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Abstract—With the ever-increasing amount of data resided
in a cloud, how to provide users with secure and practical
query services has become the key to improve the quality of
cloud services. Fuzzy searchable encryption (FSE) is identified
as one of the most promising approaches for enabling secure
query services, since it allows searching encrypted data by using
keywords with spelling errors. However, existing FSE schemes
are far from the practical use for the following reasons: (1)
Inflexibility. It is hard for them to simultaneously support AND
and OR semantics in a multi-keyword query. (2) Inefficiency.
They require sequentially scanning a whole dataset to find
matched files, and thus are difficult to apply to a large-scale
dataset. (3) Limited robustness. It is difficult for them to resist
the linear analysis attack in the known-background model.
To fix the above problems, this paper proposes matrix-based
multi-keyword fuzzy search (M2FS) schemes, which support
approximate keyword matching by exploiting the indecomposable
property of primes. Specifically, we first present a basic scheme,
called M2FS-B, where multiple keywords in a query or a file
are constructed as prime-related matrices such that the result
of matrix multiplication can be employed to determine the level
of matching for different query semantics. Then, we construct
an advanced scheme, named M2FS-E, which builds a searchable
index as a keyword balanced binary (KBB) tree for dynamic and
parallel searches, while adding random noises into a query matrix
for enhanced robustness. Extensive analyses and experiments
demonstrate the validity of our M2FS schemes.

Index Terms—Cloud computing, secure query services, fuzzy
searchable encryption, multi-semantic query, parallel search.

I. INTRODUCTION

CLOUD computing, providing a wide variety of services
in a pay-as-you-go fashion, is an extremely successful

paradigm of service-oriented computing. With the increas-
ing popularity of cloud-based services, consumers are highly
motivated to outsource their data and computing services to
cloud platforms (e.g., Amazon EC2 and S3, Microsoft Azure,
and Google App Engine) for lower costs, higher reliability,
and better performance. However, studies and past experience
show that cloud platforms may be unreliable, and vulnerable
to various threats that cause data leakage intentionally or
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unwittingly. For security consideration, existing research [1]
suggests encrypting data before outsourcing. The new chal-
lenge of service quality is emerging since it is hard for
traditional encryption methods (e.g., AES and RSA) to support
common cloud services like keyword-based searches.

In order to ensure data privacy without invalidating data
usability, outsourcing searchable encrypted data to cloud
platforms has become a prevalent trend in recent years. As
a typical application, a user who has a cloud service account
uploads encrypted files to a cloud server, and later she gener-
ates an encrypted query (referred to as trapdoor) for certain
keywords to retrieve files of interest. With this trapdoor, the
cloud server can find all matching files without decryption.
The cryptographic tool enabling keyword-based searches over
encrypted outsourced data is referred to as searchable encryp-
tion (SE) [2]–[10]. SE has been widely researched since it
was proposed by Song et al. [2] in 2000. However, most of
them handle exact keyword matching, where the misspelling
of a query keyword will cause an error result to be returned.
While querying the outsourced data, it is a common case that
a user forgets the correct spelling of a keyword, but still wants
to retrieve files of interest as accurately as possible. Therefore,
how to design a SE scheme supporting approximate keyword
matching has become an urgent issue, leading to the concept
of fuzzy searchable encryption (FSE) [11]–[31].

The first effort of building a FSE scheme comes from
Li et al. [11], where edit distance [32] and wildcards are
exploited to construct a predefined fuzzy set covering all
possible keyword misspellings. However, their work permits
only a single keyword in a query and enables the size of
fuzzy set to increase exponentially with the edit distance.
Since then, a few works on multi-keyword FSE [18]–[31] have
been proposed with different trade-offs between security and
performance. Even so, the transformation of multi-keyword
FSE into practical use is far from satisfactory, since they
cannot simultaneously satisfy the following requirements.

The first one is flexibility. Previous schemes are either
focused on conjunctive keyword searches (i.e., AND query se-
mantic), or dedicated to disjunctive keyword searches (i.e., OR
query semantic). And yet, very little research has addressed
simultaneously supporting AND and OR query semantics. For
example, if an FSE scheme supports multiple semantics, a user
can retrieve files matching query 𝜗 = cloud∧ (security∨
privacy) with a single query. Otherwise, she needs to send
two queries 𝜗1 = cloud and 𝜗2 = security ∨ privacy
to the cloud server, which executes each query separately and
then performs the intersecion between the resultant file sets.
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The next is efficiency. To speed up the search process, there
are two kinds of approaches to design a searchable index, the
forward index that establishes keyword lists per file, and the
inverted index that builds file lists per keyword. The inverted
index was traditionally used for single-keyword searches. Most
of existing multi-keyword FSE schemes build forward indexes
to perform sequential searches on a collection of files, resulting
in the search time growing linearly with the total number of
files. With data volume exploding, it is imperative to design
an efficient index structure to facilitate parallel searches on a
large-scale dataset.

Finally comes robustness. As the work in [19], [20], [26],
the secure 𝑘-nearest neighbor scheme [33] (SKNN for short)
that enables index indistinguishability and trapdoor unlinka-
bility1 has become a commonly used encryption tool in FSE.
However, SKNN is vulnerable to the linear analysis attack
launched by an attacker who knows additional background
information about the files and queries. That is, given enough
query/trapdoor pairs, the attacker can recover file keywords by
solving linear equations. Therefore, more sophisticated and
robust designs are required to address the potential privacy
violation problem in SKNN.

In this paper, we propose matrix-based multi-keyword fuzzy
search (M2FS) schemes, which exploit the indecomposable
property of prime numbers to provide enhanced service quality
in cloud computing. Like the work in [11], our M2FS schemes
also apply the wildcard technique and edit distance to quantify
keywords’ similarity. However, our schemes do not require
the construction of a predefined fuzzy set and thus are more
scalable and practical. Our main idea is to encode a file
keyword (resp. a query keyword) into an index vector filled
with primes (resp. a query vector filled with reciprocals of
primes), such that the result of vectors’ inner product is an
integer only when two keywords are similar. For flexibility,
index vectors and query vectors are organized into prime-
related matrices (referred to as query matrix and index matrix,
respectively) so that the result of matrix multiplication can
be used to determine whether a file matches a multi-semantic
query or not. For efficiency, a keyword balanced binary (KBB)
tree is built from a collection of index matrices to achieve
dynamic and parallel searches. For robustness, a query matrix
is extended by random noises before being encrypted with
SKNN, such that the level of the match can be quantified
based on the encrypted matrices, while breaking the linear
relationship between queries and trapdoors. Specifically, we
first focus on achieving flexibility, and present a basic M2FS
scheme, named M2FS-B, which constructs forward indexes
from a collection of index matrices. Then, we construct an
advanced M2FS scheme, named M2FS-E, which applies the
KBB tree and expansive query matrix to achieve flexibility,
efficiency, and robustness simultaneously. Our main contribu-
tions are summarized as follows:

• To the best of our knowledge, this is the first attempt to
devise FSE schemes, which exploit the indecomposable

1Given a set of encrypted indexes/queries, it is hard to decide whether they
are generated for the same keywords or not.

property of prime numbers to achieve practical multi-
keyword fuzzy searches.

• Compared with existing work, our M2FS schemes have
the following merits: (1) Greater flexibility. They allow a
user to choose different semantics in a query as required.
(2) Higher efficiency. They are highly parallelizable and
dynamic. (3) Enhanced robustness. They can resist linear
analyses while achieving index indistinguishability and
trapdoor unlinkability.

• We provide formal definitions and proofs on the correct-
ness and security of our M2FS schemes, and conduct
experiments on a real dataset to verify their feasibility
and practicability.

Paper organization. We formulate our research problem in
Section II before sketching out this work in Section III. After
constructing the basic and advanced M2FS schemes in Sec-
tion IV and V, respectively, we evaluate their performance in
Section VI. Finally, we introduce related work in Section VII,
before concluding this paper in Section VIII.

II. PROBLEM FORMULATION

A. The System and Threat Models

As shown in Fig. 1, our system model consists of three
types of entities: data owner, data user, and cloud server.
• Data owner possesses a large-scale collection of files 𝐹

and decides to outsource them in the encrypted forms 𝐶 for
reduced cost and convenient access. After outsourcing all the
above information, she can perform updates (add/delete) on
ciphertexts on demand by sending an update instruction to the
cloud server. To enable efficient searches, she builds a search-
able index from file collection 𝐹 and a universal keyword set
𝑊 before uploading file ciphertexts and an encrypted index,
{𝐶,I}, to the cloud server. For access authorization, she is
responsible for the secure distribution of key information to
qualified data users.
• Data user provides the cloud server with a trapdoor, 𝑇𝜗 , to

retrieve files matching query 𝜗 after obtaining a warrant from
the data owner. Specifically, the query 𝜗 that supports AND
and OR semantics may contain multiple fuzzy keywords. Upon
receiving search results 𝐶𝜗 from the cloud server, he performs
decryption locally to recover file contents.
• Cloud server centralizes abundant resources and provides

data storage and query services to data owners and data
users, respectively. Upon receiving the store request from the
data owner, it stores the encrypted files and index {𝐶,I} to
appropriate locations. Given a trapdoor 𝑇𝜗 sent by the data
user, it evaluates 𝑇𝜗 on the encrypted index I and returns all
matched ciphertexts 𝐶𝜗 as the search result. Besides, it also
follows the data owner’s commands to perform updates on
{𝐶,I} appropriately.

In our threat model, the cloud server as the only attacker
is considered to be honest but curious (HBC) [27], [34],
[35]. A HBC cloud server will correctly execute instructions
in a predefined protocol, but may try to learn additional
information as much as possible from the messages it has seen.
According to the information available to the cloud server, we
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Fig. 1. System model. Secret keys are transmitted through secure channels
protected by SSL/SSH.

mainly consider the following two models employed by lots
of works on secure searches in clouds [19], [20]:
• Known ciphertext model. The cloud server only knows

the encrypted files and index {𝐶,I} uploaded by the data
owner, the trapdoors T = {𝑇𝜗} submitted by the authorized
data user, and the returned search results C = {𝐶𝜗}. Therefore,
the cloud server can conduct ciphertext-only attacks (COA) in
this model.
• Known background model. In this stronger model,

the cloud server knows additional background information
besides what is available in the known ciphertext model. With
this information, the cloud server can identify certain key-
word/trapdoor pairs, thereby launching linear analysis attacks.

B. Notations and Cryptographic Preliminaries

Let notation 𝜆 ∈ N denote the security parameter throughout
this paper. The set of binary strings of length 𝜂 is denoted
by {0, 1}𝜂 and the set of all finite binary strings by {0, 1}∗.
Notation [[𝜂1, 𝜂2]] represents the set of integers in {𝜂1, . . . , 𝜂2},
which can be abbreviated as [[𝜂2]] when 𝜂1 = 1. Given a
string 𝑠, | |𝑠 | | refers to the number of characters in 𝑠, and 𝑠[𝑖]
refers to its 𝑖-th character. Given a dictionary of 𝛼 characters
S = (𝑠1, . . . , 𝑠𝛼), its 𝑖-th character is denoted by S[𝑖] or 𝑠𝑖 ,
and the concatenation of the first 𝑙 characters is denoted by
⟨𝑠1, . . . , 𝑠𝑙⟩. If 𝑆 is a set, its cardinality is denoted by |𝑆 |. The
most relevant notations are provided as follows:
• 𝐹 = { 𝑓1, . . . , 𝑓𝑛} : A set of 𝑛 files, where each file 𝑓𝑖 is

associated with an identifier 𝑖 for 𝑖 ∈ [[𝑛]]. We assume that file
identifier is independent of file contents, and thus is allowed
to be exposed to the cloud server.
• 𝐶 = {𝑐1, . . . , 𝑐𝑛} : A set of 𝑛 ciphertexts, where 𝑐𝑖 is the

ciphertext of file 𝑓𝑖 for 𝑖 ∈ [[𝑛]].
• 𝑊 = {𝑤1, . . . , 𝑤𝑚} : A universal set of 𝑚 keywords.
• 𝛼 = max(| |𝑤1 | |, . . . , | |𝑤𝑚 | |) : Maximal length of universal

keywords.
• 𝑊𝑖 = {𝑤𝑖,1, . . . , 𝑤𝑖,𝛽𝑖 } : 𝛽𝑖 keywords in file 𝑓𝑖 .
• 𝑊 𝑗 = {𝑤 𝑗 ,1, . . . , 𝑤 𝑗 ,𝛾 𝑗 } : 𝛾 𝑗 keywords in query 𝜗 𝑗 .
• I : An encrypted searchable index.
• 𝑇𝜗 𝑗 : A trapdoor of query 𝜗 𝑗 .
• A = (“𝑎”, . . . , “𝑧”) : A dictionary of 26 English charac-

ters, where its 𝑖-th element is denoted by A[𝑖].
• S = (𝑠1, . . . , 𝑠𝛼) : A dictionary of 𝛼 dummy characters,

where its 𝑖-th element is denoted by 𝑠𝑖 or S[𝑖].
• P = (𝑝1, . . . , 𝑝𝛼) : A sequence of 𝛼 primes, where its 𝑖-th

element is denoted by 𝑝𝑖 or P[𝑖].

