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Abstract—In recent years, Data Center Network (DCN) has
become a promising and efficient data processing infrastructure
for cloud computing. One important mission of DCN is to
serve the ever-growing demand for computation, storage, and
networking for multiple tenants in cloud computing. This paper
uses the notion of elasticity to measure the potential growth
of multiple tenants in terms of both computation and commu-
nication resources. Our objective is to maximize the elasticity
for DCNs. We consider the multiple virtual cluster placement
problem with the hose model under the computation and
communication constraints. We first formulate this problem as
an Integer Linear Programming (ILP) problem. Unfortunately,
the formulated ILP problem cannot be solved by the simplex or
eclipse methods because of a large number of variables and
constraints. Therefore, we propose an efficient scheme based
on the Dynamic Programming (DP) and analyze its optimality
and complexity. Furthermore, we propose a heuristic algorithm
for placement that maximizes the elasticity and guarantees
the bandwidth demand as well as lower complexity. Extensive
evaluations demonstrate that our schemes outperform existing
state-of-the-art methods in terms of both elasticity and efficiency.

Index Terms—Data Center Networks (DCNs), elasticity, multi-
tenant, Virtual Machine (VM) placement.

I. INTRODUCTION

In recent years, cloud computing offers a popular central
platform for hardware and software services over the Internet.
With the extensive growth of data volumes and varieties, Data
Center Networks (DCNs) have become a promising and effi-
cient data processing infrastructure for cloud computing. As
reported in the public data of Azure[1], the deployment size
of tenants is very bursty and unpredictable in terms of cores,
memory, or bandwidth demands. The limited computation
(CPU or memory) and communication (bandwidth) resources
of the servers become the bottleneck when an increasing
amount of tenants are employed in large-scale DCNs [2]. One
important mission of the DCNs is to serve the ever-growing
demand on computation, storage, and networking for multiple
tenants in cloud computing.

To address these problems, we propose the use of elastic
placement schemes to deal with the resource allocation for
multiple tenants. For each tenant, we use one virtual cluster
to represent its demands. One virtual cluster is an abstraction
of a set of Virtual Machines (VMs) that connect to one
virtual switch, which has both computing and communications
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Fig. 1. An motivational example of the elastic virtual cluster placement.

resource requirements. In this paper, we consider the tree-
structured DCNs using the hose model for communication,
where each node has an aggregated performance guaranteed
to the set of all other nodes [3, 4]. We use elasticity to measure
the potential growth of virtual clusters in the DCNs, which
is defined as the degree of a system that is able to adapt
to the workload changes by provisioning and de-provisioning
resources in an autonomic manner [3, 5]. In this paper, our
objective is to maximize the elasticity during the placement
process for the multiple virtual clusters while satisfying the
constraints on computation and communication in the DCNs.

A. Motivation

We first look at an example that motivates our work in
this paper. Some assumptions and notations are not explicitly
stated, which will be explained in a later section. We consider
a two-level network with four Physical Machines (PMs) as
the DCN architecture. The capacity of each PM is slotted, and
each slot can only host one VM. The capacity of each Physical
Link (PL) is represented by the communication bandwidth,
and each unit is denoted by B. Each VM has 1B total
communication with other intra VMs of one virtual cluster.
We use hose model as our communication model. As shown
in Figure 1, we suppose that there are two virtual clusters,
VA and VB , whose requests are 8 and 4 VMs, respectively.
One extreme assignment for these two virtual clusters is to
place them in the same set of PMs when possible by a greedy
method in [6, 7] to minimize the resource consumption,
which is shown in Figure 1(a). This solution can save more
computation and communication resources; however, if one
of VA and VB wants to scale its demand, there will be no
other solution except migration or reconfiguration of VMs
of VA and VB . Another extreme assignment is to place the
VMs separately by using the method in [3] to maximize
the elasticity for each virtual cluster, we have the following



distribution which is shown in Figure 1(b). Even though this
solution can obtain high elasticity, there will be congestion
on the highlight link without bandwidth guarantee. Since the
elasticity is the minimum one between the potential growth of
computation and communication, the elasticities are 0 under
these two solutions. It means that there is no growth for
the virtual clusters in the DCN. Between the two extreme
assignments, we prefer to propose an efficient scheme to
maximize the elasticity under the constraints as shown in
Figure 1(c), which can avoid the redistribution or congestion
for the virtual cluster placement.

