we have∑|U |
k=1C(Zk)≤ 2

3W+1
3OPT . For each user, since the number

of chosen random samples is larger than or equal to |V |5, the
time complexity of NA-D-PMR algorithm is O(|U | · |V |6). �

Since the function f(Z) = W − C(Z) ≥ 0, we have
f∗(Z) = W − C∗(Z) ≥ 0, and the value of W ≥ C∗(Z).
When the value of W is equal to the optimal value of the
total cost C∗(Z), we have C(Z) ≤ C∗(Z), which means that
C(Z) is the optimal solution. However, if the value of W is
much larger than C∗(Z), our bound will be very loose.
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Fig. 2. The motivation example.

C. Approximation Algorithm based on Local Search
In this subsection, we propose an 3 + ε approximation

algorithm based on local search [15]. The insight of Algorithm
3 is based on Theorem 2. We iteratively increase the number
of replications until the reduced value of transmission cost is
less than single replication cost.

As shown in Algorithm 3, we use the topology of fog nodes
G and the set of users U as the inputs. The output is the
provision scheme X of users U . We try to find a feasible
solution for each user uk in each iteration from lines 2 to 9.
In line 3, we randomly choose a fog node Vi in F . We first add
fog nodes one-by-one. If the increment C(X

⋃
{vj |j∈Y }) −

C(X) < 0, fog node y will add to set X , and this process
will be terminated when there is no increment, as shown in
lines 4 and 5. We start to check whether there exist fog nodes
that can be removed from the obtained set X in line 6. For
each fog node vi in X , if the cost decreases after removing
it, C(X \ {vi|i∈X}) − C(X) < 0, we update the set X =
X \ {vi|i∈X}. Then we start to check whether there exists an
exchanging. For each fog node in set X , we check the value of
cost after exchanging one arbitrary fog node in the remaining
set Y . If C(X \{vi|i∈X}

⋃
{vj |j∈Y })−C(X) < 0, we update

the set X = X\{vi|i∈X}
⋃
{vj |j∈Y }. Since we directly imply

the local search steps based on [15], we have LS-D-PMR is a
3 + ε approximation algorithm. Detailed proof is presented in
[15]. The LS-D-PMR converges to M , where M is the number
of fog nodes that are chosen in set Gk, i.e., M ≤ 2|V |. The
time complexity of LS-D-PMR is O(|U | · |V | ·M).

We use an example in Fig 2 to illustrate our Algorithm 3.
As shown in Fig 2(a), we assume that there are four fog nodes
vA, vB , vC , and vD, and the probability that the user stays on
each fog node is 10%, 20%, 50%, and 20%, respectively. The
weight on each link is the transmission cost between each
pair of fog nodes. We use one blue triangle to denote one
replication, and the cost of each replication is 3. Firstly, we
start to place the replication by adding the fog node iteratively.
We assume that the initial cost is very high, C(X) = 100.
We choose fog node vA to add to the set X = X

⋃
vA, and

calculate the cost C(X) = 3 + 0 + 1 + 12.5 + 0.6 = 17.1.
Since 17.1 − 100 < 0, we update X = X

⋃
vA. After that

we choose fog node vB , and we calculate the cost C(X) =
3×2+0+0+10+0.6 = 16.6. Since 16.1−17.1 < 0, we update
X = X

⋃
{vA, vB}. After that we choose fog node vC , and we

calculate the cost C(X) = 3×3+0+0+0+0.6 = 9.6. Since
9.6 − 16.6 < 0, we update X = X

⋃
{vA, vB , vC}. Then we

choose fog node vD, and we find that the cost C(X) = 3×4+

Algorithm 3 Local Search for D-PMR (LS-D-PMR)
Input: Topology G, set of users U ;
Output: Provision Scheme X of U ;

1: Initialize sets X = ∅, Y = G;
2: for each user uk in U do
3: repeat
4: for each fog node vi in Vk do
5: if C(X

⋃
{vj |j∈Y })− C(X) < 0 then

6: Set ∆ = C(X
⋃
{vj |j∈Y })− C(X);

7: Update set X = X
⋃
{vj |j∈Y };

8: for each fog node vi in X do
9: if C(X \ {vi|i∈X})− C(X) < 0 then

10: Set ∆ = C(X \ {vi|i∈X})− C(X);
11: Update set X = X \ {vi|i∈X};
12: for each fog node Vi in X , Vj in Y do
13: if C(X \{vi|i∈X}

