
Achieving Secure and Effective Search Services in
Cloud Computing

Qin Liu†∗, Shuyu Pei†, Kang Xie‡∗, Jie Wu§, Tao Peng¶, and Guojun Wang¶
†College of Computer Science and Electronic Engineering, Hunan University, P. R. China, 410082

‡ Key Lab of Information Network Security, Ministry of Public Security, P. R. China, 201204
§Center for Networked Computing, Temple University, Philadelphia, PA 19122, USA

¶ School of Computer Science and Educational Software, Guangzhou University, P. R. China, 510006
∗Correspondence to: gracelq628@hnu.edu.cn; xiekang@stars.org.cn

Abstract—One critical challenge of today’s cloud services is
how to provide an effective search service while preserving
user privacy. In this paper, we propose a wildcard-based multi-
keyword fuzzy search (WMFS) scheme over the encrypted
data, which tolerates keyword misspellings by exploiting the
indecomposable property of primes. Compared with existing
secure fuzzy search schemes, our WMFS scheme has the following
merits: 1) Efficiency. It eliminates the requirement of a predefined
dictionary and thus supports updates efficiently. 2)High accuracy.
It eliminates the false positive and false negative introduced by
specific data structures and thus allows the user to retrieve files
as accurate as possible. 3) Flexibility. It gives the user great
flexibility to specify different search patterns including keyword
and substring matching. Extensive experiments on a real data
set demonstrate the effectiveness and efficiency of our scheme.

Index Terms—cloud computing, searchable encryption, fuzzy
search, wildcard.

I. INTRODUCTION

As cloud computing provides overwhelming benefits to con-

sumers, outsourcing data services is booming. To protect data

security from the cloud service provider (CSP), many research

and techniques have been put forward [1], [2]. Searchable

encryption (SE) [3]–[5] that enables secure searches over the

encrypted data allows the user to retrieve data of interest in

a privacy-preserving way. Compared with exact search, fuzzy
search allows the user to enter keywords with uncertainties or

inconsistencies in their forms, and thus it can greatly improve

the user experience of query services.

Recently, Li et al. [6] proposed a wildcard-based fuzzy se-

arch scheme, which exploited the edit distance to quantify

keyword similarity. The main drawback of their scheme is the

requirement of a predefined dictionary that covers possible

keyword misspellings, making update inefficient. Moreover, it

permits only single keyword in a query, requiring many rounds

to support multi-keyword search. Since then, a few works [7]–

[11] have been conducted to improve the search efficiency or

to support multi-keyword fuzzy search. However, the research

in this field is still in its infancy, and enabling effective fuzzy

search in cloud computing remains a challenging problem.

In this paper, we propose a wildcard-based multi-keyword

fuzzy search (WMFS) scheme, which allows the users to

search on multiple unsure keywords in an effective way. In

our scheme, the user replaces several unsure letters in a

keyword with symbol ′∗′. For example, the user can issue

query Q = (s ∗ cur ∗ ty) to retrieve appropriate files if she

is unsure of the second and sixth letters of the keyword “se-

curity”. Different from previous wildcard-based fuzzy search

schemes [6]–[8] requiring the predefined dictionary, the main

idea of our WMFS scheme is to represent both the query and

the index as vectors, the elements of which are set to primes

or the reciprocals of primes, ensuring that all reciprocals will

be eliminated only when the query matches the index. For

data privacy, both vectors will be encrypted with the secure

kNN method [12]. Therefore, the level of the match can

be quantified by judging whether the inner product of two

encrypted vectors is an integer or not.

Specifically, we first construct a basic WMFS scheme to

solve single-keyword fuzzy queries. Then, we extend it to the

multi-keyword setting, where a query supports either keyword

or substring matching. Our proposed WMFS scheme has the

following merits: 1) Efficiency. It eliminates the requirement of

a predefined dictionary and thus supports updates efficiently.

2) High accuracy. It eliminates the false positive and false

negative introduced by specific data structures (e.g., Bloom

filters [13] and locality-sensitive hashing (LSH) [14] utilized

in [9], [10]) and thus allows the user to retrieve files as accurate

as possible. 3) Flexibility. Unlike existing work that is difficult

to achieve keyword and substring matching simultaneously,

our scheme gives the users great flexibility to specify different

search patterns in their queries. The main contributions of this

paper are as follows:

• To the best of our knowledge, it is the first attempt to

devise a secure and effective fuzzy search scheme, which

offers efficiency, high accuracy, and flexibility.