Secure 𝑘-Nearest Neighbor Scheme (SKNN) [33]. SKNN
allows efficient computation of the 𝑘-nearest neighbors over
encrypted data and is applied to encrypt our index/query
matrices. Given a vector v, its 𝑖-th element is denoted by v[𝑖].
Given a matrix M, the element in its 𝑖-th row and 𝑗-th column
is denoted by M[𝑖] [ 𝑗], all elements in its 𝑖-th row are denoted
by M[𝑖] [∗], and all elements in its 𝑗-th column are denoted
by M[∗] [ 𝑗]. Let notation M−1 denote the inverse matrix of
M, and let notations “ · ” and “★” denote vector inner product
and matrix multiplication, respectively. SKNN tailored for our
M2FS schemes mainly consists of the following algorithms:
• 𝑠𝑘 ← 𝐺𝑒𝑛𝐾𝑒𝑦(1𝜆) : It takes a security parameter

𝜆 ∈ N as input and generates secret keys 𝑠𝑘 = (M1,M2, s),
where M1,M2 ∈ R𝑑×𝑑 are invertible matrices and s is a 𝑑-
dimensional binary vector. Note that 𝑑 must be larger than 𝜆
for security. To maximize randomness, the number of 0s is
approximately equal to the number of 1s in s.
• P′ ← 𝐸𝑛𝑐𝐼 (P, 𝑠𝑘) : It first splits an index matrix P ∈
R𝛽×𝑑 into two random matrices, (P𝑎,P𝑏) ∈ R𝛽×𝑑 , as follows:
for 𝑘 ∈ [[𝛽]] and for 𝑙 ∈ [[𝑑]], if s[𝑙] = 1, it sets P𝑎 [𝑘] [𝑙] and
P𝑏 [𝑘] [𝑙] to random values such that P𝑎 [𝑘] [𝑙] + P𝑏 [𝑘] [𝑙] =
P[𝑘] [𝑙]; if s[𝑙] = 0, it sets P𝑎 [𝑘] [𝑙] = P𝑏 [𝑘] [𝑙] = P[𝑘] [𝑙].
It then encrypts (P𝑎,P𝑏) and outputs P′ = (P′𝑎,P′𝑏) where
P′𝑎 = P𝑎 ★M1 and P′𝑏 = P𝑏 ★M2.
• Q′ ← 𝐸𝑛𝑐𝑄(Q, 𝑠𝑘) : It first splits a query matrix

Q ∈ R𝑑×𝛾 into two random matrices, (Q𝑎,Q𝑏), as follows:
for 𝑙 ∈ [[𝛾]] and for 𝑘 ∈ [[𝑑]], if s[𝑘] = 1, it sets Q𝑎 [𝑘] [𝑙] =
Q𝑏 [𝑘] [𝑙] = Q[𝑘] [𝑙]; if s[𝑘] = 0, it sets Q𝑎 [𝑘] [𝑙] and
Q𝑏 [𝑘] [𝑙] to random values such that Q𝑎 [𝑘] [𝑙] +Q𝑏 [𝑘] [𝑙] =
Q[𝑘] [𝑙]. It then encrypts (Q𝑎,Q𝑏) and outputs Q′ = (Q′𝑎,Q′𝑏)
where Q′𝑎 = M−1

1 ★Q𝑎,Q′𝑏 = M−1
2 ★Q𝑏 .

• R ← 𝑇𝑒𝑠𝑡 (P′,Q′) : It generates a test matrix R ∈ R𝛽×𝛾
by calculating R = P′𝑎 ★Q′𝑎 + P′𝑏 ★Q′𝑏 . Note that:

R = P′𝑎 ★Q′𝑎 + P′𝑏 ★Q′𝑏
= (P𝑎 ★M1) ★ (M−1

1 ★Q𝑎) + (P𝑏 ★M2) ★ (M−1
2 ★Q𝑏)

= P𝑎 ★Q𝑎 + P𝑏 ★Q𝑏

= P★Q,
(1)

where R[𝑘] [𝑙] = P[𝑘] [∗]★Q[∗] [𝑙] for 𝑘 ∈ [[𝛽]] and 𝑙 ∈ [[𝛾]].
Therefore, SKNN enables the multiplication of the plaintext

matrices to be calculated based on their encrypted forms. Be-
sides, we encrypt files with symmetric key encryption (SKE)
that is secure under chosen-plaintext attacks. We also utilize
keyed pseudorandom functions (PRF), which are polynomial-
time (PPT) computable functions indistinguishable from ran-
dom functions when the key is kept secret.

III. SCHEME OVERVIEW

A. Keywords, Distance, and Matching

Let notation “?” denote a wildcard. Our M2FS schemes
classify keywords into exact keywords and fuzzy keywords.
For an exact keyword, all its characters are chosen from
the dictionary A, but for a fuzzy keyword, it also contains
wildcards, which denotes unsure characters in a keyword. For
example, a data user can issue query containing fuzzy keyword
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“𝑠?𝑐𝑢𝑟𝑖??” to retrieve appropriate files if he is unsure of the
second and the last two characters of the keyword “𝑠𝑒𝑐𝑢𝑟𝑖𝑡𝑦”.

To distinguish query keywords from index keywords, we
denote the set of keywords associated with file 𝑓𝑖 by 𝑊𝑖 =
{𝑤𝑖,1, . . . , 𝑤𝑖,𝛽𝑖 } and the set of keywords in query 𝜗 𝑗 by
𝑊 𝑗 = {𝑤 𝑗 ,1, . . . , 𝑤 𝑗 ,𝛾 𝑗 }, respectively. We assume that set 𝑊𝑖

includes only exact keywords, and that set 𝑊 𝑗 contains both
kinds of keywords. Given a file keyword 𝑤𝑖,𝑘 ∈ 𝑊𝑖 and a query
keyword 𝑤 𝑗 ,𝑙 ∈ 𝑊 𝑗 , their distance, denoted by Δ(𝑤𝑖,𝑘 , 𝑤 𝑗 ,𝑙),
is defined as follows:

Definition 1 (Distance). Let 𝑒1 be the minimal number of
insertions, deletions, and substitutions required to transform
keyword 𝑤𝑖,𝑘 into keyword 𝑤 𝑗 ,𝑙 and let 𝑒2 be the num-
ber of wildcards “?” in substitution operation. We have
Δ(𝑤𝑖,𝑘 , 𝑤 𝑗 ,𝑙) = 𝑒1 − 𝑒2.

In other word, for keywords 𝑤𝑖,𝑘 and 𝑤 𝑗 ,𝑙 , Δ(𝑤𝑖,𝑘 , 𝑤 𝑗 ,𝑙)
is determined by their edit distance excluding the number of
symbol “?”s in keyword 𝑤 𝑗 ,𝑙 . The similarity of two keywords
is determined by their distance defined as follows:

Definition 2 (Similarity). Keywords 𝑤𝑖,𝑘 and 𝑤 𝑗 ,𝑙 are consid-
ered similar, denoted by 𝑤𝑖,𝑘 ≈ 𝑤 𝑗 ,𝑙 , if Δ(𝑤𝑖,𝑘 , 𝑤 𝑗 ,𝑙) = 0.

Therefore, “𝑐𝑙𝑜𝑢𝑑” is similar to “𝑐??𝑢𝑑” and is dissim-
ilar to “𝑐?𝑎𝑢𝑑”, because Δ(“𝑐𝑙𝑜𝑢𝑑”, “𝑐??𝑢𝑑”) = 0 and
Δ(“𝑐𝑙𝑜𝑢𝑑”, “𝑐?𝑎𝑢𝑑”) = 1. In our schemes, a query that
contains multiple fuzzy keywords can support AND and OR
semantics simultaneously. The matching of a query 𝜗 𝑗 and a
file 𝑓𝑖 , denoted by 𝜗 𝑗 ⊲⊳ 𝑓𝑖 , is defined as follows:

Definition 3 (Matching). For an AND query, 𝜗 𝑗 ⊲⊳ 𝑓𝑖 if, for
each keyword 𝑤 𝑗 ,𝑙 ∈ 𝑊 𝑗 there exists a keyword 𝑤𝑖,𝑘 ∈ 𝑊𝑖 such
that 𝑤 𝑗 ,𝑙 ≈ 𝑤𝑖,𝑘 . For an OR query, 𝜗 𝑗 ⊲⊳ 𝑓𝑖 if there exists a
keyword 𝑤 𝑗 ,𝑙 ∈ 𝑊 𝑗 such that 𝑤 𝑗 ,𝑙 ≈ 𝑤𝑖,𝑘 where 𝑤𝑖,𝑘 ∈ 𝑊𝑖 .

That is, for an AND query, 𝜗 𝑗 ⊲⊳ 𝑓𝑖 if each query keyword
𝑤 𝑗 ,𝑙 ∈ 𝑊 𝑗 is similar to a certain file keyword 𝑤𝑖,𝑘 ∈ 𝑊𝑖 .
For an OR query, 𝜗 𝑗 ⊲⊳ 𝑓𝑖 if at least one query keyword
𝑤 𝑗 ,𝑙 ∈ 𝑊 𝑗 is similar to a certain file keyword 𝑤𝑖,𝑘 ∈ 𝑊𝑖 .
For example, given keyword sets 𝑊1 = {“𝑐𝑙𝑜𝑢𝑑”, “𝑏𝑢𝑠”},
𝑊2 = {“𝑐𝑙𝑜𝑢𝑑”, “𝑎𝑝𝑝𝑙𝑒”}, and 𝑊1 = {“𝑐??𝑢𝑑”, “𝑏?𝑠”}, we
have 𝜗1 ⊲⊳ 𝑓1 and 𝜗1 ̸⊲⊳ 𝑓2 for AND queries, but 𝜗1 ⊲⊳ 𝑓1 and
𝜗1 ⊲⊳ 𝑓2 for OR queries.

B. Keyword Balanced Binary Tree (KBB)

Inspired by the work in Xia et al. [4], an index tree T is
constructed as a KBB tree, where each node 𝑢 is defined as:

𝑢 = ⟨𝑛𝑖𝑑, 𝑑𝑎𝑡𝑎, 𝑓 𝑖𝑑, 𝑙𝑐ℎ𝑖𝑙𝑑, 𝑟𝑐ℎ𝑖𝑙𝑑⟩ (2)

where 𝑛𝑖𝑑 is the unique identifier of node 𝑢 in T , 𝑑𝑎𝑡𝑎 is
the data field of node 𝑢, 𝑓 𝑖𝑑 stores the identifier of the file
associated with node 𝑢, and 𝑙𝑐ℎ𝑖𝑙𝑑 and 𝑟𝑐ℎ𝑖𝑙𝑑 are the pointers
to the left and right child of node 𝑢, respectively. Each leaf
node 𝑢 ∈ T is associated with a distinct file 𝑓 ∈ 𝐹. Therefore,
the number of leaf nodes of T equals the number of files 𝑛
in 𝐹, and the height of T is ⌈log 𝑛⌉.

Specifically, if node 𝑢 is a leaf node of T and is associated
with file 𝑓𝑖 , 𝑓 𝑖𝑑 stores the identifier of file 𝑓𝑖 , 𝑑𝑎𝑡𝑎 stores

the information about file keywords 𝑊𝑖 , and both 𝑙𝑐ℎ𝑖𝑙𝑑 and
𝑟𝑐ℎ𝑖𝑙𝑑 are set to null. If node 𝑢 is an internal node of T , 𝑓 𝑖𝑑
is set to null, 𝑑𝑎𝑡𝑎 stores the information about file keywords
associated with its children nodes. The search process is a
recursive procedure upon the index tree T . Given a query
𝜗 𝑗 , the cloud server performs a detection starting from the
root node of T . If a node 𝑢 passes the test, the cloud server
checks all its children nodes; otherwise, the cloud server stops
traversing the subtree rooted at node 𝑢. When this traversal is
over, the cloud server returns all the reached leaves.

C. The Definition of M2FS

Since file privacy can be preserved through standard
SKE, e.g., AES, those algorithms related to file encryp-
tion/decryption are omitted in this work. As far as the query
process is concerned, our M2FS schemes consist of the
following algorithms:
• 𝑆𝐾 ← 𝐼𝑛𝑖𝑡 (1𝜆) : The data owner takes the security

parameter 𝜆 as input and outputs a secret key 𝑆𝐾 .
• I ← 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝐹,𝑊, 𝑆𝐾) : Given the secret key 𝑆𝐾 ,

the data owner builds an encrypted index I based on the file
set 𝐹 and the keyword set 𝑊 .
• 𝑇𝜗 𝑗 ← 𝐺𝑒𝑛𝑇𝑟𝑎𝑝(𝜗 𝑗 , 𝑆𝐾) : Given the secret key 𝑆𝐾 , the

data user creates a trapdoor 𝑇𝜗 𝑗 for query 𝜗 𝑗 .
• 𝐶𝜗 𝑗 ← 𝑆𝑒𝑎𝑟𝑐ℎ(I, 𝑇𝜗 𝑗 ) : The cloud server evaluates the

trapdoor 𝑇𝜗 𝑗 on the encrypted index I and outputs a set of
ciphertexts 𝐶𝜗 𝑗 of files matching query 𝜗 𝑗 .

Definition 4 (Correctness of M2FS). Given the secret key 𝑆𝐾
generated by algorithm 𝐼𝑛𝑖𝑡, the encrypted index I generated
by algorithm 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥, and the trapdoor 𝑇𝜗 𝑗 generated by
algorithm 𝐺𝑒𝑛𝑇𝑟𝑎𝑝, M2FS is correct if, for each ciphertext in
𝐶𝜗 𝑗 output by algorithm 𝑆𝑒𝑎𝑟𝑐ℎ(I, 𝑇𝜗 𝑗 ), corresponding file
matches query 𝜗 𝑗 .

D. Security Definition

Following the approach in [3], we utilize notations history,
view, and trace to define the semantic security of our scheme.
• History: H = (𝐹,𝑊,Q) consists of a file collection 𝐹, a

keyword set 𝑊 , and the query set Q = (𝜗1, . . . , 𝜗𝑡 ) that the
data user wishes to search for. A history reflects the interaction
between the data owner/user and the cloud server.
• View: V = (𝐶,I,T) consists of the encrypted file

set 𝐶, the encrypted index I, and the set of trapdoors
T = (𝑇𝜗1 , . . . , 𝑇𝜗𝑡 ). A view reflects what the cloud server
can actually see.
• Trace of history: 𝑇𝑟 (H) consists of the information about

the history H that can be leaked to the cloud server. Different
threat model causes different search leakages, and the trace
of our schemes will be listed in detail in Section IV and
Section V.