B. Contributions and Paper Organization

In this paper, we focus on the multiple virtual cluster
placement in DCNs that maximizes the elasticity under both
computation and communication constraints. Our contribu-
tions can be summarized as follows:
• We consider the placement problem for multiple virtual

clusters with the hose model and show that there is a
trade-off between elasticity and the resource consump-
tion. We formulate it as an Integer Linear Programming
(ILP) problem and suggest that it cannot be solved by
the simplex method or the eclipse method based on the
sizes of variables and constraints.

• We address the multiple virtual cluster placement prob-
lem for the hose model by maximizing the minimum
elasticity using Dynamic Programming (DP). We analyze
its optimality and complexity.

• In order to reduce the complexity, we propose a heuris-
tic algorithm, which identifies an occupation with the
proportion of maximum admissible VMs during the tree
traversal.

• We present a few observations on tracing the public data
of Microsoft Azure, and we conduct various evaluations
with several state-of-the-art techniques on both simula-
tion and real testbed. The results are shown from different
perspectives to provide conclusions.

The remainder of this paper is organized as follows. Section II
surveys related works. Section III describes the model and for-
mulates the problem. Section IV investigates the problem by
proposing two schemes that depend on using DP and heuristic
methods. Section V presents the experiments. Finally, Section
VI concludes the paper.

II. RELATED WORK

DCNs have recently received significant attention as a cost-
effective infrastructure for storing large volumes of data and
hosting large-scale service applications [8, 9]. Virtualization
technology is used to ensure the flexibility of the provisioning
of workloads in the DCNs. Several works have been done on
VM placement, with various solutions proposed in [6, 10–17].
[6] proposes a virtual cluster abstraction Stochastic Virtual
Cluster (SVC), and introduces a network sharing framework
and efficient VM allocation algorithms to meet the bandwidth
demands by tenants. However, these min-guarantees fail to
consider the potential growth of a tenant’s demand. [12, 13]

show that there is a hard trade-off between min-guarantee and
network proportionality, and they propose a set of properties
to explicitly express the trade-off. [14] focuses on the utilities
of resources, which contains load balancing and fairness by
using a designed link establishment algorithm. [11, 15] study
the congestion control in cloud DCN by using congestion-
aware algorithms in the VM placement processes. [16, 17]
propose redundant VM placement optimization approaches to
enhancing the reliability of cloud services. These works all
consider the performance guarantee for each tenant, but ignore
the combinational relationship among multiple tenants.

In cloud computing, elasticity has been considered one of
the central attributes [5, 18]. [19] designs a two-tier traffic-
aware algorithm that efficiently solves the VM placement
problem for guaranteeing the potential performance of the
large problem size. [20] and [21] focus on dynamically
adjusting the cluster size by considering bandwidth guarantee
under the hose model by using online migration. However,
it is hard to determine when an arbitrary VM has shown
representative behavior and the VMs migration can cause high
cost. [22] proposes a hierarchical VM placement algorithm
on satisfying the growth of the VMs demands in semi-
homogeneous DCN configuration under both limitations of
PMs’ and PLs’ capacities. [23] analyzes the elastic manage-
ment of cluster-based services in the cloud, which separates
the resource provisioning from the service management and
provides important benefits: elastic service capacity to adapt it
to its dynamic workload. [24] realizes the elasticity by propos-
ing ElasticSwitch which can be implemented in hypervisors
to offer guaranteed allocations for resources. Most of these
works focus on the virtual cluster placement problem by only
considering the bandwidth guarantee, and they fail to consider
the elasticity of the DCN infrastructure. Although some of
these works consider both limitations of PMs’ and PLs’
capacities [23], the results can only adapt to the single tenant.
In this paper, we consider the virtual cluster placement on
the elastic scaling in multi-tenant cloud DCNs. Our objective
is to maximize the elasticity for the DCNs by satisfying
the requests of multi-tenants with the constraints of both
computation and communication.

III. MODEL AND PROBLEM FORMULATION

The virtual cluster placement problem attempts to find an
appropriate embedding in the DCNs for virtual clusters in
order to satisfy the resource demands of different tenants. We
use elasticity to measure the potential growth of the resource
allocation, which is also an important factor for weighting
the scalability of the DCNs. Our objective is to maximize
the elasticity during the placement process for the multiple
virtual clusters with satisfying the constraints on computation
and communication in the DCNs.