• The proposed scheme utilizes the indecomposable prop-

erty of primes to support an efficient multi-keyword fuzzy

search over the encrypted data.

• We evaluate our scheme on a real data set. The results

demonstrate that our scheme is efficient and accurate.

II. PRELIMINARIES

A. System Model

Fig. 1 shows our system model consisting of three types of

entities: the cloud service provider (CSP), the data owner, and

1386

2018 17th IEEE International Conference On Trust, Security And Privacy In Computing And Communications/ 12th
IEEE International Conference On Big Data Science And Engineering

2324-9013/18/31.00 ©2018 IEEE
DOI 10.1109/TrustCom/BigDataSE.2018.00192

Fig. 1. System model.

the data user (the user for short). The CSP have rich computing

resources to provide data storage and query services.

Given a collection of files D and the universal keyword

set W extracted from D, the data owner first builds a set of

indexes I and uploads files and indexes in the encrypted forms,

{C, I′}, to the CSP. To retrieve files matching query Q, the

user first requests secret keys SK from the data owner, and

then sends a trapdoor, Q′, to the CSP. On receiving the search

request, the CSP will evaluate the trapdoor on the encrypted

indexes and return the search results, CQ, to the user, who will

perform decryption locally to recover file contents.

B. Adversary Model

The data owner and the user are assumed to be fully trusted.

The CSP is the potential adversary, which is assumed to be

honest but curious. That is, the CSP will always correctly

execute a given protocol, but may try to learn some additional

information about the stored data and the received message.

In terms of the information available to the CSP, we mainly

consider the known background model [10], [12], in which the

CSP is able to know additional background information be-

sides the encrypted database, the submitted trapdoors, and the

returned search results. The background refers to the keyword

frequency and distribution among the file collection, which

can be used to infer certain keywords and their trapdoors.

While data privacy can be preserved through standard sym-

metric key encryption (SKE), e.g., AES, our privacy objective

is to protect the search privacy in the following aspects:

• Keyword secrecy. The CSP cannot deduce the contents

of keywords from the encrypted indexes and trapdoors.

• Trapdoor unlinkability. The CSP cannot decide whether

two trapdoors are issued for the same query or not.

C. Secure kNN

Given the index vector I and query vector Q, its i-th
element, respectively, is denoted as I[i] and Q[i]. The secure

kNN scheme [12] tailored for our WMFS scheme mainly

consists of the following algorithms:

• Key(1κ) → sk : It takes a security parameter κ ∈ N as

input and generates the secret key sk = (M1,M2, S), where

M1,M2 are d× d invertible matrices and S is a bit string of

d bits.

• EncI(I, sk)→ I ′ : It splits the index I into two vectors

{Ia, Ib} as follows: for i = 1 to d, if the i-th bit of S equals to

1, I[i] is randomly split into Ia[i], Ib[i] such that Ia[i]+Ib[i] =
I[i]; if the i-th bit of S equals to 0, both Ia[i] and Ib[i] are

set to I[i]. The encrypted index is a pair I ′ = (I ′
a, I

′
b) where

(I ′
a =MT

1 Ia, I
′
b =MT

2 Ib).
• EncQ(Q, sk) → Q′ : It chooses a random prime r and

sets Q̃ = rQ for the unlinkability of trapdoors. Then, it splits

the scaled query Q̃ into two vectors: Q̃a and Q̃b as follows:

for i = 1 to d, if the i-th bit of S equals to 0, Q̃[i] is split

into Q̃a[i] and Q̃b[i] such that Q̃[i] = Q̃a[i] + Q̃b[i]; if the

i-th bit of S equals to 1, both Q̃a[i] and Q̃b[i] are set to

Q̃[i]. The encrypted query is a pair Q′ = (Q′
a, Q

′
b) where

(Q′
a =M−1

1 Q̃a, Q
′
b =M−1

2 Q̃b).
• Search(I ′, Q′)→ v : It calculates v = I ′

a·Q′
a+I

′
b·Q′

b =
rITQ as the search result.

III. SCHEME OVERVIEW

A. Notations and Definitions

The set of all binary strings of length η is denoted as

{0, 1}η and the set of finite binary strings as {0, 1}∗. For quick

reference, the most relevant notations are listed below:

• D = {D1, . . . , Dn}: A collection of n files.