Let Adv be a PPT adversary, and Sim be a PPT simulator.
We consider the following probabilistic experiments:
• RealAdv (𝜆) : The challenger runs 𝐼𝑛𝑖𝑡 (1𝜆) to gen-

erate secret key 𝑆𝐾 . Adversary Adv outputs 𝐹 and 𝑊 ,
and receives {I, 𝐶} from the challenger where I ←
𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝐹,𝑊, 𝑆𝐾) and 𝐶 contains ciphertexts of files
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in 𝐹. Adv makes a polynomial number of queries Q =
(𝜗1, . . . , 𝜗𝑡 ) and for each query 𝜗 𝑗 ∈ Q, Adv receives
a trapdoor 𝑇𝜗 𝑗 from the challenger such that 𝑇𝜗 𝑗 ←
𝐺𝑒𝑛𝑇𝑟𝑎𝑝(𝜗 𝑗 , 𝑆𝐾). Finally, Adv outputs view V = (I, 𝐶,T),
where T = (𝑇𝜗1 , . . . , 𝑇𝜗𝑡 ).
• IdealAdv,Sim (𝜆) : Adversary Adv outputs 𝐹 and 𝑊 . Sim

generates and sends {I, 𝐶} to Adv. Adv makes a polynomial
number of queries Q = (𝜗1, . . . , 𝜗𝑡 ). Given the trace 𝑇𝑟 (H),
Sim returns an appropriate trapdoor 𝑇𝜗 𝑗 for each query 𝜗 𝑗 ∈
Q. Finally, Adv outputs the view V = (I, 𝐶,T), where T =
(𝑇𝜗1 . . . , 𝑇𝜗𝑡 ).
Definition 5 (Semantic security of M2FS). M2FS is semanti-
cally secure if, for all PPT adversaries Adv, there exists a PPT
simulator Sim such that the probability of | Pr[RealAdv(𝜆) =
1] − Pr[IdealAdv,Sim (𝜆) = 1] | is negligible.

IV. THE BASIC M2FS SCHEME

A. Rationale

Before providing the detailed construction, we first intro-
duce the key techniques used in our basic M2FS scheme.

The vector encoding method. The core idea is to encode
the 𝑘-th keyword 𝑤𝑖,𝑘 associated with file 𝑓𝑖 (resp. the 𝑙-
th keyword 𝑤 𝑗 ,𝑙 in query 𝜗 𝑗 ) as an index vector p𝑖,𝑘 ∈ R𝑑
(resp. a query vector q 𝑗 ,𝑙 ∈ R𝑑), subtly filling p𝑖,𝑘 and
q 𝑗 ,𝑙 with specific primes and the reciprocals of those primes,
respectively. With the indecomposable property of primes,
p𝑖,𝑘 · q 𝑗 ,𝑙 , is an integer only when 𝑤𝑖,𝑘 ≈ 𝑤 𝑗 ,𝑙 .

The matrix construction method. For file 𝑓𝑖 that contains
𝛽𝑖 keywords, an index matrix P𝑖 ∈ R𝛽𝑖×𝑑 is constructed, where
the elements in the 𝑘-th row of P𝑖 are set to the elements of
p𝑖,𝑘 , expressed as P𝑖 [𝑘] [∗] ← p𝑖,𝑘 , for 𝑘 ∈ [[𝛽𝑖]]. Similarly,
for query 𝜗 𝑗 that contains 𝛾 𝑗 keywords, a query matrix Q 𝑗 ∈
R𝑑×𝛾 𝑗 is generated, where the elements in the 𝑙-th column of
Q 𝑗 are set to the elements of q 𝑗 ,𝑙 , expressed as Q 𝑗 [∗] [𝑙] ←
q 𝑗 ,𝑙 , for 𝑙 ∈

[[
𝛾 𝑗

]]
.

The way to determine matching. To check whether query
𝜗 𝑗 matches file 𝑓𝑖 or not, P𝑖 ★ Q 𝑗 is calculated yielding a
test matrix R𝑖, 𝑗 ∈ R𝛽𝑖×𝛾 𝑗 where R𝑖, 𝑗 [𝑘] [𝑙] = P𝑖 [𝑘] [∗] ★
Q 𝑗 [∗] [𝑙] = p𝑖,𝑘 · q 𝑗 ,𝑙 for 𝑘 ∈ [[𝛽𝑖]] and 𝑙 ∈

[[
𝛾 𝑗

]]
. According

to Definition 3, for AND queries, 𝜗 𝑗 ⊲⊳ 𝑓𝑖 if each column of
R𝑖, 𝑗 contains at least one integer; for OR queries, 𝜗 𝑗 ⊲⊳ 𝑓𝑖 if
R𝑖, 𝑗 contains at least one integer element. Note that the order
of keywords has nothing to do with the result of matching.
Hence, the keywords associated with each file/query can be
shuffled before the construction of matrices. Furthermore, both
index and query matrices are encrypted with SKNN, which
allows the calculation of matrix multiplication based on their
encrypted forms.

B. Scheme Construction

Let 𝑆𝐾𝑁𝑁 = (𝐺𝑒𝑛𝐾𝑒𝑦, 𝐸𝑛𝑐𝐼, 𝐸𝑛𝑐𝑄,𝑇𝑒𝑠𝑡) be a secure
KNN scheme as described in Section II-B, and let F : {0, 1}𝜆×
{0, 1}∗ → {0, 1}𝜆 be a PRF. Given the maximal length of
keywords 𝛼, and a dictionary of 26 English characters A, the
basic M2FS scheme is constructed as follows:
• 𝑆𝐾 ← 𝐼𝑛𝑖𝑡 (1𝜆) : Given the security parameter 𝜆 ∈ N, the

data owner first runs algorithm 𝑆𝐾𝑁𝑁.𝐺𝑒𝑛𝐾𝑒𝑦 to generate

Algorithm 1 Index Vector Encoding
Input: keyword 𝑤𝑖,𝑘 ∈ 𝑊𝑖 , PRF F’s secret key 𝜅, maximal

length of keywords 𝛼, vectors’ dimension 𝑑, a sequence of
𝛼 primes P = (𝑝1, . . . , 𝑝𝛼), and a dictionary of 𝛼 dummy
characters S = (𝑠1, . . . , 𝑠𝛼)

OutPut: index vector p𝑖,𝑘 ∈ R𝑑
1: if | |𝑤𝑖,𝑘 | | < 𝛼 then
2: pad 𝑤𝑖,𝑘 with ⟨𝑠1, . . . , 𝑠𝛼−| |𝑤𝑖,𝑘 | |⟩
3: for 𝑙 ∈ [[𝑑]] do
4: set p𝑖,𝑘 [𝑙] = 1
5: for 𝑙 ∈ [[𝛼]] do
6: set 𝜎𝑙 = F𝜅 (𝑤 [𝑙])
7: set p𝑖,𝑘 [𝜎𝑙] = p𝑖,𝑘 [𝜎𝑙] × 𝑝𝑙
8: choose 𝜐 ∈ [[𝑑 − 𝛼]] random elements with a value of 1

from p𝑖,𝑘 and fill them with random primes outside P

keys 𝑠𝑘 = (M1,M2, s). She then chooses a sequence of 𝛼
random primes P, and a dictionary of 𝛼 dummy characters
S = (𝑠1, . . . , 𝑠𝛼) such that S ∩ A = ∅. Finally, she chooses a
random 𝜆-bit string 𝜅 as the key of the PRF F, and sets secret
keys 𝑆𝐾 = (𝑠𝑘, 𝜅, P,S).
• I ← 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝐹,𝑊, 𝑆𝐾) : For each file 𝑓𝑖 ∈ 𝐹 that

contains 𝛽𝑖 keywords 𝑊𝑖 = {𝑤𝑖,1, . . . , 𝑤𝑖,𝛽𝑖 }, the data owner
constructs an index matrix P𝑖 ∈ R𝛽𝑖×𝑑 as follows: (1) For
the 𝑘-th keyword 𝑤𝑖,𝑘 in 𝑊𝑖 , she constructs a 𝑑-dimensional
vector p𝑖,𝑘 by running Alg. 1. (2) For 𝑘 ∈ [[𝛽𝑖]] and 𝑙 ∈ [[𝑑]],
she sets P𝑖 [𝑘] [𝑙] = p𝑖,𝑘 [𝑙]. That is, for 𝑘 ∈ [[𝛽𝑖]], she sets
the elements in the 𝑘-th row of matrix P𝑖 to the elements of
vector p𝑖,𝑘 , expressed as P𝑖 [𝑘] [∗] ← p𝑖,𝑘 .

The index matrix is built on top of the index vector
algorithm (Alg. 1) that consists of the following four steps:
(1) Padding. This step pads file keyword 𝑤𝑖,𝑘 with dummy
characters in S to hide its real length. After padding, all
keywords are of uniform length 𝛼. (2) Initialization. This step
constructs a 𝑑-dimensional vector p𝑖,𝑘 where each element is
initialized with 1. (3) Mapping. This step maps primes in P to
appropriate positions of p𝑖,𝑘 . For the 𝑙-th character of keyword
𝑤𝑖,𝑘 , the corresponding prime is 𝑝𝑙 and the corresponding
position is 𝜎𝑙 = F𝜅 (𝑤𝑖,𝑘 [𝑙]). Therefore, p𝑖,𝑘 [𝜎𝑙] is multiplied
by 𝑝𝑙 for 𝑙 ∈ [[𝛼]]. (4) Randomization. This step fills partial
remaining elements of p𝑖,𝑘 with random primes outside P to
add randomness to the results of vector inner products.

Given an index matrix P𝑖 associated with file 𝑓𝑖 , the data
owner runs algorithm 𝑆𝐾𝑁𝑁.𝐸𝑛𝑐𝐼 to generate a pair of
encrypted matrices P′𝑖 = (P′𝑖𝑎 ,P

′
𝑖𝑏
) ∈ R𝛽𝑖×𝑑 . Therefore, an

encrypted index is set as I = {P′1, . . . ,P′𝑛}.
• 𝑇𝜗 𝑗 ← 𝐺𝑒𝑛𝑇𝑟𝑎𝑝(𝜗 𝑗 , 𝑆𝐾) : For query 𝜗 𝑗 associated with

𝛾 𝑗 keywords 𝑊 𝑗 = {𝑤 𝑗 ,1, . . . , 𝑤 𝑗 ,𝛾 𝑗 }, the data user constructs
a query matrix Q 𝑗 ∈ R𝑑×𝛾 𝑗 as follows: (1) For the 𝑙-th
keyword 𝑤 𝑗 ,𝑙 in 𝑊 𝑗 , he constructs a 𝑑-dimensional vector q 𝑗 ,𝑙

by running Alg. 2. (2) For 𝑙 ∈
[[
𝛾 𝑗

]]
and 𝑘 ∈ [[𝑑]], he sets

Q 𝑗 [𝑘] [𝑙] = q 𝑗 ,𝑙 [𝑘]. That is, for 𝑙 ∈
[[
𝛾 𝑗

]]
, it sets the elements

in the 𝑙-th column of matrix Q 𝑗 to the elements of vector q 𝑗 ,𝑙 ,
expressed as Q 𝑗 [∗] [𝑙] ← q 𝑗 ,𝑙 .

The query matrix is built on top of the query vector
algorithm (Alg. 2) that also consists of four steps as those
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Algorithm 2 Query Vector Encoding

Input: keyword 𝑤 𝑗 ,𝑙 ∈ 𝑊 𝑗 , PRF F’s secret key 𝜅, maximal
length of keywords 𝛼, vectors’ dimension 𝑑, a sequence of
𝛼 primes P = (𝑝1, . . . , 𝑝𝛼), and a dictionary of 𝛼 dummy
characters S = (𝑠1, . . . , 𝑠𝛼)

OutPut: query vector q 𝑗 ,𝑙 ∈ R𝑑
1: if | |𝑤 𝑗 ,𝑙 | | < 𝛼 then
2: pad 𝑤 𝑗 ,𝑙 with ⟨𝑠1, . . . , 𝑠𝛼−| |𝑤𝑗,𝑙 | |⟩
3: for 𝑘 ∈ [[𝑑]] do
4: set q 𝑗 ,𝑙 [𝑘] = 1
5: for 𝑘 ∈ [[𝛼]] do
6: if 𝑤 𝑗 ,𝑙 [𝑘] ≠ “?” then
7: set 𝜎𝑘 = F𝜅 (𝑤 𝑗 ,𝑙 [𝑘])
8: set q 𝑗 ,𝑙 [𝜎𝑘 ] = q 𝑗 ,𝑙 [𝜎𝑘 ] × 1/𝑝𝑘
9: choose 𝜐 ∈ [[𝑑 − 𝛼]] random elements with value of 1

from q 𝑗 ,𝑙 and fill them with random integers

of Alg. 1. Specifically, the padding and initialization steps of
Alg. 2 are similar to those of Alg. 1. In contrast to Alg. 1,
its mapping step maps the reciprocals of primes in P to
appropriate positions of q 𝑗 ,𝑙 . For the 𝑘-th character of keyword
𝑤 𝑗 ,𝑙 , this step calculates 𝜎𝑘 = F𝜅 (𝑤 𝑗 ,𝑙 [𝑘]) and multiplies
q 𝑗 ,𝑙 [𝜎𝑘 ] by 1/𝑝𝑘 if 𝑤 𝑗 ,𝑙 [𝑘] ≠“?”, and does nothing otherwise.
Its randomization step replaces random 1 elements of q 𝑗 ,𝑙 with
random integers. Given a query matrix Q 𝑗 for query 𝜗 𝑗 , the
data user runs algorithm 𝑆𝐾𝑁𝑁.𝐸𝑛𝑐𝑄 to generate a pair of
encrypted matrices Q′𝑗 = (Q′𝑗𝑎 ,Q

′
𝑗𝑏
) ∈ R𝑑×𝛾 𝑗 . Therefore, the

trapdoor is set as 𝑇𝜗 𝑗 = Q′𝑗 .
• 𝐶𝜗 𝑗 ← 𝑆𝑒𝑎𝑟𝑐ℎ(I, 𝑇𝜗 𝑗 ) : Given a pair of encrypted

matrices (Q′𝑗𝑎 ,Q
′
𝑗𝑏
) ∈ R𝑑×𝛾 𝑗 in trapdoor 𝑇𝜗 𝑗 , for each pair

of encrypted index matrices (P′𝑖𝑎 ,P
′
𝑖𝑏
) ∈ R𝛽𝑖×𝑑 in index

I, the cloud server runs algorithm 𝑆𝐾𝑁𝑁.𝑇𝑒𝑠𝑡 to generate
a test matrix R𝑖, 𝑗 = P′𝑖𝑎 ★ Q′𝑗𝑎 + P′𝑖𝑏 ★ Q′𝑗𝑏 = P𝑖 ★ Q 𝑗 .
Therefore, R𝑖, 𝑗 is an (𝛽𝑖 × 𝛾 𝑗 )-dimensional matrix, where
R𝑖, 𝑗 [𝑘] [𝑙] = P𝑖 [𝑘] [∗] ★Q 𝑗 [∗] [𝑙] = p𝑖,𝑘 · q 𝑗 ,𝑙 for 𝑘 ∈ [[𝛽𝑖]]
and 𝑙 ∈

[[
𝛾 𝑗

]]
. Finally, the cloud server puts corresponding

ciphertext 𝑐𝑖 into set 𝐶𝜗 𝑗 if either of the following cases
happens: (1) For an AND query 𝜗 𝑗 , R𝑖, 𝑗 has at least one
integer in each column; (2) For an OR query 𝜗 𝑗 , R𝑖, 𝑗 has at
least one integer element.