A. DCN model

In this paper, we consider the tree-structured DCN as our
physical topology, which is denoted by G = {C,L}. C is the
set of leaf nodes (PMs), which is denoted by C = {Cm},



TABLE I
NOTATIONS

G A tree-structured DCN, where G = {C,L}.
C The set of PMs, which is denoted by C = {Cm}.
Cm mth PM in the DCN G.
cm Capacity of the mth PM in the DCN
L The set of PLs, which is denoted by L = {Lij}.
Lij jth PL on level i in the DCN
lij Capacity of jth PL on level i in the DCN
Gij Subtree under Lij

Vw wth virtual cluster in the set V
Nw Number of VMs in Vw

Bw Bandwidth demand of each VM in Vw

U A vector of the feasible occupation of set V .
f(·) Communication demand of the virtual cluster

and the capacity for each leaf node (PM) is cm. We use Sij

to denote the jth non-leaf node (switch) on the ith level. L
is the set of links (PLs), which is denoted by L = {Lij}.
Lij denotes the jth link on the ith level in the DCN G. The
capacity for each link is lij , and we use Gij to denote the
subtree under the link Lij .

B. Virtual Cluster

The virtual cluster is an abstraction that allows each tenant
to specify both the VMs and per-VM bandwidth demand of
its service [10]. Let V = {Vw} denote the set of virtual
clusters, and each virtual cluster consists of a set of VMs
and one virtual switch. Let Vw denote the wth virtual cluster
in set V , where Vw = 〈Nw, Bw〉. We use |V | to denote the
number of virtual clusters in set V . Nw is the number of VMs
in Vw, and Bw is the bandwidth demand between VMs and
the virtual switch. Let N be the total number of VMs in set
V , where N =

∑|V |
w=1 |Vw|. In this paper, we consider the

virtual cluster abstraction based on the hose model [4]. In the
hose model, each customer specifies a set of endpoints to be
connected with a common endpoint-to-endpoint performance
guarantee [3]. Let f(·) denote communication demand for
virtual clusters, suppose that x VMs on one side and Nw −x
on another side, f(Vw) = min{x,Nw−x} ·Bw. Each virtual
cluster only communicates with the intra VMs, and there is
no communication between inter virtual clusters.

C. Problem Formulation

In cloud computing, elasticity is defined as the degree to
which a system is able to adapt to workload changes by
provisioning and de-provisioning resources in an autonomic
manner [5]. This paper uses the elasticity to measure the
growth potential of virtual clusters in the DCN. Let E denote
the elasticity of the DCN, we use the minimal remaining
resource on each PM to denote the combinational elasticity,
as shown in Equation 1. Our objective is to find a placement
scheme for multiple virtual clusters that supports maximum
elasticity (uniform growth) in both computation and commu-
nication without resorting to reassignment. Let cm and c∗m
denote the maximum space and the used space of the mth PM,
respectively. Let lij and l∗ij denote the maximum bandwidth
and the used bandwidth of the jth link on level i, respectively.

Here, νmw is a boolean variable which is used to indicate
whether the VM of Vw belongs to the PM Cm. For each
virtual request, the total number of VMs is Nw =

∑n
m=0 ν

m
w .

We have the following problem formulation:

maximize E (1)

s.t. E = min
i,j
{1− c∗m

cm
, 1−

l∗ij
lij
} (2)

c∗i =

|V |∑
j=1

νij (3)

c∗i ≤ cm and c∗m ∈ Zn (4)

l∗ij =

k∑
w=1

{min{
∑

Cm∈Gij

νmw , Nw−
∑

Cm∈Gij

νmw }·Bw}

(5)
l∗ij ≤ lij (6)

Equations 1 and 2 show the objective of maximizing the
elasticity. Equation 3 and Equation 4 are constraints on
computation resource, which means the total number of VMs
belonging the PM cannot exceed its capacity cm. Equation 5
and Equation 6 are the constraints on the communication
resource, which means the bandwidth consumption based on
the hose model cannot exceed the link capacity lij .

IV. MULTIPLE VIRTUAL CLUSTER PLACEMENT

In this section, we address the multiple virtual cluster place-
ment problem for the hose model to maximize the elasticity
for the multi-tenant cloud DCN. To solve this problem, we first
convert it to an Integer Linear Programming (ILP) formulation
as shown in the Appendix. Since the numbers of variables and
constraints are large, our problem cannot be efficiently solved
by the simplex or eclipse methods. Therefore, we propose an
efficient scheme based on the Dynamic Programming (DP)
and analyze its optimality and complexity. Furthermore, we
propose a heuristic algorithm that maximizes the elasticity and
guarantees the bandwidth demand as well as lower complexity.