• C = {C1, . . . , Cn}: A collection of n ciphertexts, where

Ci is the ciphertext of file Di for i ∈ [1, n].
• W = {w1, . . . , wm}: A dictionary of m keywords ex-

tracted from D, where |wj | denotes the number of letters

in keyword wj and wj(l) denotes the l-th letter in wj for

1 ≤ j ≤ m and 1 ≤ l ≤ |wj |.
• A = {′a′, . . . ,′ z′} : An English alphabet consisting of

26 English letters, where A[i] denotes its i−th letter.

• I, I ′: The index vector and its encrypted version, where

I[i] and I ′[i] denote the i−th elements.

• Q,Q′: The query vector and the encrypted trapdoor,

where Q[i] and Q′[i] denote the i−th elements.

Let symbol ′∗′ stand for unsure. There are two types of

keywords: exact keywords and fuzzy keywords, where each

letter in an exact keyword is chosen from A, but a fuzzy

keyword contains symbol ′∗′. The searchable index contains

only exact keywords, but the query may contain fuzzy key-

words. The distance between keywords w1 and w2, denoted

as dist(w1, w2), is determined by their edit distance, which

excludes the number of symbol ′∗′s. Keywords w1 and w2 are

considered similar if their distance is 0.

Matching. Let K denote the number of keywords in query Q.
Q �� I if dist(I[i],Q[i]) = 0 for i ∈ [1,K], where I[i] and
Q[i] denote the i−th keyword in I and Q, respectively.

That is, for AND queries, Q �� I if all keywords in Q are

similar to corresponding keywords in I.

B. The Definition of WMFS

A WMFS scheme is a protocol among the data owner, the

user, and the CSP as follows:

• GenKey(1κ)→ SK : The data owner takes the security

parameter κ as the input and outputs the secret keys SK,

which will be sent to the authorized user.

1387

• BuildIndex(D,W, SK)→ I : Given a collection of files

D and the universal keyword set W , the data owner builds a

set of indexes I with her secret keys SK.

• EncIndex(I, SK) → I′ : Given a set of indexes I, the

data owner takes the secret keys SK as inputs and outputs the

encrypted indexes I′.
• BuildQuery(Q, SK)→ Q : Given a query Q consisting

of a set of keywords, the user builds a query vector Q based

on the secret keys SK.

• EncQuery(Q,SK) → Q′ : To retrieve files matching

query vector Q, the user generates a trapdoor Q′ with the

secret keys SK and sends Q′ to the CSP.

• Search(I′, Q′) → CQ : The CSP evaluates the trapdoor

Q′ on the encrypted indexes I′ to output the search results CQ.

IV. BASIC WMFS SCHEME

A. Construction

Let L = max(|w1|, . . . , |wm|) denote the max length of the

keywords. To hide the length of each keyword, we pad wi
with dummy letters such that |wi| = L for 1 ≤ i ≤ m.

Let KNN = (Key,EncI,EncQ, Search) be a secure

kNN scheme as described in Section II-C, and let SKE =
(Gen,Enc,Dec) be a symmetric-key encryption scheme. Let

F : {0, 1}κ × {0, 1}∗ → {0, 1}κ be a PRF. Our basic WMFS

scheme is constructed as follows:

• GenKey(1κ) → SK : Given a security parameter κ,

the data owner runs KNN.Key(1κ) algorithm to generate sk
Then, she randomly chooses L primes P = {p1, . . . , pL}, L
random strings S = {s1, . . . , sL}, and a κ-bit string kf . The

secret keys are set as SK = (sk, kf , L,P,S).
• BuildIndex(D,W, SK) → I : To build a searchable

index Ij for keyword wj ∈ W , the data owner first constructs

a d−dimensional vector, Ij , where each element is initialized

with 1. For 1 ≤ l ≤ L, she calculates:

posl =

{
Fkf (wj(l)), if l ∈ [1, |wj |]
Fkf (S[l − |wj |]), if l ∈ (|wj |, L]

(1)

and sets Ij [posl] = Ij [posl]/pl. The other elements will be

filled with random integers. Next, she constructs an m × n
binary matrix E such that:

E[j][i] =

{
1 if wj is contained inDi

0 otherwise

where E[j][i] is the element in the j-th row and i-th column

of E for j ∈ [1,m] and i ∈ [1, n]. The set of indexes are set

as I = ({Ij |wj ∈ W}, E).
• EncIndex(I, SK)→ I′ : To encrypt the searchable index