Remark 1. The randomization step in both Alg. 1 and
Alg. 2 is necessary for hiding the similarity between keywords.
With this step, for two identical file keywords, the generated
index vectors are different, rendering different results of inner
products with a given query vector. Likewise, this step enables
two identical query keywords to have different results of inner
products with a given index vector.

Furthermore, the randomization step is helpful to resist
COA. Given an index vector p𝑖,𝑘 and a query vector q 𝑗 ,𝑙 , the
result of vector inner product can be expressed as p𝑖,𝑘 · q 𝑗 ,𝑙 =
𝛿 + 𝜉, where 𝛿 is a random integer generated by the joint
effect of the randomization step in both algorithms, and 𝜉 is
a random value with the following properties:

(1) If 𝑤𝑖,𝑘 ≈ 𝑤 𝑗 ,𝑙 , 𝜉 ∈ [[𝛼]] denotes the number of distinct
characters in query keyword 𝑤 𝑗 ,𝑙 . Therefore, p𝑖,𝑘 · q 𝑗 ,𝑙 looks
like a random integer leaking nothing to the cloud server.

(2) If 𝑤𝑖,𝑘 0 𝑤 𝑗 ,𝑙 , we consider the simplest case where
the ℎ-th character is different in two keywords. This means
that the reciprocal of primes in q 𝑗 ,𝑙 [𝜎ℎ] cannot be cancelled,
where 𝜎ℎ = F𝜅 (𝑤 𝑗 ,𝑙 [ℎ]). Let 𝑥ℎ and 1/𝑝ℎ denote the value
located at p𝑖,𝑘 [𝜎ℎ] and q 𝑗 ,𝑙 [𝜎ℎ], respectively. Here, 𝜉 can be
rewritten as 𝑦 + 𝑥ℎ

𝑝ℎ
, where 𝑦 relates to the number of identical

characters in two keywords. Since 𝑥ℎ equals 1 or is a random
prime outside P, p𝑖,𝑘 · q 𝑗 ,𝑙 is a random real. While extending
to the case where two keywords have two or more different
characters, more random primes will be introduced, it is more
difficult for the cloud server to obtain valuable information
from the results. Therefore, our vector encoding method can
resist COA.

Remark 2. The calculation reciprocals of primes can in-
volve a loss of precision, thereby impacting search accuracy.
That is, the result of 1/7× 7 may be 1.00001 instead of 1. To
solve this problem, our method is to round up after the 𝑧−th
decimal point, where 𝑧 can be adjusted in experiments.

Remark 3. To support AND and OR semantics simulta-
neously, a query will be transformed into disjunctive normal
form (DNF) or conjunctive normal form (CNF). Taking DNF
as an example, query 𝜗 𝑗 = cl??d∧(s?curi??∨privacy)
can be expressed as 𝜗 𝑗 = (cl??d∧s?curi??) ∨ (cl??d∧
privacy). From 𝜗 𝑗 , we know that a file will be returned
if its keywords are similar with either the first and second
keywords in the query or the first and third keywords in the
query. Therefore, the data user sends the trapdoor 𝑇𝜗 𝑗 as well
as the indicator 𝐼 = {(1, 2)(1, 3)} to the cloud server. For file
𝑓𝑖 ∈ 𝐹, the cloud server first generates a test matrix R𝑖, 𝑗 by
running the 𝑆𝑒𝑎𝑟𝑐ℎ algorithm, and then determines 𝜗 𝑗 ⊲⊳ 𝑓𝑖
if either of the following cases happens: (1) Both the first and
second columns of R𝑖, 𝑗 contain at least one integer; (2) Both
the first and third columns of R𝑖, 𝑗 contain at least one integer.

C. Correctness Analysis
The correctness of our basic M2FS scheme is guaranteed

by the deterministic mapping of the input and output of PRF.
For the sake of clarity, we first assume that a file 𝑓𝑖 or a
query 𝜗 𝑗 contains only one keyword, denoted by 𝑤𝑖 and 𝑤 𝑗 ,
respectively. In this single-keyword setting, the test matrix R𝑖, 𝑗

contains only one element that is equal to p𝑖 · q 𝑗 .
Therefore, the basic M2FS scheme is considered incorrect

if either of the following cases occurs:
Case 1. The result of p𝑖 · q 𝑗 is not an integer if 𝑤𝑖 ≈ 𝑤 𝑗 .
Case 2. The result of p𝑖 · q 𝑗 is an integer if 𝑤𝑖 0 𝑤 𝑗 .
Let U = A ∪ S denote the union of the English alphabet
A and the dummy characters S with U[𝑘] denoting its 𝑘-
th element. For Case 1, a result where p𝑖 · q 𝑗 is not an
integer means that at least one reciprocal in q 𝑗 cannot be
eliminated. Due to the construction of algorithm 𝐺𝑒𝑛𝑇𝑟𝑎𝑝,
q 𝑗 [F𝜅 (U[𝑘])] = 1/𝑝𝑙 means that U[𝑘] is the 𝑙-th character
of 𝑤 𝑗 . If 1/𝑝𝑙 cannot be eliminated, p𝑖 [F𝜅 (U[𝑘])] is set to an
integer that is indivisible by 𝑝𝑙 . According to the construction
of algorithm 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥, it means thatU[𝑘] cannot appear in
the 𝑙-th position of 𝑤𝑖 . Therefore, two keywords are dissimilar.
It contradicts the assumption, and thus Case 1 is untrue.

For Case 2, a result where p𝑖 ·q 𝑗 is an integer means that all
reciprocals in q 𝑗 are eliminated. That is, if q 𝑗 [F𝜅 (U[𝑘])] =
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1/𝑝𝑙 , p𝑖 [F𝜅 (U[𝑘])] is set to an integer that is divisible by
𝑝𝑙 . Due to the construction of the 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 algorithm, it
means thatU[𝑘] will appear in the 𝑙-th position of 𝑤𝑖 . In other
words, two keywords are similar, contradicting the assumption.
Therefore, Case 2 is not true, and our basic M2FS scheme is
correct in the single-keyword setting.

The correctness of the multi-keyword setting can be derived
as follows: From Eq. 1, we know that test matrix R𝑖, 𝑗 is an
(𝛽𝑖×𝛾 𝑗 )-dimensional matrix, where R𝑖, 𝑗 [𝑘] [𝑙] = p𝑖,𝑘 ·q 𝑗 ,𝑙 for
𝑘 ∈ [[𝛽𝑖]] and 𝑙 ∈

[[
𝛾 𝑗

]]
. For an AND query, if R𝑖, 𝑗 has at least

one integer in each column, it means that each keyword in 𝑊 𝑗

can find a similar keyword in 𝑊𝑖 . For an OR query, if R𝑖, 𝑗 has
at least one integer element, it means that at least one keyword
in 𝑊 𝑗 can find a similar keyword in 𝑊𝑖 . This argument agrees
with Definition 3, and our basic M2FS scheme is correct. □

D. Security Proof

Theorem 1. Our basic M2FS scheme is semantically secure
in the known ciphertext model if F is a secure PRF.

The proof can be found in Appendix A.

V. THE ADVANCED M2FS SCHEME

The basic M2FS scheme allows multi-keyword fuzzy search
while simultaneously supporting AND and OR semantics.
However, it has the following drawbacks: (1) It builds the
search index like a forward index, and requires the cloud
server to sequentially scan the whole file collection, result-
ing in 𝑂 (𝑛) search time. (2) It applies SKNN to encrypt
index/query matrices, and thus is vulnerable to linear analyses.
To overcome these shortcomings, the advanced M2FS scheme,
on one hand, builds a tree-based search index over a file
collection to achieve parallel searches; on the other hand, it
achieves semantic security in the known-background model by
constructing expansive query matrices.

A. The Construction of a Tree-based Index

An index tree T is constructed as a KBB tree as illustrated
in Section III-B. Let FID and NID be functions that output
a unique identifier for a file 𝑓 ∈ 𝐹 and a node 𝑢 ∈ T ,
respectively. For each file 𝑓 ∈ 𝐹, the corresponding leaf node
𝑢 ∈ T is constructed with Eq. (3):

𝑢.𝑛𝑖𝑑 = NID(𝑢), 𝑢.𝑑𝑎𝑡𝑎 = PFID( 𝑓 ) , 𝑢. 𝑓 𝑖𝑑 = FID( 𝑓 ),
𝑢.𝑙𝑐ℎ𝑖𝑙𝑑 = 𝑛𝑢𝑙𝑙, 𝑢.𝑟𝑐ℎ𝑖𝑙𝑑 = 𝑛𝑢𝑙𝑙

(3)

where PFID( 𝑓 ) ∈ R𝛽FID( 𝑓 )×𝑑 is an index matrix of file 𝑓 . For
each internal node 𝑣 with left child 𝑣𝑙 and right child 𝑣𝑟 , its
fields are computed as follows:

𝑣.𝑛𝑖𝑑 = NID(𝑣), 𝑣.𝑑𝑎𝑡𝑎 = 𝑣𝑙 .𝑑𝑎𝑡𝑎 ⊙ 𝑣𝑟 .𝑑𝑎𝑡𝑎,
𝑣. 𝑓 𝑖𝑑 = 𝑛𝑢𝑙𝑙, 𝑣.𝑙𝑐ℎ𝑖𝑙𝑑 = 𝑣𝑙 , 𝑣.𝑟𝑐ℎ𝑖𝑙𝑑 = 𝑣𝑟

(4)

In Eq. (4), the data field of node 𝑣 is computed as
𝑣.𝑑𝑎𝑡𝑎 = 𝑣𝑙 .𝑑𝑎𝑡𝑎 ⊙ 𝑣𝑟 .𝑑𝑎𝑡𝑎, where ⊙ denotes element-wise
multiplication operation of two matrices. However, each file
is associated with a different number of keywords, and the
number of rows in each index matrix may be different. Let

Algorithm 3 Index Tree Construction
Input: file collection 𝐹 = { 𝑓1, . . . , 𝑓𝑛}, index matrices
{P1, . . . ,P𝑛}

OutPut: the index tree T
1: initialize two empty sets 𝑁 and 𝑁 ′

2: for each file 𝑓 in 𝐹 do
3: construct a leaf node 𝑢 for 𝑓 with Eq. (3)
4: insert 𝑢 to set 𝑁
5: while |𝑁 | > 1 do
6: while ( |𝑁 | > 3) OR (|𝑁 | is even AND |𝑁 | > 0) do
7: for each pair of nodes 𝑢𝑖 and 𝑢 𝑗 in 𝑁 do
8: generate a parent node 𝑣 with Eq. (4)
9: remove nodes 𝑢𝑖 and 𝑢 𝑗 from 𝑁

10: insert 𝑣 to set 𝑁 ′

11: if |𝑁 | equals 3 then
12: generate a parent node 𝑣 with Eq. (4) for a pair of

nodes 𝑢𝑖 and 𝑢 𝑗 in 𝑁
13: generate a parent node 𝑣′ with Eq. (4) for the parent

node 𝑣 and the last node 𝑢𝑙 in 𝑁
14: remove nodes 𝑢𝑖 , 𝑢 𝑗 , 𝑢𝑙 from 𝑁
15: insert 𝑣′ to set 𝑁 ′

16: replace 𝑁 with 𝑁 ′ and clear 𝑁 ′

17: return the only node left in 𝑁 , namely, the root 𝑣0 of index
tree T

𝛽 = max(𝛽1, . . . , 𝛽𝑛) be the maximal number of keywords
associated with files in 𝐹. To make operation ⊙ reasonable,
each index matrix is expanded to (𝛽 × 𝑑) dimensions by
padding with dummy rows where all elements are set to 1. Let
𝑣.P denote the matrix in the data field of node 𝑣. Therefore,
matrix 𝑣.P ∈ R𝛽×𝑑 is constructed with Eq. (5):

𝑣.P[𝑘] [𝑙] = 𝑣𝑙 .P[𝑘] [𝑙] × 𝑣𝑟 .P[𝑘] [𝑙] (5)

where 𝑘 ∈ [[𝛽]] and 𝑙 ∈ [[𝑑]].
With the above definitions about tree nodes, Alg. 3 con-

structs a KBB tree T in an iterative manner. Given two empty
sets 𝑁 and 𝑁 ′ used to hold the currently processing children
nodes and the newly generated parent nodes, respectively, this
algorithm generates 𝑛 leaf nodes for tree T and puts all of
them into set 𝑁 . Next, this algorithm builds tree T iteratively
from bottom to top in the following way: If |𝑁 | = 1, it outputs
the unique element in 𝑁 as the root of tree T and terminates;
otherwise, it executes lines 7-10. This process will not stop
until either of the following cases happens: (1) If |𝑁 | = 3, it
executes lines 12-15. (2) If |𝑁 | = 0, it executes line 16 and
then goes back to line 5.