A. Dynamic Programming (DP) based Placement Scheme

In this subsection, we propose a solution using Dynamic
Programming (DP) to find the optimal solution for the binary
tree-structured DCN. The insight of our algorithm is to cut
the DCN into two partitions level by level on each link, and
to the calculation from bottom to up.

1) Maximize the elasticity: We use OPT (G, U) to denote
the optimal occupation state for the set of virtual clusters V
that maximizes the elasticity E of G. Let U be a vector that
contains all possible occupations of VMs for each virtual
cluster, where U = (u1, u2, ..., u|V |). The variable uw in
U is the number of allocated VMs of virtual cluster Vw,
where uw ≤ Nw. As the example shown in Figure 1, there
are two virtual clusters VA and VB with 8 and 4 VMs,
respectively. Vector U = (3, 2) denotes an occupation with
3 VMs of VA and 2 VMs of VB . We cut the tree-structured
DCN with two partitions as shown in Figure 2, which are
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Fig. 2. The optimal substructure with DP of the DCN.

subtree Gh,k and the subtrees excepting Gh,k of G, i.e.,
G\Gh,k. Let OPT ((Gh,k, U

′)) and OPT (G\Gh,k, U −U ′)
be the maximum elasticities under the subtrees Gh,k and
G \ Gh,k with the assignments of vectors U ′ and U − U ′,
respectively. Here, G \ Gh,k denotes the subtrees expecting
Gh,k, and vector U − U ′ denotes an assignment for the
rest VMs. Under the allocation U , we use Ĉ to denote the
PM which holds the minimum value of the elasticity, i.e.,
E = EĈ = OPT (G,V ). Here, EĈ is the elasticity of PM
Ĉ. Obviously, we have EĈ ≤ OPT ((Gh,k, U

′)), and EĈ ≤
OPT (G \Gh,k, U −U ′). The DP process can be recursively
formulated to compute the optimal value as in Equation 7,
which can be discussed under two cases of the optimal elas-
ticity: (i). If Ĉ ∈ Gh,k, we have E = EĈ ≤ OPT (Gh,k, U

′).
Suppose that EĈ < OPT (Gh,k, U

′), we allocate VMs of
vector U ′ to the subtree Gh,k. We have that there is no PM
with elasticity ECm∈Gh,k

smaller than EĈ under the Gh,k. It
is a contradiction with our assumption Ĉ ∈ Gh,k. Thus, we
must have EĈ = OPT (Gh,k, U

′). (ii). If Ĉ /∈ Gh,k, we have
E = EĈ ≤ OPT (G\Gh,k, U −U ′). We find that it the same
as case (i), then we have EĈ = OPT (G \Gh,k, U − U ′).

OPT (G,U)

= max
u′
w≤uw,∀w≤N

min{OPT (Gh,k, U
′), OPT (G\Gh,k, U − U ′)}

(7)

Equation 7 shows the optimal substructure of the multiple
virtual cluster placement problem. Therefore, given the opti-
mal values of the subtrees, the optimal value OPT (G,V ) can
be found by searching for optimal Gh,k. We can use DP to
find the optimal allocation in a given tree, and we propose a
DP-based scheme in Algorithm 1.

2) Algorithm Description: In this section, we present our
virtual cluster placement scheme, which is based on DP for
multi-tenants. We take the tree topology of the DCN G and
the |V | virtual clusters in set V as our inputs. The DCN
occupation state for the set V is our output. The algorithm
traverses the topology tree starting at the leaf nodes (PMs),
and determines the number of VMs that occupied on G of |V |
virtual clusters through cutting the tree into two partitions
level by level until the root. During the traversal process,
for any visited link L at level l, the algorithm records the
elasticities of subtrees and recursive recall on non-leaf nodes.

Algorithm 1 DP Algorithm
Input: DCN topology G, set of virtual clusters V ;
Output: DCN occupation state for set V ;

1: if N ≥
∑

m≤|C| cm then
2: return False;
3: for each leaf node (PM) Cm ∈ C do
4: for each vector U ′ ≤ U do
5: OPT (Cm, U

′)=min{ cm−
∑

uw∈U′ uw

cm
,
l0,j−f(

∑
uw∈U′ uw)

l0,j
};

6: for each cut Sk,l ∈ G \ C from bottom-up do
7: for each vector U ′ ≤ U do
8: OPT (Gk,l, U

′) =
maxU ′′≤U ′{min{OPTi<k(Gi,j , U

′′), OPTi<k(Gk,l\
Gi,j , U

′ − U ′′), li,j−f(
∑

uw∈U′ uw)

li,j
}};