Ij , the data owner runs the KNN.EncI(Ij , sk) algorithm and

outputs I ′
j for each keyword wj ∈ W . To encrypt the binary

matrix E, she runs SKE.Enc(ke, E[j]) and outputs E′[j] for

1 ≤ j ≤ m, where E[j] denotes the bit string at the j-th row of

E. The encrypted indexes are set as I′ = ({I ′
j |wj ∈ W}, E′).

• BuildQuery(Q, SK) → Q : Given a query Q con-

sisting of keyword wj ∈ W , the user first constructs a

d−dimensional vector Q, where each element is initialized

to 1. For 1 ≤ l ≤ L, he calculates posl with Eq. 1 and

sets Q[posl] = Q[posl] × pl if wj(l) �=′ ∗′; otherwise, he

calculates posl1 = Fkf (
′a′), . . ., posl26 = Fkf (

′z′) and sets

Q[posli] = Q[posli]× pl for 1 ≤ i ≤ 26.
• EncQuery(Q,SK) → Q′ : To generate a trapdoor, the

user runs the KNN.EncQ(sk,Q) algorithm and outputs Q′.
• Search(I′, Q′) → CQ : For 1 ≤ j ≤ m, the CSP runs

the KNN.Search(I ′
j , Q

′) algorithm to calculate the inner

product of I ′
j and Q′. If the result of I ′

j · Q′ is an integer,

the CSP puts E′[j] in CQ.

B. Correctness Analysis

Let U = A∪S denote the union of the English alphabet and

the dummy letters, where U[i] denotes the i-th letter in U. For

ease of illustration, we assume that U[i] corresponds to I[i]
and Q[i]. Our basic WMFS scheme is considered incorrect if

the following cases happen:

Case 1. The result of I · Q is not an integer if query Q
matches index I.

Case 2. The result of I · Q is an integer if query Q
mismatches index I.

For case 1, the result of I · Q not being an integer

means that at least one reciprocal in the index vector cannot

be eliminated. Due to the construction of the BuildIndex
algorithm, I[i] = 1/pj means that U[i] is the j-th letter of

keyword w1 ∈ I. If 1/pj cannot be eliminated, Q[i] will

be set to an integer V that is indivisible by pj . Here, V
may be 1 or the product of the primes in P/pj . Due to the

construction of the BuildQuery algorithm, either Q[i] = 1 or

Q[i] =
∏

l �=j pl means that neither U[i] nor symbol ′∗′ appears

in the j-th position of keyword w2 ∈ Q. That is, I ��� Q, which

contradicts the assumption. Therefore, case 1 is not true.

For case 2, the result of I ·Q being an integer means that

all reciprocals in the index vector are eliminated. Given I[i] =
1/pj denoting that U[i] is the j-th letter of keyword w1 ∈ I,

Q[i] needs to be set to pj or an integer V that is divisible

to pj . Due to the construction of the BuildQuery algorithm,

Q[i] = pj means that U[i] is in the j-th position of keyword

w2 ∈ Q and Q[i] = V means that symbol ′∗′ is at the j-th

position of keyword w2 ∈ Q. In any case, the index matches

the query, which contradicts the assumption. Therefore, case

2 is not true and our basic WMFS scheme is correct. �
C. Security Analysis

Theorem 1. Our basic WMFS construction is secure under
the known background model.

Before stating our security theorem, we provide a more

formal and concise description of our scheme’s leakage:

• History H = (D,W,Q) where D is a collection of files

{D1, . . . , Dn}, W is a set of keywords {w1, . . . , wm}, and Q

is a sequence of submitted queries (Q1, . . . ,Qk).
• View V = (C, I′,T) is the encrypted form of history under

the secret keys SK. That is, C = {C1, . . . , Cn} is a set of

ciphertexts (where Ci is the ciphertext of file Di ∈ D), I′ =
{I ′

1, . . . , I
′
m} is a set of encrypted searchable indexes (where

I ′
i is built for keyword wi ∈ W), and T = (Q′

1 . . . , Q
′
k) is a

1388

sequence of trapdoors (where Q′
i is the trapdoor created for

query Qi ∈ Q). The CSP can only see views.

• Trace of history Tr(H) = {Tr(Q1), . . . , T r(Qk)} where

Tr(Qi) = {(I ′
j , vji)|Ij �� Qi, 1 ≤ j ≤ m} and vji, as the

inner product of index vector Ij and query vector Qi, is a

random integer. The trace of a history captures the information

which can be learned by the CSP, i.e., the access pattern and

the search results induced by H.