Example 1. Provided that the relationship between files
and keywords is as shown in Fig. 2-(a). Given the maximal
length of keywords 𝛼 = 4, random primes P = (3, 5, 7, 11)
and dummy characters S = (“𝐴”, “𝐵”, “𝐶”, “𝐷”), the index
keyword vectors could be constructed as shown in Fig. 2-(b)
according to Alg. 1. In the index vectors, the filled random
numbers are marked in red. Fig. 2-(c) illustrates a KBB tree
T built from file collection 𝐹 = { 𝑓1, 𝑓2, 𝑓3, 𝑓4} according to
Alg. 3, where the sample matrices are shown in Fig. 2-(d). In
this example, the maximal number of keywords is 2, and thus
the matrix of node u4 is padded with one dummy row.
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Fig. 2. Construction process of Keyword Balanced Binary(KBB) tree.

B. The Construction of an Expansive Query Matrix

In the known-background model, the cloud server may ob-
tain certain statistic information, e.g., the keyword frequency
and distribution. With such information, the cloud server can
infer certain keyword/trapdoor pairs. As proven in [36], SKNN
is vulnerable to linear analyses if the number of exposed pairs
is large enough. To illustrate, let us review the process of
generating test matrix R𝑖, 𝑗 ∈ R𝛽×𝛾 𝑗 :

R𝑖, 𝑗 = P′𝑖𝑎 ★Q′𝑗𝑎 + P′𝑖𝑏 ★Q′𝑗𝑏 = P𝑖 ★Q 𝑗 (6)

where there are only 𝛽×𝑑 unknown variables (i.e., the elements
of P𝑖) if query matrix Q 𝑗 are exposed. Thus, the cloud server
can solve linear equations to recover plaintext index matrices
with sufficient query matrix and trapdoor pairs. To resist
such an attack, the advanced scheme expands a query matrix
with random noises so that Eq. (6) holds with a negligible
probability. The main trick is that the random noises tactfully
filled will not impact the correctness of our scheme. That is, for
the expansive query matrix, the integral/non-integral properties
of its elements remain unchanged.

Let 𝜇 ∈ [[2, 𝑑]] be a security parameter determining the
amount of random noises to be added. Given a query matrix
Q 𝑗 ∈ R𝑑×𝛾 𝑗 , Alg. 4 generates an expansive query matrix
Q̂ 𝑗 ∈ R𝑑×(𝜇𝛾 𝑗 ) as follows. Let Q̂ 𝑗 [[𝑥, 𝑦]] be a submatrix
made up of matrix columns Q̂ 𝑗 [∗] [𝑥], . . . , Q̂ 𝑗 [∗] [𝑦]. For
𝑙 ∈

[[
𝛾 𝑗

]]
, this algorithm first randomly scatters the elements

of Q 𝑗 [∗] [𝑙] to submatrix Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]], and then it
fills submatrix Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]] with random numbers.
Specifically, given the value of 𝑙, for 𝑘 ∈ [[𝑑]], this algorithm
places Q 𝑗 [𝑘] [𝑙] at a random position of the 𝑘-th row of
Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]] such that Requirement 1 is satisfied,
and then it fills the remaining elements in the 𝑘-th row of
Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]] with random numbers such that Re-
quirement 2 is satisfied.
• Requirement 1. Each column of Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]]

contains at least one element of Q 𝑗 [∗] [𝑙].

Algorithm 4 Query Matrix Expansion

Input: 𝜇 ∈ [[2 ∼ 𝑑]], query matrix Q 𝑗 ∈ R𝑑×𝛾 𝑗 for query 𝜗 𝑗

OutPut: Expansive query matrix Q̂ 𝑗 ∈ R𝑑×(𝜇𝛾 𝑗 )

1: for 𝑙 ∈
[[
𝛾 𝑗

]]
do

2: for 𝑘 ∈ [[𝑑]] do
3: set Q 𝑗 [𝑘] [𝑙] at a random position of the 𝑘-th row of

Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]] under Requirement 1
4: fill the remaining elements in the 𝑘-th row of

Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]] with random numbers under
Requirement 2

• Requirement 2. The sum of random numbers at the 𝑘-
th row of Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]], denoted as 𝛿𝑘 , is equal to
𝑡𝑘Q 𝑗 [𝑘] [𝑙] where 𝑡𝑘 = 0 or (𝑡𝑘 + 1) is a prime outside P.

Given an index matrix P𝑖 ∈ R𝛽×𝑑 generated for file 𝑓𝑖 and
an expansive query matrix Q̂ 𝑗 ∈ R𝑑×(𝜇𝛾 𝑗 ) generated for query
𝜗 𝑗 , an intermediate matrix R̂𝑖, 𝑗 ∈ R𝛽×(𝜇𝛾 𝑗 ) is obtained by
calculating P𝑖 ★ Q̂ 𝑗 . The test matrix R𝑖, 𝑗 ∈ R𝛽×𝛾 𝑗 is obtained
by merging each 𝜇 columns of R̂𝑖, 𝑗 together as follows: For
𝑘 ∈ [[𝑑]] and 𝑙 ∈

[[
𝛾 𝑗

]]
, we set R𝑖, 𝑗 [𝑘] [𝑙] =

∑𝜇
𝑦=1 R̂𝑖, 𝑗 [𝑘] [(𝑙−

1)𝜇 + 𝑦]. With the test matrix R𝑖, 𝑗 , the matching of file 𝑓𝑖
and query 𝜗 𝑗 can be determined in the same way as the basic
M2FS scheme.

C. Scheme Construction

Given parameters 𝛽 = max(𝛽1, . . . , 𝛽𝑛) and 𝜇 ∈ [[2, 𝑑]], our
advanced M2FS scheme is constructed as follows.
• 𝑆𝐾 ← 𝐼𝑛𝑖𝑡 (1𝜆) : The data owner runs the basic 𝐼𝑛𝑖𝑡

algorithm to generate the secret key 𝑆𝐾 = (𝑠𝑘, 𝜅, P,S).
• I ← 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥(𝐹,𝑊, 𝑆𝐾) : The data owner first gener-

ates a set of index matrices {P1, . . . ,P𝑛} by running the basic
𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 algorithm. Then, it builds a tree-based index T by
running Alg. 3. For each node 𝑢 ∈ T , it encrypts 𝑢.P ∈ R𝛽×𝑑
in the data field by running algorithm 𝑆𝐾𝑁𝑁.𝐸𝑛𝑐𝐼, and
outputs a pair of encrypted matrices 𝑢.P′ = (𝑢.P′𝑎, 𝑢.P′𝑏). The
encrypted index is set as I = 𝑣0, where 𝑣0 is the root node of
tree T .
• 𝑇𝜗 𝑗 ← 𝐺𝑒𝑛𝑇𝑟𝑎𝑝(𝜗 𝑗 , 𝑆𝐾) : The data user first generates

a query matrix Q 𝑗 ∈ R𝑑×𝛾 𝑗 by running the Basic 𝐺𝑒𝑛𝑇𝑟𝑎𝑝
algorithm. Then, it generates an expansive query matrix Q̂ 𝑗 ∈
R𝑑×(𝜇𝛾 𝑗 ) by running Alg. 4. Next, it encrypts query matrix
Q̂ 𝑗 by running algorithm 𝑆𝐾𝑁𝑁.𝐸𝑛𝑐𝑄 and outputs a pair of
encrypted matrices Q̂′𝑗 = (Q̂′𝑗𝑎 , Q̂

′
𝑗𝑏
). The trapdoor is set as

𝑇𝜗 𝑗 = Q̂′𝑗 .
• 𝐶𝜗 𝑗 ← 𝑆𝑒𝑎𝑟𝑐ℎ(I, 𝑇𝜗 𝑗 ) : Given a pair of encrypted ma-

trices (Q̂′𝑗𝑎 , Q̂
′
𝑗𝑏
) ∈ R𝑑×(𝜇𝛾 𝑗 ) in trapdoor 𝑇𝜗 𝑗 , the cloud server

executes detection starting from the root node 𝑣0 of index tree
T . Given a pair of encrypted matrices (𝑣0.P′𝑎, 𝑣0.P′𝑏) ∈ R𝛽×𝑑
in the data field of node 𝑣0, it runs algorithm 𝑆𝐾𝑁𝑁.𝑇𝑒𝑠𝑡 to
calculate an intermediate matrix 𝑣0.R̂ 𝑗 ∈ R𝛽×(𝜇𝛾 𝑗 ) :

𝑣0.R̂ 𝑗 = 𝑣0.P′𝑎 ★ Q̂′𝑗𝑎 + 𝑣0.P′𝑏 ★ Q̂′𝑗𝑏 = 𝑣0.P★ Q̂ 𝑗 (7)

To determine whether node 𝑣0 passes the test or not, it
generates a test matrix 𝑣0.R 𝑗 ∈ R𝛽×𝛾 𝑗 by merging every 𝜇

columns of 𝑣0.R̂ 𝑗 as follows: For 𝑘 ∈ [[𝛽]] and 𝑙 ∈
[[
𝛾 𝑗

]]
, its
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sets 𝑣0.R 𝑗 [𝑘] [𝑙] =
∑𝜇

𝑦=1 𝑣0.R̂ 𝑗 [𝑘] [(𝑙 − 1)𝜇 + 𝑦]. As our basic
M2FS scheme, node 𝑣0 passes the test if each column of 𝑣0.R 𝑗

has at least one integer for an AND query or if 𝑣0.R 𝑗 has at
least one integer element for an OR query. The search process
is a recursive procedure upon the index tree T . If node 𝑣 ∈ T
passes the test, all of its children nodes will be checked. When
this traversal is over, it puts files associated with the reached
leaves into 𝐶𝜗 𝑗 .

D. Correctness Analysis
The main difference from the basic M2FS scheme is that the

advanced version adds algorithms for the constructions of an
index tree and an expansive query matrix. As the correctness
of the basic M2FS scheme has been proven in Section IV-C,
the correctness of our advanced M2FS scheme can be directly
deduced from that of the index tree construction algorithm
(Alg. 3) and the query expansion algorithm (Alg. 4).

Let 𝐿𝑣 = {𝑢} denote a set of leaf nodes which are the
descendants of node 𝑣 in tree T , and let 𝑣.R 𝑗 = 𝑣.P ★ Q 𝑗

denote the test matrix for node 𝑣 and query 𝜗 𝑗 . First, we
demonstrate the correctness of Alg. 3 without consideration
of an expansive query matrix. This algorithm is considered
incorrect if either of the following cases occurs:

Case 1. There is a node 𝑢 in 𝐿𝑣 passing the test of query
𝜗 𝑗 , when node 𝑣 fails the test.

Case 2. All nodes in 𝐿𝑣 fail the test of 𝜗 𝑗 , when node 𝑣
passes the test.

Suppose that node 𝑣 is node 𝑢’s direct ancestor, with node 𝑢
being its left child. In Alg. 3, node 𝑣’s data field is calculated
with Eq. (5). Therefore, we have:

𝑣.R 𝑗 [𝑘] [𝑙] = 𝑣.P[𝑘] [∗] ★Q 𝑗 [∗] [𝑙]

=
∑𝑑

𝑥=1
𝑣.P[𝑘] [𝑥] ×Q 𝑗 [𝑥] [𝑙]

=
∑𝑑

𝑥=1
𝑣𝑟 .P[𝑘] [𝑥] × 𝑢.P[𝑘] [𝑥] ×Q 𝑗 [𝑥] [𝑙]

(8)

where 𝑘 ∈ [[𝛽]], and 𝑙 ∈
[[
𝛾 𝑗

]]
.

For Case 1 where node 𝑢 in 𝐿𝑣 passes the test of query
𝜗 𝑗 , it means that each column of 𝑢.R 𝑗 has an integer ele-
ment for an AND query, and 𝑢.R 𝑗 has at least one integer
element for an OR query. If 𝑢.R 𝑗 [𝑘] [𝑙] is an integer, i.e.,∑𝑑

𝑥=1 𝑢.P[𝑘] [𝑥] × Q 𝑗 [𝑥] [𝑙] is an integer, all reciprocals in
Q 𝑗 [∗] [𝑙] will be cancelled due to the indecomposable property
of primes. Since each element in 𝑣𝑟 .P[𝑘] [∗] is an integer,
𝑣.R 𝑗 [𝑘] [𝑙] is also an integer. Therefore, node 𝑣 passes the
test of query 𝜗 𝑗 and Case 1 is false.

For Case 2 where node 𝑣 passes the test of query 𝜗 𝑗 ,
it means that each column of 𝑣.R 𝑗 has an integer for an
AND query, and 𝑣.R 𝑗 has at least one integer element for
an OR query. Due to the indecomposable property of primes,
if 𝑣.R 𝑗 [𝑘] [𝑙] is an integer, the reciprocal in Q 𝑗 [𝑥] [𝑙] can be
eliminated by either 𝑢.P[𝑘] [𝑥] or 𝑣𝑟 .P[𝑘] [𝑥] for 𝑥 ∈ [[𝑑]].
That is, either node 𝑢 or node 𝑣𝑟 passes the test of query 𝜗 𝑗 ,
rendering Case 2 false. Since the index tree T is constructed
from bottom to top in an recursive way, the correctness of
Alg. 3 is derived.

Next, we will prove the correctness of Alg. 4 by testifying
that the introduced randomness in a query matrix will not im-
pact the integral/non-integral property of results. In other word,

𝑣.R 𝑗 [𝑘] [𝑙] is an integer if and only if 𝑣.P[𝑘] [∗]★Q 𝑗 [∗] [𝑙] is
an integer for 𝑘 ∈ [[𝛽]], and 𝑙 ∈

[[
𝛾 𝑗

]]
. Given the matrix

𝑣.P𝑖 and the expansive query matrix Q̂ 𝑗 , the intermediate
matrix is calculated as 𝑣.R̂ 𝑗 = 𝑣.P★ Q̂ 𝑗 , where 𝑣.R̂ 𝑗 [𝑘] [𝑙] =∑𝑑

𝑥=1 𝑣.P[𝑘] [𝑥] × Q̂ 𝑗 [𝑥] [𝑙] for 𝑘 ∈ [[𝛽]], and 𝑙 ∈
[[
𝜇𝛾 𝑗

]]
. To

obtain the test matrix, we merge every 𝜇 columns of 𝑣.R̂𝑖, 𝑗

by setting 𝑣.R 𝑗 [𝑘] [𝑙] =
∑𝜇

𝑦=1 𝑣.R̂ 𝑗 [𝑘] [(𝑙 − 1)𝜇 + 𝑦], and
infer Eq. (10) based on Requirement 1 and Requirement
2. For 𝑥 ∈ [[𝑑]], 𝑡𝑥 = 0 or (𝑡𝑥 + 1) is a prime that is
outside P, and the result of (𝑡𝑥 + 1)P𝑖 [𝑘] [𝑥] × Q 𝑗 [𝑥] [𝑙] is
an integer only when 𝑣.P[𝑘] [𝑥] × Q 𝑗 [𝑥] [𝑙] is an integer.
Due to the indecomposable property of primes, 𝑣.R 𝑗 [𝑘] [𝑙]
has the same integral/non-integral property as the result of
𝑣.P[𝑘] [∗] ★Q 𝑗 [∗] [𝑙]. Therefore, Alg. 4 is also correct, and
the correctness of our advanced M2FS scheme is proven. □

E. Security Proof

Theorem 2. The SKNN scheme with expansive query matrix
can resist linear analyses.