9: return OPT (G,U);

In lines 1 and 2, we first do the feasible checking for the set
of virtual clusters V that whether the total number of VMs
N of set V is beyond the constraint of the PMs capacities.
In lines 3 to 5, the algorithm starts to record the elasticities
at leaf nodes level with consideration of every vector U ′

that can be occupied. U ′ ≤ U denotes that all values of
U ′ are less than or equal to U , where u′w ≤ uw for all
w ≤ |V |. We use OPT (Cm, U

′) to denote the maximum
elasticity of Cm with the occupation U ′, which is equal to
the smaller one between the PM elasticity

cm−
∑

uw∈U′ uw

cm

and the PL elasticity
l0,j−f(

∑
uw∈U′ uw)

l0,j
, i.e., OPT (Cm, U

′)=

min{ cm−
∑

uw∈U′ uw

cm
,
l0,j−f(

∑
uw∈U′ uw)

l0,j
}. For each vector U ′,

if the occupation of VMs based on U ′ satisfies the con-
straints of both computation and communication, the value
of elasticity will be E = OPT (Cm, U

′), otherwise, it will
be E = −∞. In lines 6 to 8, we record the elasticities for
each cut upon non-leaf node Sk,l that considers every vector
U ′ from bottom-up, where Sk,l ∈ G \ C and U ′ ≤ U .
Let OPT (Gk,l, U

′) be the maximum elasticity of subtree
Gk,l with the occupation U ′, which is the occupation with
maximum value in all cases of cuts of Gk,l. The cut of
Gk,l divides it into two parts, subtrees inside or outside
Gi,j . For each cut, the elasticity is the smallest one of
the PM elasticities of two partitions and the PL elastic-
ity. The elasticities of two partitions Gi,j and Gk,l \ Gi,j

are OPTi<k(Gi,j , U
′′) and OPTi<k(Gk,l \ Gi,j , U

′ − U ′′).
Since Gi,j is a subtree of Gk,l, we have i < k. The PL
elasticity is

li,j−f(
∑

uw∈U′ uw)

li,j
. Thus, for each case of cut,

we have min{OPTi<k(Gi,j , U
′′), OPTi<k(Gk,l \Gi,j , U

′ −
U ′′),

li,j−f(
∑

uw∈U′ uw)

li,j
}. In line 9, we return the DCN oc-

cupation state U for the set of virtual clusters V with the
maximum elasticity OPT (G, U).

We find the optimal allocation for G by maintaining the set
of all possible occupations of vector U that can be allocated in
each subtree. The total number of cuts during the DP is related
to the number of links in G, which is

∑h−1
j=1 2j = 2h. For each

partition, since the orientation is changed, we need to reassign



Algorithm 2 Multi-tenant Virtual Cluster Placement
Scheme(MVCPS)
Input: DCN topology G, set of virtual clusters V ;
Output: DCN occupation state for set V ;

1: if N ≥
∑

m≤|C| cm then
2: return False;
3: Calculate the maximum admissible VMs of G;
4: Select the node with the maximum admissible VMs be

the new root;
5: for each level from root to leaf do
6: Hierarchical place the VMs based on the load propor-

tions of each branch;
7: while U 6= 0 do
8: for each branch from left to right do
9: for each vector U ′ ≤ U do

10: if E 6= −∞ under vector U ′ then
11: Place VMs as vector U ′ with minimum band-

width demand by arg minU ′≤U f(U ′);
12: else
13: repeat
14: Adjust VMs in U ′ to right nearest branch;
15: until E 6= −∞;
16: Place VMs as vector U ′ with minimum band-

width demand by arg minU ′≤U f(U ′);
17: Update U = U − U ′;
18: return DCN occupation state for set V ;

the VMs for h−j−1 non-leaf nodes, where h is the height of
the DCN. Since there are |V | virtual clusters, the total number
of possible combinations is prod|V |w=1(uw + 1)h−j . Thus, the
time complexity of Algorithm 1 is O(2h ·

∏|V |
w=1(uw +1)h−j).