Proof sketch. Due to the CPA-security of SKE, no PPT

adversary can distinguish between C̄ and C. The indistin-

guishability of indexes and trapdoors is based on the indis-

tinguishability of KNN and the introduced randomness. The

encrypted indexes Ī′ and the trapdoors T̄ generate the same

trace as the one that the CSP has. Therefore, we claim that

no PPT adversary can distinguish V̄ from V . As described

in [19], KNN can resist ciphertext-only attacks (in which the

CSP only knows encrypted databases and trapdoors), but is

vulnerable to linear analyses (in which the CSP can solve

linear equations to recover index vectors with sufficient query

vector and trapdoor pairs). However, a set of random primes

and a PRF are introduced to build vectors in our construction.

Therefore, it is hard for the adversary to obtain plaintext

vectors to initiate chosen-plaintext attacks. For example, if all

primes are randomly chosen from [1, 10000], then the total

number of primes that can be used is l = 1231. Without

knowing P , there are C(l, L) possible ways to construct these

primes. For l = 1231 and L = 30, the adversary needs to guess

about 2199 for brute force attacks. In terms of strength, this

is more powerful than 128-bit symmetric keys. Intuitively, our

scheme encodes keywords to vectors, which can be regarded

as an encapsulation of keywords before KNN encryption.

Hence, the adversary with (keyword, trapdoor) pairs cannot

distinguish the output of the linear analyses from a random

string without knowing the secret keys. �

V. ADVANCED WMFS SCHEME

A. Construction

Let H : {0, 1}∗ → {0, 1}κ be a collision-free hash function

and let L denote the max length of keywords. Let I[j] and Q[j]
denote the j−th keyword in index I and query Q, respectively,

where |I[j]| (resp. |Q[j]|) denotes the length of a keyword and

I[j](l) (resp. Q[j](l)) denotes the l−th letter in a keyword.

• GenKey(1κ)→ SK : The data owner sets SK = {sk,
ke, L,P,S} as the basic scheme.

• BuildIndex(D,W, SK) → I : For each file Di ∈ D
the data owner builds a d-dimensional vector Ii, where each

element is initialized to 1. For Ii[j], she performs as follows.

For l ∈ [1, L], she calculates:

posl =

{
H(j, Ii[j](l)), if l ∈ [1, |Ii[j]|]
H(j,S[l − |Ii[j]|]), if l ∈ (|Ii[j]|, L]

(2)

and sets Ij [posl] = Ij [posl]× pl. Thus, I = {I1, . . . , In}.

• EncIndex(I, SK) → I′ : The data owner runs the

KNN.EncI(Ii, sk) algorithm and outputs I ′
i for each doc-

ument Di ∈ D. She then sets I′ = {I ′
i|Di ∈ D}.

• BuildQuery(Q, SK) → Q : The user first constructs

a d−dimensional vector Q, where each element is initialized

with 1. For Q[j], the user performs as follows. For 1 ≤ l ≤ L,

if Q[j](l) �=′ ∗′, he calculates:

posl =

{
H(j,Q[j](l)), if l ∈ [1, |Q[j]|]
H(j,S[l − |Q[j]|]), if l ∈ (|Q[j]|, L] (3)

and sets Q[posl] = Q[posl] × 1/pl. The other elements will

be filled with random integers.
• EncQuery(Q,SK) → Q′ : The user runs the

KNN.EncQ(Q, sk) algorithm to output a trapdoor Q′.
• Search(I′, Q′)→ CQ : For 1 ≤ i ≤ n, the CSP runs the

KNN.Search(I ′
i, Q

′) algorithm to calculate the inner product

of I ′
i and Q′. If the output is an integer, it puts Ci in CQ.
Remark 1. The advanced WMFS scheme can support

substring matching if the users never pad their queries to

length L. Therefore, our WMFS scheme gives the user great

flexibility to specify different search patterns in their queries.
Remark 2. In the advanced scheme, if reciprocal 1/pl

located at posl of Q cannot be eliminated, corresponding

element I[posl] is set to 1. To add more randomness to the

search results, I[posl] can be set to a random integer that

cannot be decomposed to any prime in P .

B. Correctness Analysis
The advanced WMFS scheme is considered incorrect if

either case 1 or case 2 defined in Section IV-B happens. For

case 1, the result of I ·Q not being an integer means that at least

one reciprocal in the query vector Q cannot be eliminated.