The proof can be found in Appendix B.

Theorem 3. Our advanced M2FS scheme is semantically
secure in the known background model if F is a secure PRF.

The proof can be found in Appendix C.

F. Discussion

Optimization of index matrices. In the process of
constructing the matrix associated with parent node 𝑣, if
𝑣𝑙 .P[𝑘] [𝑙] and 𝑣𝑟 .P[𝑘] [𝑙] are non-coprime, their common
divisors will be multiplied twice in Eq. (5). To keep the product
value from getting too large, matrix 𝑣.P can be calculated with
Eq. (9) instead: for 𝑘 ∈ [[𝛽]] and 𝑙 ∈ [[𝑑]],

𝑣.P[𝑘] [𝑙] = 𝑣𝑙 .P[𝑘] [𝑙] × 𝑣𝑟 .P[𝑘] [𝑙]∏
𝑝∈L𝑘,𝑙 𝑝

(9)

where L𝑘,𝑙 = {𝑝} is a set of primes that are the common
divisors of 𝑣𝑙 .P[𝑘] [𝑙] and 𝑣𝑟 .P[𝑘] [𝑙]. This makes sure that
each common divisor will be multiplied once.

The impact of parameter 𝜇. The number of columns 𝜇 in
query matrix mainly impacts the performance of algorithms
𝐺𝑒𝑛𝑇𝑟𝑎𝑝 and 𝑆𝑒𝑎𝑟𝑐ℎ in our advanced M2FS scheme. As
shown in Fig. 4-(d) and Fig. 5-(d), the larger the value of 𝜇,
the higher the incurred costs. In terms of security level, even
if 𝜇 = 2, the adversary cannot obtain any useful information
from a single column of an intermediate matrix directly. We
believe that even for this low value of 𝜇, there is a sufficient
measure of security provided.

Parallel and dynamic search. With the tree-based indexes,
the parallel search is executed as follows. Let 𝑃 = {𝜌0, . . . , 𝜌𝑡 }
be a set of 𝑡 available processors in the system. Given query
𝜗 𝑗 , an idle processor 𝜌𝑖 ∈ 𝑃 is chosen to perform searches
starting from the root node 𝑣0 of the index tree. If 𝑣0 passes
the test of 𝜗 𝑗 , its children nodes 𝑣0𝑙 and 𝑣0𝑟 will be traversed.
Specifically, processor 𝜌𝑖 continues to search 𝑣0𝑙 and assigns
another available processor 𝜌 𝑗 ∈ 𝑃 to explore 𝑣0𝑟 . The
above process is recursively applied for 𝑣0’s children nodes



10

𝑣.R 𝑗 [𝑘] [𝑙] =
∑𝜇

𝑦=1
𝑣.R̂ 𝑗 [𝑘] [(𝑙 − 1)𝜇 + 𝑦]

=
∑𝜇

𝑦=1

∑𝑑

𝑥=1
𝑣.P[𝑘] [𝑥] × Q̂ 𝑗 [𝑥] [(𝑙 − 1)𝜇 + 𝑦]

= (
∑𝑑

𝑥=1
𝑣.P[𝑘] [𝑥] × Q̂ 𝑗 [𝑥] [(𝑙 − 1)𝜇 + 1]) + · · · + (

∑𝑑

𝑥=1
𝑣.P[𝑘] [𝑥] × Q̂ 𝑗 [𝑥] [𝑙𝜇])

= 𝑣.P[𝑘] [1] (Q̂ 𝑗 [1] [(𝑙 − 1)𝜇 + 1] + · · · + Q̂ 𝑗 [1] [𝑙𝜇]) + · · · + 𝑣.P[𝑘] [𝑑] (Q̂ 𝑗 [𝑑] [(𝑙 − 1)𝜇 + 1] + · · · + Q̂ 𝑗 [𝑑] [𝑙𝜇])
= 𝑣.P[𝑘] [1] (Q 𝑗 [1] [𝑙] + 𝛿1) + · · · + 𝑣.P[𝑘] [𝑑] (Q 𝑗 [𝑑] [𝑙] + 𝛿𝑑)
= 𝑣.P[𝑘] [1] (Q 𝑗 [1] [𝑙] + 𝑡1Q 𝑗 [1] [𝑙]) + · · · + 𝑣.P[𝑘] [𝑑] (Q 𝑗 [𝑑] [𝑙] + 𝑡𝑑Q 𝑗 [𝑑] [𝑙])
= (1 + 𝑡1)𝑣.P[𝑘] [1] ×Q 𝑗 [1] [𝑙] + · · · + (1 + 𝑡𝑑)𝑣.P[𝑘] [𝑑] ×Q 𝑗 [𝑑] [𝑙]
= 𝑣.P[𝑘] [∗] ★Q 𝑗 [∗] [𝑙] + 𝑋

(10)

until reaching leaf nodes. If the current processor 𝜌𝑖 ∈ 𝑃 is
processing node 𝑣𝑥 that passes the test, but there is no idle
processor available during the search process, then 𝜌𝑖 simply
selects the left child of 𝑣𝑥 to continue, and puts the right child
of 𝑣𝑥 into a waiting queue. Once there is an idle processor, it
pops the first node in the queue to continue the search.

The tree-based index also allows for dynamic updates.
Similar to the work in [7], the insertion/deletion of a file 𝑓
corresponds to the adding/removal of a leaf node 𝑢 in tree T .
The structural update involves the necessary rebalancing, so
that the tree height is maintained to be logarithmic. The update
process is relatively efficient, since each update only causes
the reconstruction of a subtree T𝑢 . Specifically, the data owner
first downloads the involved subtree T𝑢 from the cloud server,
and updates its structure by adding/removing a leaf node. Next,
the data owner re-calculates and re-encrypts the data field of
each node in the subtree and uploads the new subtree T ′𝑢 to
the cloud server. Finally, the cloud server replaces T𝑢 with T ′𝑢
to finish the update process.

VI. EVALUATION

This section will evaluate the performance of our M2FS
schemes in terms of execution time and result accuracy. To
show their effectiveness, we compare our schemes with the
multi-keyword FSE schemes proposed in [19], [20] and [28],
(denoted by BASELINE-1, BASELINE-2 and BASELINE-3,
respectively), because those schemes also utilize SKNN as a
cryptographic tool. As main techniques of their schemes, a
Bloom filter of 8,000 entries and a 2-stable (

√
3, 2, 𝑝1, 𝑝2)-

locality-sensitive hashing (LSH) family are employed to sup-
port 1 difference between keywords. In BASELINE-1, key-
words are first transformed into bi-gram vectors that will be
mapped into Bloom filters by using LSH functions. Then,
SKNN is employed to encrypt Bloom filters, such that the
level of matching can be quantified by computing inner
product between two encrypted Bloom filters. Compared to
BASELINE-1, BASELINE-2 applies a stemming algorithm
and a uni-gram-based keyword transformation method to re-
duce Euclidean distance, and thus is more accurate. Based on
BASELINE-2, BASELINE-3 constructs a balanced binary tree
to improve search efficiency while keeping the same accuracy
with BASELINE-2. Therefore, we conduct comparisons with
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Fig. 3. Comparison of the execution time(𝑚𝑠) at data owner/user side. (a)
The time for generating an index from 𝑛 files. (b) The time for generating a
trapdoor for 𝛾 keywords.

BASELINE-1 and BASELINE-3 for performance, and conduct
comparisons as BASELINE-2 for accuracy, respectively.

A. Parameter Setting

In our M2FS schemes, algorithms 𝐼𝑛𝑖𝑡, 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥, and
𝐺𝑒𝑛𝑇𝑟𝑎𝑝 are run by either the data owner or the data user,
and the relevant experiments are conducted on a local machine
running the Windows 10 Enterprise operating system with an
Intel Core i5 CPU running at 3.20GHz and 16GB memory.
To simulate the 𝑆𝑒𝑎𝑟𝑐ℎ algorithm run by the cloud server, the
relevant experiments are tested on a server with two Intel(R)
Xeon(R) CPU E5-2620 Processors (2.0 GHz), which has 16
processor cores and supports 16 parallel threads. The programs
implemented in Java are evaluated on a real dataset, Enron
Email Data Set2, which contains 30109 emails sent by about
150 different users.

To validate the feasibility of our schemes, a file collection
𝐹 is constructed by randomly selecting 𝑛 ∈ [[5000, 30000]]
files from this dataset, where each file 𝑓𝑖 is associated with
𝛽𝑖 ∈ [[5, 25]] keywords. The number of universal keywords is
𝑚 ∈ [[59706, 449703]], where the maximal length of keywords
is 𝛼 = 30. The data user will query with 𝛾 ∈ [[5, 25]] fuzzy
keywords, where each fuzzy keyword contains 𝜑 ∈ [[2, 5]]
symbol “?”s. To generate a fuzzy query, we randomly choose
𝜑 characters from a keyword and replace them with symbol
“?”. For security consideration, the dimension of vectors 𝑑 is

2https://www.cs.cmu.edu/∼./enron/
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Fig. 4. Comparison of the execution time(𝑚𝑠) for AND queries at cloud server side. (a) The time for searching 𝑛 files with fixed values 𝛾 = 5, 𝜑 = 2 and
𝜇 = 2. (b) The time for searching 𝛾 keywords with fixed values 𝑑 = 128, 𝑛 = 10000, 𝜑 = 2 and 𝜇 = 2. (c) The search time of our M2FS schemes under
different 𝜑 with fixed values 𝑑 = 128, 𝑛 = 10000, 𝛾 = 5 and 𝜇 = 2. (d) The search time of M2FS-E under different 𝜇 with fixed values 𝑑 = 128, 𝑛 = 10000,
𝛾 = 5, and 𝜑 = 2. (e) The search time of M2FS-E under different 𝑡 with fixed values 𝑑 = 128, 𝑛 = 10000, 𝛾 = 5 and 𝜑 = 2.
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Fig. 5. Comparison of the execution time(𝑚𝑠) for OR queries at cloud server side. (a) The time for searching 𝑛 files with fixed values 𝛾 = 5, 𝜑 = 2 and
𝜇 = 2. (b) The time for searching 𝛾 keywords with fixed values 𝑑 = 128, 𝑛 = 10000, 𝜑 = 2 and 𝜇 = 2. (c) The search time of our M2FS schemes under
different 𝜑 with fixed values 𝑑 = 128, 𝑛 = 10000, 𝛾 = 5 and 𝜇 = 2. (d) The search time of M2FS-E under different 𝜇 with fixed values 𝑑 = 128, 𝑛 = 10000,
𝛾 = 5 and 𝜑 = 2. (e) The search time of M2FS-E under different 𝑡 with fixed values 𝑑 = 128, 𝑛 = 10000, 𝛾 = 5 and 𝜑 = 2.

set as {128, 256} and the number of columns 𝜇 in an expansive
query matrix is set as [[2, 𝑑]]. To minimize deviation, each
simulation is run at least 100 times to obtain the average value.

B. Efficiency

We only consider the most expensive operation in both
M2FS-B and M2FS-E, i.e., the calculation of matrix multi-
plication. Let us start with analyzing the computation costs
of M2FS-B. The basic 𝐼𝑛𝑖𝑡 algorithm generates two invertible
matrices M1,M2 ∈ R𝑑×𝑑 as keys, the complexity of which
is 𝑂 (𝑑2). For file 𝑓𝑖 ∈ 𝐹 containing 𝛽𝑖 keywords, the basic
𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 algorithm generates a pair of index matrices
P′𝑖 = (P′𝑖𝑎 ,P

′
𝑖𝑏
) ∈ R𝛽𝑖×𝑑 , resulting in a complexity 𝑂 (𝛽𝑖 × 𝑑2).

Given a collection of 𝑛 files, this algorithm builds a forward
index with complexity 𝑂 (∑𝑛

𝑖=1 𝛽𝑖×𝑑2). For a query containing
𝛾 keywords, the basic 𝐺𝑒𝑛𝑇𝑟𝑎𝑝 algorithm outputs a pair of
query matrices Q′𝑗 = (Q′𝑗𝑎 ,Q

′
𝑗𝑏
) ∈ R𝑑×𝛾 , the complexity of

which is 𝑂 (𝛾 × 𝑑2). Given P′𝑖 and Q′𝑗 , the basic 𝑆𝑒𝑎𝑟𝑐ℎ
algorithm calculates matrix multiplication to generate a test
matrix R𝑖, 𝑗 ∈ R𝛽𝑖×𝛾 with a complexity 𝑂 (𝛽𝑖 × 𝛾 × 𝑑). To find
all matched files, this algorithm needs to evaluate the query on
each file in 𝐹, and thus the complexity is 𝑂 (∑𝑛

𝑖=1 𝛽𝑖 × 𝛾 × 𝑑).
M2FS-E as an improved version differs from M2FS-B in the

following aspects. First, the advanced 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 algorithm
needs to build a KBB tree from a collection of 𝑛 files, the
complexity of which is 𝑂 (𝑛× 𝛽×𝑑2), where 𝛽 is the maximal
number of keywords associated with files in 𝐹. Second, the ad-
vanced 𝐺𝑒𝑛𝑇𝑟𝑎𝑝 algorithm outputs a pair of expansive query
matrices Q̂′𝑗 = (Q̂′𝑗𝑎 , Q̂

′
𝑗𝑏
) ∈ R𝑑×(𝜇𝛾) for a query containing 𝛾

keywords, the complexity of which is 𝑂 (𝜇 × 𝛾 × 𝑑2). Finally,

the advanced 𝑆𝑒𝑎𝑟𝑐ℎ algorithm traverses the KBB tree-based
index and generates an intermediate matrix 𝑣.R̂ 𝑗 ∈ R𝛽×(𝜇𝛾)
for each tree node 𝑣. Therefore, the sequential search time is
𝑂 (log 𝑛×𝛽×𝜇×𝛾×𝑑) and a parallel search can be achieved in
𝑂 ( 𝑟𝑡 × log 𝑛× 𝛽× 𝜇×𝛾×𝑑), where 𝑟 is the number of matched
files and 𝑡 is the number of processors. If 𝑡 is sufficiently large,
the parallel search time is even less than the optimal sublinear
search time 𝑂 (𝑟).