B. Multi-tenant Virtual Cluster Placement Algorithm

For the Algorithm 1, the time complexity depends on the
size of feasible vectors for the set of virtual clusters V ,
which can be reduced by some heuristic. In this subsection,
we propose a heuristic algorithm for the multi-tenant virtual
cluster placement. The insight of our heuristic is to identify
a feasible occupation with the proportion of the maximum
admissible loads (VMs) [3] during the tree traversal, and
we greedily choose the placement scheme with increasing
order of the bandwidth demand. The input and output in
Algorithm 2 are the same with Algorithm 1. In lines 1
and 2, we do the same feasible checking for the set of
users as Algorithm 1. In line 3, we calculate the maximum
admissible VMs of G by using the linear algorithm in [3].
The insight of this linear algorithm is to calculate the loads
from different orientations and choose the best one. In line
4, we select the node with the maximum admissible VMs
to be the new root. In lines 5 to 17, we start to place the
VMs from top-to-bottom hierarchically. We first allocate the
VMs depending on the load proportions of each branch. For
each branch from left to right, we search any vector U ′ that
is smaller than U . If vector U ′ is feasible (E 6= −∞), we
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Fig. 3. Data tracing of requesting virtual clusters.

place VMs as vector U ′ with minimum bandwidth demand by
arg minU ′≤U f(U ′). Otherwise, we start to adjust the VMs
in U ′ one by one to the right neighboring branch until we
find a feasible vector for this branch. After that we place
VMs as the reconstructed vector U ′ with minimum bandwidth
demand by arg minU ′≤U f(U ′), and we update the vector
with U = U −U ′. In line 18, we return the DCN occupation
state for the set of virtual clusters V . The time complexity of
Algorithm 2 is O(h ·N ·

∏|V |
w=1(uw + 1)2).

V. EVALUATIONS

In this section, we conduct extensive simulations and exper-
iments to study the elastic virtual cluster placement in multi-
tenant DCNs. These experiments are conducted to evaluate the
performances of the proposed algorithms on both simulation
and real testbed. After presenting the datasets and settings,
the results are shown from different perspectives to provide
insightful conclusions.

A. Real Data Analysis

We first present a few observations on analyzing the public
data of Microsoft Azure [1] in Figure 3, including the de-
ployments and the workload conditions. We first analyze the
data of total requests from the first and third parties in one
week, the distribution is shown in Figure 3(a). During the
timestamps, the total number of requests is fluctuating within
[20, 160]. The lifetimes of VMs from the same request are
distributed in [10, 50] hours (almost 95% of VMs are running
less than 50 hours), as shown in Figure 3(b). It means that,
once the requesting resources by the tenants are satisfied, they
will not release within a short period of time. Then we analyze
the data of CPU cores and the scales of virtual requests at an
hourly granularity. As shown in Figure 3(c), it specifies that
most VMs require few virtual CPU cores (almost 80% of
virtual clusters require 1 or 2 cores). According to the tracing
results, we find that users do not always deploy their VMs in
one-time, and each deployment may grow (and shrink) over
time before it is terminated. Almost 80% of virtual clusters
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Fig. 5. The elasticity for the DCN (k = 8).

require scale 20 VMs [1], as shown in Figure 3(d). Based on
the analysis of real data, we deploy the basic setting of our
simulations.

B. Basic Setting

We simulate a DCN of three-level k-ary tree topology, and
each rack consists of k PMs (k ∈ {6, 8, 10}). The unit of
each PM resource is slotted, which can be easily interpreted
to a real configuration. The capacity of PMs ranges from 0
to 100 slots, and one slot can only hold one VM. Each PM
has a 1Gbps PL to connect to a layer-2 switch, and every ten
layer-2 switches are connected to a core switch with 100Gbps.
The unit bandwidth demand between per-pair of VMs is
B = 1Gbps. We divide the dataset of virtual clusters into two
different categories, [0, 10] and [10, 20], which depends on the
requesting size of each virtual cluster. For each virtual cluster,
it is generated in the ranges randomly. We use 20 as step
length to divide our dataset into 7 groups, which ranges within
[20, 160]. All the settings are based on the data tracing results
in Figure 3. In addition to the proposed scheduling algorithms,
two baseline algorithms are used, VM allocation Algorithm
(VMAA) [6] and Proportion with Physical Combinational
Capacities (PPCC) [3].
• VM allocation Algorithm (VMAA): virtual clusters are

placed one by one, and each virtual cluster is placed so
as to minimize the link resource consumption.

• Proportion with Physical Combinational Capacities
(PPCC): virtual clusters are placed one by one, and each
virtual cluster is placed to maximize the elasticity.