Suppose that the reciprocal 1/pl located at posl of Q cannot

be eliminated, i.e., corresponding element I[posl] is set to 1.

Due to the construction of the BuildIndex and BuildQuery
algorithms, the l−th letter of the j−th keyword in the index

is different from that in the query, we have Q ��� I and it

contradicts the assumption. Therefore, case 1 will not happen.
For case 2, the result of I · Q being an integer means

that all reciprocals in the query vector Q are eliminated.

Suppose that Q[j](l) is dissimilar to I[j](l). According to the

construction of the BuildIndex and BuildQuery algorithms,

posl = H(j,Q[j](l)) in Q is set 1/pl and posl = H(j, I[j](l))
in I is set to pl. However, due to the collision-free property of

the hash function H , the probability of mapping two different

inputs to the same location is very low. Therefore, case 2 will

not happen and our advanced scheme is correct. �
C. Security Analysis
Theorem 2. Our advanced WMFS scheme is secure under the
known background model.

The definitions of history, views, and traces are the same

as those in the basic scheme. The security of our advanced

scheme can also be proven in a simulation-based approach.

Since the search result on Ī′ with trapdoor Q̄′ generates the

same trace as the one that the CSP has, we claim that no

PPT adversary can distinguish V̄ from V . Similarly, the PPT

adversary cannot distinguish the output of the linear analysis

from a random string without knowing the primes. �

1389

500 1500 2500 3500
0

50

100

150

200

250

300

m

BuildIndex
EncIndex(vector)
EncIndex(matrix)
Search

(a) Basic WMFS

500 1500 2500 3500
0

200

400

600

800

1000

1200

n

BuildIndex(L=20)
BuildIndex(L=30)

(b) Advanced WMFS

Fig. 2. The execution time (ms). (a) The performance of our basic scheme
while the number of keywords m ranges from 500 to 3500; (b) The time of
our advanced scheme for building a set of indexes for n = [500, 3500] files.

VI. EVALUATION

We will compare the performance of our WMFS scheme

with the multi-keyword fuzzy search (MFS) scheme proposed

in [10] in terms of the execution time and the result accu-

racy. The MFS scheme utilizes Bloom filters and a 2-stable

(
√
3, 2, p1, p2)-LSH family to build indexes, where the size

of vectors is set to d = 8000 and l = 30 hash functions are

employed to support 1 edit distance difference.

A. Parameter Setting

Experiments are conducted on a local machine running the

Microsoft Windows 7 Ultimate operating system with an Intel

Core i5 CPU running at 2.6GHz and 8GB memory. The pro-

grams are implemented in Java, compiled using Eclipse 4.3.2.

We apply HMAC-SHA1 as the collision-free hash function

and employ the block cipher (AES) for file encryption.

We conduct a performance evaluation on the recent 10

years’ IEEE INFOCOM publication, which includes more than

3600 files. The number of files is set to n = [500, 3500]. For

each file, we extract N = [5, 20] keywords to build its index,

where the maximal length of keyword L is set to [20, 30]. The

universal keyword set contains m = [500, 3500] keywords.

In advanced scheme, each user will query with K = [2, 25]
keywords, where each query contains F = [2, 5] symbol ′∗′s.

To generate a fuzzy keyword in a query, we randomly choose

one letter from a keyword and replace it with symbol ′∗′. The

size of vectors is set to d = 128 and d = [128, 300, 600] in

the basic and advanced WMFS scheme, respectively.

B. Experiment Results

1) Efficiency. Fig. 2-(a) shows the execution time of the

basic WMFS scheme, while m ranges from 500 to 3500 under

the setting of L = 30 and L = 20 results in the similar

trend. Fig. 2-(b) shows the execution time of the advanced

BuildIndex algorithm, while n ranges from 500 to 3500
under the setting of N = 20. Fig. 3 shows the comparison

results between our advanced scheme and the MFS scheme.

For Figs. 3-(b)∼(d), we fix with N = 10 and L = 30. The

MFS scheme requires the computation of multiple LSHs to

map elements to a Bloom filter of d = 8000 elements. Our

advanced scheme requires only the multiplication and hash

2 4 6 8 10
0.6

0.8

1

K

d=128,F=2
d=128,F=5
d=300,F=2
d=300,F=5
d=600,F=2
d=600,F=5
MFS

(a) Precision
2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

0.9

1

K

d=128,F=2
d=128,F=5
d=300,F=2
d=300,F=5
d=600,F=2
d=600,F=5
MFS

(b) Recall

Fig. 4. The accuracy of our advanced WMFS scheme. The number of
keywords in a query K ranges from 2 to 10.

operations and the size of vector is much smaller, making it

more efficient in general.