⋃
{vj |j∈Y })−C(X) < 0 then

14: Set ∆ = C(X \ {vi|i∈X}
⋃
{vj |j∈Y })−C(X);

15: Update set X = X \ {vi|i∈X}
⋃
{vj |j∈Y };

16: until ∆ > 0
17: return Provision Scheme X of U ;

0+0+0+0 = 12, which is larger than 9.6, i.e., 12−9.6 > 0.
We stop adding fog nodes. Secondly, we start to remove. Since
the fog node set with replications has already been updated to
X = X

⋃
{vA, vB , vC}, we first remove vA, and we calculate

the cost C(X) = 3 × 2 + 0 + 0 + 0.5 + 0.8 = 7.3. Since
7.3 − 9.6 < 0, we update X = X \ {vA} = {vB , vC}. After
that, we choose fog node vB , and we find that the cost C(X) =
3 + 2.5 + 4 + 0 + 7 = 16.5, which is larger than 7.3, i.e.,
16.5 − 7.3 > 0. We stop removing fog nodes, and the set
is still X = {vB , vC}. Thirdly, we start to exchange. Since
X = {vB , vC}, we have Y = {vA, vD}. We first exchange
vB with vA, X = X \ {vB}

⋃
{vA} = {vA, vC}, and we

calculate the cost C(X) = 3 × 2 + 0 + 0 + 1 + 0.6 = 7.6.
We find that the cost 7.6 > 7.3, we exchange vB with vD,
X=X \{vB}

⋃
{vD} = {vD, vC}. The cost C(X)=3 × 2 +

0 + 0.3 + 0.8 = 7.1, 7.1 − 7.3 < 0, then we update the set
X = {vD, vC}. So, our final result is to place two replications
on vC and vD.

VI. EXPERIMENTS
In this section, we conduct our experiments on two real

datasets, Mobike Dataset [16] and Microsoft GPS trajectory
dataset [17] to study the resource provision problem for mul-
tiple users in fog computing networks. The results are shown
from different perspectives to provide insightful conclusions.

6



A. Basic Setting
1) Mobike Dataset: We used the published data of Mobike

company from the open data platform Soda to construct our
real dataset [16]. We used a set of four-month-long history trip
data from 08/01/2016 to 09/01/2016 with 102361 records.
We analyzed this dataset according to the user ids, and
obtained the trajectories of 16680 users. Due to the redundant
information in the dataset, we extracted several of these param-
eters to form a new database. The record includes the user id,
start location, and end location, respectively. According to the
price analysis in [12], we used 10 to denote the unit replication
(1GB) price of users. We divided them into 10 groups, and
each group was constructed by 1668 users. We first analyze the
interesting points of users. Due to the large number of users,
it was difficult to clearly mark each user’s interesting points
on the map, so we randomly chose 10 users and marked out
the interesting points in Figure 3(a). According to the result
shown in Figure 3(a), we found that each user’s activity track
is different, however, there existed some overlapping points
of some users. In order to clearly represent the nodes that
overlap between users, we depict the user’s trajectory on two-
dimensional coordinates on the map of Shanghai with different
colour points.

2) Microsoft GPS trajectory dataset: We used the published
GPS trajectory dataset which has been collected in the Geolife
project of Microsoft Research Asia by 182 users in a period of
over five years (from April 2007 to August 2012) [17, 18]. This
dataset recorded a broad range of users’ outdoor movements,
including not only life routines like go home and go to work
but also some entertainments and sports activities, such as
shopping, sightseeing, dining, hiking, and cycling[19]. Based
on the dataset provided by GeoLife GPS Trajectories, [20]
clustering the significant locations for 50 users. We extracted
several of these parameters of these 50 users to form a
new database, which only contains the locations (latitude and
longitude). As shown in Figure 5(a), we mark out 10 users’
interesting points. Since users’ movements were recorded for
three years, the user’s interest points are widely distributed
(crossing different provinces). Most of the points are concen-
trated in Beijing, we intercept some areas and analyze them,
as shown in Figure 5(a).
B. Results-Single replication