C. Experiment Results

Figures. 4, 5, and 6 present the elasticities for virtual
clusters in which the ranging numbers of the VMs are divided
into two groups [0, 10] and [10, 20], respectively. We use
the same four algorithms (VMAA, PPCC, DP, MVCPS) on
each group of data set and calculate the elasticities for the

20 40 60 80 100 120 140 160
# of total virtual clusters

0

0.2

0.4

0.6

0.8

1

E
la

st
ic

ity
 (

%
)

DP
MVCPS
PPCC
VMAA

(a) # of virtual clusters from 0 to 10.

20 40 60 80 100 120 140 160
# of total virtual clusters

0

0.2

0.4

0.6

0.8

1

E
la

st
ic

ity
 (

%
)

DP
MVCPS
PPCC
VMAA

(b) # of virtual clusters from 10 to 20.

Fig. 6. The elasticity for the DCN (k = 10).

requests that ranging from [20, 160]. Additionally, we have
the following observations: (i). With the higher amount of the
total virtual requests for the DCN, the impact of the algorithms
on the elasticities is greater. As shown in Figures. 4, 5, and
6, the elasticity for the DCNs which belong to the same
group is decreasing with the scaling of amount of virtual
clusters. The reason is that more virtual clusters demand more
resources, which will lead to the increase in the combinational
utilization of the clusters and thus lower the elasticity of the
DCNs. From Figure 5 and Figure 6, since the VMAA focuses
on the demand of communication resource, the performance
of elasticity decreases significantly with the increase of the
scaling of virtual clusters. For the PPCC, the elasticity of
the DCN is not much different when the total amount of
virtual clusters is small, as shown in Figure 6 (b). (ii). For
the same amount of the total virtual requests, a larger size
of the virtual cluster will lead to lower elasticity. As shown
in Figure 6, we can see that the elasticity of the DCN for
virtual clusters with scaling under the range [0, 10] is much
higher than [10, 20]. The distribution of virtual clusters’ sizes
is random, for small-scale DCN, DP can be deployed with
the optimal solution. However, for large-scale DCN, MVCPS
method is more efficient. (iii). When the scale of the DCN is
larger, the impacts of algorithms on the elasticities are higher.
The elasticity depends on the localities of VMs, which means
a good placement scheme can support more virtual clusters
in the larger DCN. Compared with sub-figures (a) and (b) of
Figures. 4, 5, and 6, the elasticity has the same trend with the
increasing amount of PMs in the DCN, which means more
VMs can be supported by the providers.

In summary, compared with VMAA and PPCC, DP and
MVCPS have better performances in elasticity across the
multiple virtual cluster placement. DP can obtain the optimal
solution for virtual clusters, however, the computing time is
extremely high, when either the total amount or the sizes of
virtual clusters are scaling. However, the complexity of the
optimal solution is too large and the computing time will
increase dramatically. Besides, we can observe that MVCPS is
very close to the optimal value. MVCPS has lower computing
complexity, and the average elasticity can reach 89.3% and
88.4% compared with the optimal solution under the ranges
[0, 10] and [10, 20], respectively.

D. Evaluations on Testbed

1) Testbed Configuration: According to the simulation
results, we deploy the realistic transmission experiments on
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TABLE II
DEPLOYMENTS OF THE ALGORITHMS

Algorithms Server 13 Server 14 Server 25 Server 26
VMAA 4A 1A 0 3B
PPCC 2A 0 1A,1B 2A,2B

DP 3B 1A 1A 3A
MVCPS 3A 1A 1A 3B

the real testbed of our lab, whose topology is shown in
Figure 7 (a). The testbed contains two Cisco Catalyst 3560G
switches (8 ports) and three Pica8 P-3297 switches (48 ports).
Each Pica switch connects two 64 bits Dell Power Edge R210
servers, and each server has 2.4 GHz CPU and 4 GB memory.
Each server can hold 4 VMs, and the maximum rate for
per-VM is 0.25Gbps through virtual ports. All servers are
accessible via the connections with Pica8 switches. Grnlntrn
is a controller connected to port 10 on the Cisco switch, which
is constructed by a Dell Power Edge R210 server. The capacity
of every physical link is 1Gbps.