2) Accuracy. As the work in [10], the accuracy of our

scheme is measured by the definitions of the widely used

performance metrics: precision and recall. Let tp denote true

positive, fp as false positive, and fn as false negative. Here, tp
is I �� Q and the result of I ·Q is an integer, fp is I ��� Q but

the result of I ·Q is an integer, and fn is I �� Q, but the result

of I ·Q is not an integer. The precision can be calculated with

tp/(tp+fp) and the recall can be calculated with tp/(tp+fn).

The division operation may result in a loss of precision. To

determine if a value is an integer or not, we round up after the

x−th decimal point. When x = 7 ,the basic scheme to have

the highest accuracy. The reason is that a large part fractional

numbers, e.g., 3.000459, will be determined as integers if x is

a small value, making a higher false positive. When x is a large

value, a lot of values, e.g., 3.000000007, will be determined as

fractional numbers, making the false negative relatively higher.

Furthermore, F has a great impact on fp when x is a small

value, and on fn as x increases.

With the fixed x = 7, we then evaluate the accuracy of our

advanced scheme under the different settings of F and d. From

the experiment results, we know that d plays an important

role on the accuracy. The collision rate of the hash function is

relatively higher when the size of vectors d = 128. Therefore,

in Fig. 4, the accuracy of our scheme is worse than the MFS

scheme under d = 128. However, while d increases to 300,

either our precision or recall is better than their scheme.

VII. RELATED WORK

The first SE scheme where both queries and data were

encrypted under a symmetric key was proposed by Song et

al. [15]. The main drawback of their scheme was that the

search cost grew linearly with the database. To improve the

query efficiency, Goh [3] developed a secure searchable index

scheme based on Bloom filters. As a seminal work in SE,

Curtmola et al. [5] provided a rigorous security definition and

constructed schemes based on an inverted index. Recently,

Kurosawa et al. [21] constructed verifiable SE schemes, in

which a user could detect any cheating behavior from ma-

licious servers. As an attempt to enrich search predicates,

1390

5 10 15 20
0

100

200

300

400

500

N

L=20
L=30
MFS

(a) BuildIndex
500 1500 2500 3500
0

0.5

1

1.5

2

2.5

3x 105

n

d=128
d=300
d=600
MFS

(b) EncIndex

500 1500 2500 3500
0

50

100

150

200

n

d=128
d=300
d=600
MFS

(c) Search

5 10 15 20 25
0

20

40

60

80

K

d=128
d=300
d=600
MFS

(d) Search

Fig. 3. The comparison of execution time (ms). (a) The time for building a single index, each containing N keywords; (b) The time for encryption n
indexes; (c) The time for searching n files with fixed query keywords K = 20; (d) The time for searching K keywords with the fixed file size n = 1000.

searchable encryption schemes that support conjunctive key-

word search [4], subset query [16], and range query [17],

have also been proposed. In an attempt to optimize the search

results, ranked SE schemes [18] have also been proposed to

allow users to retrieve the best-matched files. However, all of

these works only supported exact keyword search.

To improve search experiences, Li et al. [6] proposed the

first wildcard-based fuzzy search scheme, which tolerated

keyword misspellings in the query. However, their scheme

required a predefined dictionary and supported only single-

keyword searches. Since then, a few works have been con-

ducted in this field. For example, Chuah et al [7] proposed a

bedtree-based fuzzy search scheme to enable efficient updates.

Liu et al. [8] improved the scheme by reducing the index

size. In [9], LSH functions were used to generate file index.

Inspired by their work, Wang et al. [10] proposed a multi-

keyword fuzzy search scheme which supported the constant

size indexes. However, the combined effect of false positives

(introduced by Bloom filters) and false negatives (introduced

by LSH) seriously impacted the accuracy. Boldyreva et al. [20]

improved the security of existing fuzzy search schemes based

on closeness graphs. To enrich the search patterns, Wang et

al. [11] proposed a scheme for a generalized pattern-matching

string-search. All of the aforementioned fuzzy search schemes

have only partially addressed our design goals.