Fig. 3-Fig. 5 show the comparison results in terms of
efficiency among our M2FS schemes, BASELINE-1, and
BASELINE-3. Note that key generation is a one-time cost
(about 73ms for 𝑑 = 256 in our schemes and 2842s in
BASELINE-1/BASELINE-3, respectively), and thus the re-
lated experiment results are omitted in comparisons. For
generating encrypted indexes, all schemes apply SKNN for
encryption. However, BASELINE-1 needs to calculate LSH
functions to generate 𝑛 Bloom filters of 8000 entries, and
BASELINE-3 requires additional calculation of (𝑛−1) Bloom
filters to construct tree-based index. M2FS-B requires only
matrix multiplication to generate 𝑛 index matrices of (𝛽𝑖 × 𝑑)
dimensions, and M2FS-E needs to build a KBB tree in addition
compared to M2FS-B. Since 𝑑 is much smaller than the size
of Bloom filters, our M2FS schemes are much more efficient
in general. For example, in Fig. 3-(a), for building indexes
from 𝑛 = 25000 files, BASELINE-1 and BASELINE-3 cost
about 2255s and 4465s, respectively, but M2FS-B and M2FS-
E (when 𝑑 = 128) incur only about 28s and 155s, respectively.
The process of generating trapdoors is similar. As shown in
Fig. 3-(b), the trapdoor generation time of BASELINE-1 and
BASELINE-3 are almost same duo to the identical procedure,
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Fig. 6. The accuracy of our M2FS schemes. (a) Precision for AND queries of 𝛾 keywords. (b) Recall for AND queries of 𝛾 keywords. (c) Precision for OR
queries of 𝛾 keywords. (d) Recall for OR queries of 𝛾 keywords. (e)Accuracy impacted by parameter 𝜇 with 𝛾 = 10 and 𝜑 = 5.

M2FS-B costs the least time, and BASELINE-1 costs the most
time. For example, to generate a trapdoor containing 𝛾 = 10
keywords, BASELINE-1 costs about 198ms, BASELINE-3
costs about 194ms, but M2FS-B (when 𝑑 = 128) and M2FS-
E (when 𝜇 = 10 and 𝑑 = 128) incur about 4ms and 11ms,
respectively. However, the larger value of 𝜇, the higher cost of
generating a trapdoor in M2FS-E. For example, when 𝑑 = 128,
the execution time increases from 7ms to 17ms for generating
20 keywords, as 𝜇 increases from 2 to 10.

The results of search time for AND queries and OR queries
are shown in Fig. 4 and Fig. 5, respectively. For all schemes,
the search time is increasing as the number of documents 𝑛
grows. In terms of search speed, M2FS-E supporting parallel
processing is faster than M2FS-B when using enough proces-
sors. For example, in Fig. 4-(a), when 𝑑 = 128, given 𝑡 = 16
available processors, the execution time for searching 𝛾 = 5
keywords over a collection of 𝑛 = 25000 files in M2FS-B and
M2FS-E is 1515ms and 47ms, respectively. As for M2FS-E,
AND queries will prune more subtrees than OR queries while
traversing the KBB tree. Therefore, OR queries consume more
execution time under the same conditions. For example, when
𝑑 = 128, 𝜑 = 2, 𝜇 = 2 and 𝑡 = 16, the execution time for
searching 𝛾 = 5 keywords over a collection of 𝑛 = 20000
files is 33ms (in AND queries) and 142ms (in OR queries),
respectively. Compared with BASELINE-1, BASELINE-3 that
uses a tree-based index incurs less search time. Compared
with the baseline schemes, M2FS-B and M2FS-E incur less
execution time when the number of query keywords 𝛾 is small.
For example, in Fig. 4-(b), when 𝛾 = 5, BASELINE-1 (resp.
BASELINE-3 ) costs about 755ms (resp. 717ms) to search
𝑛 = 10000 files, while M2FS-B and M2FS-E (𝜇 = 2 and 𝑡 = 8)
cost only about 653ms and 32ms, respectively. However, the
search complexity of M2FS-B and M2FS-E increases as 𝛾
increases. For example, in Fig. 5-(b), when 𝑛 = 10000, 𝜇 = 2
and 𝑡 = 8, the search cost of M2FS-B (resp. M2FS-E) increases
from 673ms to 2605ms (resp. from 152ms to 1245ms), while
𝛾 ranges from 5 to 25. In M2FS-E, the complexity of both
AND and OR queries is positively impacted by the values of
𝛾 and 𝜇, but negatively impacted by the value of 𝑡. Besides,
the complexity of OR queries is positively impacted by the
values of 𝜑. For example, in Fig. 5-(c), given 𝑛 = 10000 files,
when 𝜇 = 2, 𝛾 = 5 and 𝑡 = 4, the search time grows from
313ms to 1003ms as 𝜑 increases from 2 to 5 for OR queries,
but the trend of AND queries time is basically unchanged in
Fig. 4-(c); given 𝑛 = 10000 files, when 𝛾 = 5 and 𝑡 = 16,

the search time of AND queries grows from 56ms to 1795ms
as 𝜇 increases from 5 to 250 in Fig. 4-(d), and when 𝛾 = 5,
𝜑 = 2 and 𝜇 = 2, the search time of OR queries decreases from
1508ms to 76ms as 𝑡 increases from 1 to 16 in Fig. 5-(e).

C. Accuracy

The accuracy is measured by the widely used performance
metrics, precision and recall, denoted as 𝜖𝑝 and 𝜖𝑟 , respec-
tively. Let 𝑡𝑝 , 𝑓𝑝 , and 𝑓𝑛 denote true positive, false positive,
and false negative, respectively. We have 𝜖𝑝 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑝)
and 𝜖𝑟 = 𝑡𝑝/(𝑡𝑝 + 𝑓𝑛). Here, if 𝜗 𝑗 ⊲⊳ 𝑓𝑖 and 𝑐𝑖 is in the search
results 𝐶𝜗 𝑗 , a true positive 𝑡𝑝 is yielded; if 𝜗 𝑗 ̸⊲⊳ 𝑓𝑖 and 𝑐𝑖
is in the search results 𝐶𝜗 𝑗 , a false positive 𝑓𝑝 is yielded; if
𝜗 𝑗 ⊲⊳ 𝑓𝑖 and 𝑐𝑖 is not in the search results 𝐶𝜗 𝑗 , a false negative
𝑓𝑛 is yielded.

The loss of accuracy is caused by precision loss in the
calculation of reciprocals of primes. To determine whether a
value is an integer or not, we round up after the 𝑧-th decimal
point, where 𝑧 ∈ [[3, 10]]. The reason is that a large portion of
fractional numbers, e.g., 3.000459, will be rounded to integers
when the value of 𝑧 is small, and this increases the rate of false
positives 𝑓𝑝 . When the value of 𝑧 is large, a large portion
of fractional numbers, e.g., 3.000000007, will be rounded to
reals, increasing the rate of false negatives 𝑓𝑛. To obtain a
reasonable value for 𝑧, we evaluate the accuracy of our M2FS
schemes under different values of 𝑧, and find that 𝑧 = 6 enables
the highest accuracy.

With the fixed 𝑧 = 6 and 𝑑 = 128, we evaluate the accuracy
of our M2FS schemes under different settings of 𝜑, 𝛾, and 𝜇.
From Fig. 6-(e), we know that 𝜇 has only a minor impact on
the accuracy of M2FS-E. However, 𝜑 and 𝛾 exert a tremendous
influence on the accuracy of our M2FS schemes. In particular,
the larger 𝜑, the higher accuracy of AND queries and OR
queries. For example, given an AND query containing 𝛾 = 5
keywords, both precision and recall of M2FS-B increase from
96% to 97% and from 98% to 99%, respectively, as 𝜑 increases
from 2 to 5; given an OR query containing 𝛾 = 5 keywords,
when 𝜇 = 2, both precision and recall of M2FS-E increase
from 93% to 96% and from 95% to 97%, respectively, as 𝜑
increases from 2 to 5. The reason is that a larger 𝜑 implies
less reciprocals of primes in a query matrix, incurring a minor
loss of precision.

Furthermore, an increase of 𝛾 in AND queries causes an
increase of precision or a decrease of recall. For example,
when 𝜑 = 2, precision of M2FS-B increases from 94% to
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TABLE I
COMPARISON OF MULTI-KEYWORD FSE SCHEMES

Parallel Search Flexibility Search Time Communication Cost Storage Cost
BASELINE-1 [19] × ✓ 𝑂 (𝑛 × 𝑙) 𝑂 (𝑙) 𝑂 (𝑛 × 𝑙)
BASELINE-2 [20] × ✓ 𝑂 (𝑛 × 𝑙) 𝑂 (𝑙) 𝑂 (𝑛 × 𝑙)

EliMFS-E [26] × × 𝑂 ( |𝐹 (𝑤1) | × 𝑙) 𝑂 (𝑙) 𝑂 (∑𝑚
𝑖=1 |𝐹 (𝑤𝑖) | × 𝑙)

BASELINE-3 [28] × ✓ 𝑂 (𝑟 × log 𝑛 × 𝑙) 𝑂 (𝑙) 𝑂 (𝑛 × 𝑙)
M2FS-B × ✓ 𝑂 (∑𝑛

𝑖=1 𝛽𝑖 × 𝛾 × 𝑑) 𝑂 (𝛾 × 𝑑) 𝑂 (∑𝑛
𝑖=1 𝛽𝑖 × 𝑑)

M2FS-E ✓ ✓ 𝑂 ( 𝑟𝑡 × log 𝑛 × 𝛽 × 𝜇 × 𝛾 × 𝑑) 𝑂 (𝜇 × 𝛾 × 𝑑) 𝑂 (𝑛 × 𝛽 × 𝑑)
𝑛 = |𝐹 | is the number of files, |𝐹 (𝑤𝑖) | is the number of files matching a keyword 𝑤𝑖 ∈ 𝑊 , 𝑙 is the length of Bloom filter, 𝑚 = |𝑊 | is
the total number of keywords in 𝑊 , 𝛽𝑖 is the number of keywords for file 𝑓𝑖 ∈ 𝐹, 𝛽 is the maximal number of keywords associated with
files in 𝐹, 𝛾 is the number of keywords in a query, 𝑑 is the dimension of index/query vector of M2FS, (𝑑 ≪ 𝑙 shown in our experiments),
𝜇 ∈ [[2, 𝑑]] is a security parameter determining the amount of random noises to be added, 𝑟 is the number of matched files for the given 𝛾
keywords, and 𝑡 is the number of processors.

100% and recall decreases from 100% to 96% as 𝛾 increases
from 2 to 10. This is because a larger 𝛾 implies a larger number
of columns in the test matrix, lowering the probability of
turning non-integers of each column to integers (a lower 𝑓𝑝),
but increasing the probability of turning integers in one column
to non-integers (a higher 𝑓𝑛). Besides, M2FS-E may filter out
some matched files, this might also lead to a decrease of recall
for AND queries. Then, an increase of 𝛾 in OR queries causes
an increase of precision and recall. For example, when 𝜇 = 2
and 𝜑 = 5, both precision and recall of M2FS-E increase from
95% to 99% and from 93% to 99%, respectively, as 𝛾 increases
from 2 to 10. This is because a larger 𝛾 implies a larger number
of matched files (a higher 𝑡𝑝).

Meanwhile, we compare the accuracy between our scheme
and BASELINE-2 that supports AND/OR queries by changing
a threshold value. From the comparison results, we know that
our M2FS scheme is much more accurate than BASELINE-
2 in precision under different parameter settings. As for the
recall rate, BASELINE-2 usually sends back the top-𝐾 result
files instead of all the relevant files. Therefore, the recall of
BASELINE-2 is relatively low, and will not be shown in the
comparison results.

VII. RELATED WORK

SE allows a user to retrieve data of interest in a privacy-
preserving way, and it has been an active research filed
for securing cloud services in recent years. Song et al. [2]
proposed the first SE scheme, where the search cost grew
linearly with the size of the dataset. As a seminal work,
Curtmola et al. [3] provided a rigorous security definition for
SE and built an inverted index to achieve the optimal search
time 𝑂 ( |𝐹 (𝑤) |), where |𝐹 (𝑤) | is the number of files matching
a query keyword 𝑤. Subsequently, abundant works have been
proposed to provide various functionalities [4]–[6], dynamic
update [7], [8], and verifiability [9], [10]. While these works
provide solutions with different trade-offs among security and
performance, most of them only support exact match. In cloud
computing, a user may want to retrieve files as accurately
as possible even if she is unsure of the exact spelling of a
query keyword. Therefore, FSE with the feature of supporting
approximate keyword matching is especially important for
improving the service quality of cloud computing.