We first ran the PRS algorithm based on the Mobike
dataset. Since the dataset is constructed by the trajectories
of 16680 users, we divide them into 10 groups. Each latter
group is the union of all the previous groups. The experiment
results on the total cost of single replication are shown in
Figures 3(b), and we have the following observations. (i).
With the scaling number of users, the total cost increases.
As shown in Figure 3(b), the total number of users in one
group is increased by 1668 compared with the previous one.
As the number of users increases, the range of activities of
users scales and so does the number of interesting points. In
order to satisfy the user’s demands, the number of placed fog
nodes also increases, which leads to an increase in total cost.
(ii). Although the increase in the number of users is linear, the
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Fig. 3. Mobike users’ interesting points and total cost with single replication.
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Fig. 4. Phone users’ interesting points and total cost with single replication.
increase in total cost is non-linear. Since the group of users
was chosen randomly, different users had different trajectories.
Users whose trajectories cover more fog nodes will have larger
cost. Therefore, due to the uncertainty of users’ trajectories in
the process of increase, the total cost increases non-linearly.

Then, we ran the PRS algorithm based on the Microsoft
GPS trajectory dataset. According to the records of 50 users
from the Microsoft GPS trajectory database, we divided it into
5 groups which contain 10 users’ trajectories for each. The
experiment results in the total cost of single replication are
shown in Figure 4(a), and we have the following observations.
The total cost obtained by different groups of users is different.
Since groups of users were divided randomly, different groups
of users had different trajectories. The number of fog nodes
and the transmission costs are very different. Users whose
trajectories cover more fog nodes will have a larger total cost,
as shown in Figure 4(b). We analyzed the average length of
trajectories for the users in each group, and we found that the
total number of fog nodes in group 1 is larger than group 3, so
the corresponding total cost is larger, as shown in Figure 4(b).
C. Results-Multiple replications

Then, we consider the provision with multiple replications
of different transmission cost. We compare the proposed
algorithms with three baseline approaches: Random Adding
algorithm (RA) (the replications on fog nodes of each user
are added randomly), Random Removing algorithm (RR) (the
replications on fog nodes of each user are removed randomly
from its tracking activity), and Greedy Adding algorithm (GA)
(the replications on fog nodes of each user are greedily added
by the probabilities). The experiment results in the total cost
are shown in Figure 5, and we have the following observations.
(i). The performances of two random algorithms are nearly
the same. As shown in the black and dark gray columns, the
performances of the two algorithms are basically the same
when the numbers of users in one group are 3336 and 13344
in Mobike dataset (the number of users in one group is 10
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Fig. 5. Total cost in PMR with different transmission cost model.

in Microsoft GPS trajectory dataset). In Figure 5(a), there
are a number of 10008 and 16680 users who have better
performance under the RA, and 6672 users who have better
performance under the RR. In Figure 5(b), there are 20 users
who have better performance under the RA, the groups of
30, 40 and 50 users have better performance under the RR.
(ii). The greedy algorithm GA has better performance than two
random algorithms RA and RR. As shown in the third column
in Figure 5, the total cost under the GA is smaller. However,
since the GA only considers the probabilities of fog nodes
for each user, the results obtained for some groups (groups
13344 and 16680 in Mobike dataset, groups 30, 40 and 50 in
Microsoft GPS trajectory dataset) will greatly deviate from the
optimal solution. (iii). The total costs of the NA algorithm for
some group of users are fluctuating, which means that some
of them are much larger than LS algorithm. The reason is that
the total cost of the NA algorithm is based on a probability
result, as shown in Figure 5. (iv). The total cost under each
algorithm is growing with the increasing number of users in
one group, as shown in Figure 5(a) and Figure 5(b). (v). The
performance of the LS is the best of these five algorithms, as
shown in Figure 5. When the trajectories of the group of users
are small (groups 3335 and 6672 in Mobike dataset, groups 10
and 20 in Microsoft GPS trajectory dataset), LS can have better
performance due to the reduction of the number of iterations.

VII. CONCLUSION
In this paper, we focus on the resource provision problem

for multiple mobile users in cost-efficient fog computing. We
aim at minimizing the total cost of users, which includes
the replication cost and transmission cost. Two cases are
considered. First, we consider a simple case that each user
can only upload one replication, and an optimal solution is
proposed. Then, we consider a more realistic and complicated
case that each user can upload multiple replications on several
fog nodes. We prove that the resource provision problem under
this scenario is NP-hard. Two algorithms are proposed. One is
a non-adaptive algorithm which is bounded by 2

3W + 1
3OPT .

Another one is a 3 + ε-approximation algorithm based on
local search. The performances of the proposed algorithms are
confirmed by extensive experiments based on two real datasets.
Extensive simulations show the efficiency and effectiveness of
our algorithms.
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