VIII. CONCLUSION

In this paper, we propose a WMFS scheme to achieve

secure and effective search services in cloud computing. The

proposed scheme supports an efficient multi-keyword fuzzy

search over the encrypted data by exploiting the indecompos-

able property of primes. Experiment results demonstrate that

our scheme is efficient and accurate. However, our scheme

requires an order among the keywords in the multi-keyword

setting. Therefore, as part of our future work, we will try to

design an improved scheme supporting unordered matching.

ACKNOWLEDGMENT

This work was supported in part by NSFC grants 61632009;

Key Lab of Information Network Security, Ministry of Public

Security; and NSF grants CNS 1757533, CNS1629746, CNS

1564128, CNS 1449860, CNS 1461932, CNS 1460971, and

IIP 1439672.

REFERENCES

[1] K. Xie, X. Li, X. Wang, G. Xie, J. Wen, J. Cao, and D. Zhang, “Fast
tensor factorization for accurate internet anomaly detection,” IEEE/ACM
Transactions on Networking, 2017.

[2] K. Xie, X. Li, X. Wang, J. Cao, G. Xie, J. Wen, D. Zhang, and
Z. Qin, “On-line Anomaly Detection with High Accuracy,” IEEE/ACM
Transactions on Networking, 2018.

[3] E.-J. Goh, “Secure indexes,” IACR Cryptology ePrint Archive, 2003.
[4] P. Golle, J. Staddon, and B. Waters, “Secure conjunctive keyword search

over encrypted data,” in Proc. of ACNS, 2004.
[5] R. Curtmola, J. Garay, S. Kamara, and R. Ostrovsky, “Searchable

symmetric encryption: improved definitions and efficient constructions,”
in Proc. of CCS, 2006.

[6] J. Li, Q. Wang, C. Wang, N. Cao, K. Ren, and W. Lou, “Fuzzy keyword
search over encrypted data in cloud computing,” in Proc. of INFOCOM,
2010.

[7] M. Chuah and W. Hu, “Privacy-aware bedtree based solution for
fuzzy multi-keyword search over encrypted data,” in Proc. of ICDCS
Workshops, 2011.

[8] C. Liu, L. Zhu, L. Li, and Y. Tan, “Fuzzy keyword search on encrypted
cloud storage data with small index,” in Proc. of CCIS, 2011.

[9] M. Kuzu, M. S. Islam, and M. Kantarcioglu, “Efficient similarity search
over encrypted data,” in Proc. of ICDE, 2012.

[10] B. Wang, S. Yu, W. Lou, and Y. T. Hou, “Privacy-preserving multi-
keyword fuzzy search over encrypted data in the cloud,” in Proc. of
INFOCOM, 2014.

[11] D. Wang, X. Jia, C. Wang, K. Yang, S. Fu, and M. Xu, “Generalized
pattern matching string search on encrypted data in cloud systems,” in
Proc. of INFOCOM, 2015.

[12] W. K. Wong, D. W.-l. Cheung, B. Kao, and N. Mamoulis, “Secure knn
computation on encrypted databases,” in Proc. of ACM SIGMOD, 2009.

[13] D. Guo, J. Wu, H. Chen, Y. Yuan, and X. Luo, “The dynamic bloom
filters,” IEEE Transactions on Knowledge and Data Engineering, 2010.

[14] M. Datar, N. Immorlica, P. Indyk, and V. S. Mirrokni, “Locality-sensitive
hashing scheme based on p-stable distributions,” in Proc. of SCG, 2004.

[15] D. X. Song, D. Wagner, and A. Perrig, “Practical techniques for searches
on encrypted data,” in Proc. of S&P, 2000.

[16] D. Boneh and B. Waters, “Conjunctive, subset, and range queries on
encrypted data,” in Proc. of TCC, 2007.

[17] E. Shi, J. Bethencourt, T.-H. Chan, D. Song, and A. Perrig, “Multi-
dimensional range query over encrypted data,” in Proc. of S&P, 2007.

[18] Q. Liu, X. Nie, X. Liu, T. Peng, and J. Wu, “Verifiable ranked search
over dynamic encrypted data in cloud computing,” Proc. of IWQoS,
2017.

[19] B. Yao, F. Li, and X. Xiao, “Secure nearest neighbor revisited,” in Proc.
of ICDE, 2013.

[20] A. Boldyreva and N. Chenette, “Efficient fuzzy search on encrypted
data,” in International Workshop on Fast Software Encryption. Springer,
2014, pp. 613–633.

[21] K. Kurosawa and Y. Ohtaki, “How to update documents verifiably in
searchable symmetric encryption,” in Proc. of CNS, 2013.

1391