2) Evaluations results: In this subsection, we deploy our
algorithms on the real testbed and focus on the capacities
constraints which comes from the communication demand
scaling in the DCN. We evaluate the performance of the DNC
by monitoring the transmission time for files between VMs. In
order to create a heterogeneous DCN topology, we do the VM
allocation on each server through the controller Grnlntrn.
For each link in the testbed, we use bandwidth control on the
physical ports in the switches Pica8-1, Pica8-2, and Pica8-3.
The topology after configuration is shown in Figure 7, and
the capacities of the PMs are 4, 2, 2, and 4, respectively. We
consider the condition with two virtual clusters (VA and VB),
and the request demands for VMs are 5 and 3, respectively.
The deployments of the VMs under the four algorithms are
shown in Table II. According to Figure 7 (a), we set the
capacities of the links between switched and servers to be
1Gbps, 0.5Gbps, 0.5Gbps, and 1Gbps. All upper links are
1Gbps. For each group, we trace the transmission time of
the files between servers 13, 14, 25, and 26. Servers 13 and
25 serve as the senders, and servers 14 and 26 serve as the
receivers. The size of the file fluctuates from 0.2 GB to 0.5
GB in the unit of 0.1 GB, which denotes the scaling demand
of the communication resource of the VMs.

The results appear in Figure 7 (b). As shown in Figure 7
(b), the transmission time increases with the scaling of the
file size gradually. For each group, the performances of
VMAA and PPCC are nearly the same when the file size

is limited to 0.25Gbps, which is the capacity constraint of
the physical link. However, when the file size becomes larger,
the transmission time of VMAA increases dramatically, as the
purple line shown in Figure 7 (b). The performances of DP
and MVCPS are very close, and the average minor difference
of 4.02% is expected to come from the performances of server
13 and server 26.

VI. CONCLUSION

In this paper, we use elasticity to measure the potential
growth of multiple tenants in terms of both computation and
communication resources. Our objective is to maximize the
elasticity for the Data Center Network (DCN). Specifically, we
consider the multiple virtual cluster placement problem with
the hose model under the constraints. We first formulate this
problem as an Integer Linear Programming (ILP) problem,
and demonstrate how it cannot be solved by the simplex
or eclipse methods based on the large number of variables
and constraints. We then propose an efficient scheme based
on DP and analyze its optimality and complexity. Based on
that we propose a heuristic algorithm, which can realize the
multiple virtual cluster placement on maximizing the elasticity
with bandwidth demands guarantee and lower complexity. Ex-
tensive evaluations demonstrate that our schemes outperform
existing state-of-the-art methods in terms of both elasticity
and efficiency.
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APPENDIX

In the Appendix, we use a linear programming (LP) ap-
proach to maximize the elasticity for set V in G. For each
subtree Gij under the link Lij , let Vm

w =
∑

Cm∈Gij
νmw denote

the total number of VMs in the wth virtual cluster under the
subtree Gij . We convert Equation 6 to Equation 8.

l∗ij =

k∑
w=1

{min{Vm
w , Nw − Vm

w } ·Bw} (8)

Here, we define a intermediate variable ymw , where
ymw = min{Vm

w , Nw − Vm
w } ·Bw (9)

Then Equation 8 will be transfer to

l∗ij =

k∑
w=1

ymw (10)

Since we have Equation 9, it can be transferred to

ymw ≤ Vm
w ·Bw and ymw ≤ (Nw − Vm

w ) ·Bw (11)

Then Equation 8 will be transfer to Equation 12 by combing
Equations 10 and 11

l∗ij ≤
k∑

w=1

Vm
w ·Bw and lij ≤

k∑
w=1

(Nw − Vm
w ) ·Bw (12)

Our formulation will be converted to a ILP formulation:
maximize E (13)

s.t. E ≤ 1− c∗m
cm

and c∗m ≤ cm for ∀m (14)

E ≤ 1−
l∗ij
lij

and l∗ij ≤ lij for ∀i,∀j (15)

l∗ij ≤ lij for ∀i,∀j (16)

l∗ij ≤
k∑

w=1

Vm
w ·Bw (17)

and l∗ij ≤
k∑

w=1

(Nw − Vm
w ) ·Bw for ∀m,∀w (18)

Equation 13 is the same as Equation 1. Equation 14 converts
Equation 2 by separating the minimum constraint of each PM.
Similarly, Equation 17 and Equation 18 convert Equation 6 by
separating the minimum constraint of each link. We suppose
that the DCN is a full binary tree with n leaf nodes, and the
number of links is 2n−2. Equation 14 includes n constraints,
Equation 16 includes 2n − 2 constraints, and Equation 17
includes 2k(2n− 2) constraints. In total, the ILP formulation
has kn variables, and 4(1 + k)(n− 1) + 2 constraints. It has
Θ(kn) variables and Θ(kn) constraints, which means that our
problem cannot be efficiently solved by the simplex or eclipse
methods [25]. This kind of inefficiency motivates us to find
other solutions for the elasticity maximization problem.