A. Single-Keyword FSE

Li et al. [11] proposed the first single-keyword FSE scheme,
which quantified the similarity of keywords with edit distance.
The shortcoming of their scheme was the large index size
which increased exponentially with the edit distance differ-
ence. To reduce the index size, Liu et al. [12] proposed a
dictionary-based fuzzy set construction that limited the scope
of fuzzy keywords. Boldyreva et al. [13] improved the security
of [11] by revealing only pairwise neighbor relationships
instead of neighbor sets. However, all these schemes required a
predefined dictionary, and thus making it difficult to perform
updates on a file collection. The LSH function [37], which
returns records within a distance of a given query with a
high probability, is a useful tool for fast similarity search.
Kuzu et al. [14] was the first to apply the LSH function
on the Bloom filter [38] to support efficient fuzzy keyword
searches. In their scheme, LSH-based Bloom filters were
treated as keywords and an encrypted inverted index was
constructed for sublinear search time. To reduce space and
communication cost, the work in [15], [16] leveraged a set
of advanced hash-based algorithms including multiple-choice
hashing, cuckoo hashing, and all-pairs LSH functions for
compact indexes and trapdoors. Yuan et al. [17] improved
the security of collision counting LSH functions by hiding
frequency of queries. However, the above FSE schemes sup-
port only single-keyword searches, which usually return results
in a coarse-grained fashion. Obviously, multi-keyword FSE
schemes, especially those supporting multi-semantic queries,
can efficiently improve user experience.

B. Multi-Keyword FSE

Chuah et al. [18] transformed multi-keyword into a single
keyword through pre-defined phrases, but rendered the index
size to increase with the edit distance. Wang et al. [19] encoded
keywords as bi-grams and quantified keywords similarity
based on Euclidean distance. The multi-keyword fuzzy search
function was achieved by forward indexes built based on a
collection of LSH-based Bloom filters. To improve search
accuracy, Fu et al. [20] developed a keyword transformation
method so that keywords with the same root could be queried
using a stemming algorithm. Wang et al. [21] proposed a
GPSE scheme that allowed users to query by using generalized
wildcard-based string patterns. The construction of Ref. [22]
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is based on homomorphic encryption rather than Bloom filter
and hence eliminates the false probability caused by Bloom
filter. The main drawback of these schemes [19]–[22] is that
the search time is linear with the number of files in the dataset.
To improve search efficiency, Moataz et al. [23] employed
letter orthogonalization to allow testing of string membership
by computing inner products. Hahn et al. [24] transformed
the problem of secure substring search into range queries
that could be answered in an efficient way. Shao et al. [25]
constructed a keyword-based radix tree for fast execution
time. Liu et al. [26] proposed a two-stage index structure that
enabled the search time to be independent of file set size.
However, the above schemes [23]–[26] supported only single
semantic in sequential searches. To enrich the search patterns,
Ding et al. [27] proposed a multi-keyword top-𝐾 similarity
search scheme based on the idea of partition. Zhong et al. [28]
constructed a balanced binary tree on the basis of [20] to
support efficient and dynamic top-𝐾 search. Fu et al. [29]
exploited multi-dimension index tree structure to implement
logic query. Ananthi et al. [30] proposed a fuzzy logic-
based semantic search. However, the above schemes [27]–[30]
never consider the problem of parallel searches. Our previous
work [31] constructed a wildcard-based multi-keyword fuzzy
search (WMFS) scheme based on the indecomposable property
of prime numbers. However, it supported only conjunctive
semantic and required the search time to be linear with the
number of files. Table I demonstrates the comparison results
between our M2FS schemes and the state-of-the-art multi-
keyword FSE schemes based on SKNN.

VIII. CONCLUSION

In this paper, we develop M2FS schemes that exploit the
indecomposable property of primes to achieve practical multi-
keyword fuzzy searches in cloud computing. The proposed
M2FS schemes can simultaneously supports AND and OR
query semantics, and thus give the data user a great flexibility
during the query process. For high efficiency and enhanced
robustness, we build an index as a KBB tree and expand a
query with random noises to provide parallel searches while
resisting linear analysis inherit from SKNN.

However, in the theoretical and experimental results, the
search time of our schemes increases with the number of query
keywords. The main reason is that each query is encoded as a
matrix, the sizes of which grows linearly with the number of
keywords. The adoption of matrix-based construction enables
flexibility, but causes performance degradation. Therefore, one
direction of our future work is to design an efficient FSE
scheme with constant-sized query matrix while preserving
flexibility. Furthermore, our threat model assumes the mutual
trust between the data owner and the data user. This assump-
tion applies only to the case of single data owner, rather than
the multi-owner scenario. Therefore, how to remove such an
assumption is another research direction. Finally, in view of the
research hotspots of SE, we can improve our M2FS schemes
from the following aspects: (1) verifiability that allows the data
user to verify the correctness and integrity of the search results
returned by a malicious cloud server; (2) ranked search that

allows the data user to perform a top-𝐾 search to retrieve the
best-matched files.

APPENDIX A
PROOF OF THEOREM 1

Proof: We consider a special case, where a file 𝑓𝑖 (resp.
a query 𝜗 𝑗 ) contains only one keyword, denoted by 𝑤𝑖 (resp.
𝑤 𝑗 ). The security of our basic M2FS scheme can be easily
derived, because the multi-keyword setting is built on top
of such a special case. In the known-ciphertext model, the
cloud server can only observe the encrypted forms of file
set, index, and queries, as well as the search results. Due
to the randomness introduced in the index/query vectors,
and the random splitting step in the SKNN scheme, index
indistinguishability and trapdoor unlinkability are achieved.
Therefore, for history H = (𝐹,𝑊,Q), the trace 𝑇𝑟 (H)
includes the following information:
• Size pattern: The length of the documents in 𝐹.
• Access pattern: The search results (R1, . . . ,R𝑡 ), where
R 𝑗 = {(𝑖,R𝑖, 𝑗 ) |𝜗 𝑗 ⊲⊳ 𝑓𝑖 , 𝑖 ∈ [[𝑛]]}, for 𝑗 ∈ [[𝑡]].

Let Sim denote a simulator that can simulate a view V̄.
Our scheme is secure if the cloud server cannot distinguish V̄
from V given two histories with the same trace. To achieve
this, simulator Sim performs the following:
• Simulator Sim runs algorithm 𝑆𝐾𝑁𝑁.𝐺𝑒𝑛𝐾𝑒𝑦 to gen-

erate 𝑠𝑘 = {M̄1, M̄2, s̄}. It then chooses 𝛼 random primes
P̄ = {𝑝1, . . . , 𝑝𝛼}, and 𝜋 random integers X = {𝜎1, . . . , 𝜎𝜋}
where 𝜋 = 26 + 𝛼 and 1 ≤ 𝜎𝑖 ≤ 𝑑 for 𝑖 ∈ [[𝜋]]. Finally, it sets
¯𝑆𝐾 = (𝑠𝑘, P̄,X).
• Simulator Sim randomly selects 𝑓𝑖 ∈ {0, 1} | 𝑓𝑖 | for 𝑓𝑖 ∈ 𝐹

and outputs �̄� = {𝑐1, . . . , 𝑐𝑛} where | 𝑓𝑖 | is the bit length of
file 𝑓𝑖 and 𝑐𝑖 is the ciphertext of 𝑓𝑖 encrypted with SKE.
• To generate Ī, simulator Sim generates a (1 × 𝑑)-

dimensional matrix P̄′𝑖 for 1 ≤ 𝑖 ≤ 𝑛 as follows:
1) It constructs a (1×𝑑)-dimensional matrix P̄𝑖 where each

element is set to 1.
2) For 𝑙 ∈ [[𝛼]], it chooses a random integer 𝜎 from X and

sets P̄𝑖 [1] [𝜎] = P̄𝑖 [1] [𝜎] × 𝑝𝑙 .
3) It randomly chooses 𝜐 ∈ [[𝑑 − 𝛼]] elements with a value

of 1 from P̄𝑖 and fills them with random primes outside
P̄.

4) It runs the 𝑆𝐾𝑁𝑁.𝐸𝑛𝑐𝐼 algorithm to output P̄′𝑖 .
Therefore, Ī = {P̄′1, . . . , P̄′𝑛}.
• To generate T̄, simulator Sim constructs a (𝑑 × 1)-

dimensional matrix Q̄′𝑗 for 1 ≤ 𝑗 ≤ 𝑡 as follows:

1) It constructs an empty set 𝑅 and a matrix Q̄ 𝑗 ∈ R𝑑×1

where each element is set to 1.
2) For 𝑖 ∈ [[𝑛]], if 𝜗 𝑗 ⊲⊳ 𝑓𝑖 , it puts P̄𝑖 in set 𝑅.
3) For 𝑙 ∈ [[𝑑]], it performs as follows: a) It constructs

an empty set 𝑌 . b) For each index matrix P̄𝑖 ∈ 𝑅, if
P̄𝑖 [1] [𝑙] ≠ 1, it puts P̄𝑖 [1] [𝑙] into 𝑌 . c) If |𝑌 | > 0,
it sets Q̄ 𝑗 [𝑙] [1] = 1/𝑦 where 𝑦 is the least common
multiple of elements in 𝑌 . d) If |𝑌 | = 0, it sets Q̄ 𝑗 [𝑙] [1]
to a random integer.

4) It runs the 𝑆𝐾𝑁𝑁.𝐸𝑛𝑐𝑄 algorithm to output Q̄′𝑗 .
Therefore, T̄ = {Q̄′1, . . . , Q̄′𝑡 }.
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• Simulator Sim outputs the view V̄ = (�̄�, Ī, T̄). Due to the
semantic security of SKE, no PPT adversary can distinguish
between �̄� and 𝐶. The indistinguishability of indexes and
trapdoors is achieved as follows: First, a set of random primes
and a PRF are introduced to build vectors in our construction.
Without knowing P and the secret key of PRF, it is hard for
the cloud server to recover the vectors. For example, if all
primes are randomly chosen from [1, 10000], then the total
number of primes that can be used is 𝑙 = 1231. For 𝑙 = 1231
and 𝐿 = 30, there are 𝐶 (𝑙, 𝐿) = 2199 possible ways to construct
these primes in brute force attacks. In terms of strength, this is
more powerful than 128-bit symmetric keys. Second, SKNN
is proven to be COA secure, rendering the encrypted indexes
Ī and the trapdoors T̄ to generate the same trace as the
one that the cloud server has. Therefore, we claim that no
PPT adversary can distinguish V̄ from V, and that M2FS-B
scheme is secure in the known ciphertext model.

APPENDIX B
PROOF OF THEOREM 2

Proof: The purpose of expanding a query matrix is to
add random noises to the search results so that Eq. (6) holds
with a negligible probability. First, we show the security of the
test matrix 𝑣.R 𝑗 . That is, 𝑣.R 𝑗 [𝑘] [𝑙] ≠ 𝑣.P[𝑘] [∗] ★Q 𝑗 [∗] [𝑙]
for 𝑘 ∈ [[𝛽]] and 𝑙 ∈

[[
𝛾 𝑗

]]
. From Eq. (10), we know that

𝑣.R 𝑗 [𝑘] [𝑙] = 𝑣.P[𝑘] [∗] ★ Q 𝑗 [∗] [𝑙] + 𝑋 , where 𝑋 ∈ R is
a random number that has no linear relationship with the
result of 𝑣.P[𝑘] [∗] ★ Q 𝑗 [∗] [𝑙]. Therefore, it is impossible
for the adversary to decompose 𝑣.P[𝑘] [∗] ★ Q 𝑗 [∗] [𝑙] from
𝑣.R 𝑗 [𝑘] [𝑙]. In our advanced M2FS scheme, the 𝐼𝑛𝑖𝑡 algorithm
is constructed in the same way as our basic scheme, and an
index tree T is constructed based on the index matrices output
by the basic 𝐵𝑢𝑖𝑙𝑑𝐼𝑛𝑑𝑒𝑥 algorithm. Our main security concern
is that, given an expansive query matrix Q̂ 𝑗 , the advanced
𝑆𝑒𝑎𝑟𝑐ℎ algorithm outputs an intermediate matrix 𝑣.R̂ 𝑗 , which
may leak certain sensitive information.

Then, we show the security of the intermediate matrix. From
Eq. (7), we know that 𝑣.R̂ 𝑗 = 𝑣.P★ Q̂ 𝑗 , where 𝑣.R̂ 𝑗 [𝑘] [𝑙] =
𝑣.P[𝑘] [∗] ★ Q̂ 𝑗 [∗] [𝑙], for 𝑘 ∈ [[𝛽]] and 𝑙 ∈

[[
𝜇𝛾 𝑗

]]
. In

our construction, an expansive query matrix Q̂ 𝑗 is made
up of 𝛾 𝑗 sub-matrices of (𝛽 × 𝜇) dimensions, denoted by
Q̂ 𝑗 [[1, 𝜇]] , . . . , Q̂ 𝑗

[[
(𝛾 𝑗 − 1)𝜇 + 1, 𝜇𝛾 𝑗

]]
. With a given value

of 𝑙, each column of the sub-matrix Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]]
contains (𝑑 − 𝜇 + 1) query values at most and (𝜇 − 1)
random numbers at least. Although the sum of the random
numbers at each row of Q̂ 𝑗 [[(𝑙 − 1)𝜇 + 1, 𝑙𝜇]] is related to
the query value (𝛿𝑘 = 𝑡𝑘Q 𝑗 [𝑘] [𝑙]), the random numbers
in each column are independent from both the index and
query matrices. Therefore, the adversary cannot infer any
useful information from 𝑣.R̂ 𝑗 directly. Now, let us consider
the adversary constructing linear equations from an arbitrary
combination of elements in 𝑣.R̂ 𝑗 . Given 𝑦 < 𝜇 elements,
the number of unknown variables is larger than the number
of linear equations, and thus the adversary cannot solve an
equation. Given 𝑦 ≥ 𝜇 elements, the most advantageous attack
is to add up 𝜇 elements at the 𝑘-th row to obtain one element
in 𝑣.R 𝑗 . As the security of the test matrix has already been

proven, the SKNN scheme with expansive query matrix is
secure in linear analyses.

APPENDIX C
PROOF OF THEOREM 3

Proof: In the known-background model, the cloud server
may infer certain keyword/trapdoor pairs besides what it can
observe in the known-ciphertext model. Therefore, the trace
includes a set of keyword/trapdoor pairs in addition to the
size pattern and access pattern. In the advanced M2FS scheme,
the construction of index/query matrices is based on that of
the basic M2FS scheme, and the SKNN scheme with expan-
sive query matrix is proven to be secure in linear analyses.
Therefore, we claim that no PPT adversary can distinguish
a view simulated by a simulator from a view generated by
a real experiment, and that our advanced M2FS scheme is
semantically secure in the known background model.
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