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User Recruitment for Enhancing Data Inference
Accuracy in Sparse Mobile Crowdsensing

Wenbin Liu , Yongjian Yang , En Wang , and Jie Wu , Fellow, IEEE

Abstract—Sparse mobile crowdsensing is a practical paradigm
for large sensing systems, which recruits a small number of users
to sense data from only a few subareas and, then, infers the data
of unsensed subareas. In order to provide high-quality sensing
services under a budget constraint, we would like to select the
most effective users to collect useful sensing data to achieve the
highest inference accuracy. However, due to the variable user
mobility and complicated data inference, it is really challenging
to directly select the best user set which helps the most with data
inference. From the user’s side, we can obtain the probabilistic
coverage according to the users’ mobilities, while the probabilis-
tic coverage cannot indicate the data inference accuracy directly.
From the subarea’s side, we may identify some more useful sub-
areas under the current states (e.g., the previous sensed subareas
and the current expected coverage), while these useful subar-
eas may not be covered by the users. Moreover, both the user
mobility and data inference introduce a lot of uncertainty, which
yields nonmonotonicity and thus nonsubmodularity in the user
recruitment problem. Therefore, in this article, we study the user
recruitment problem on both the user’s and subarea’s sides and
propose a three-step strategy, including user selection, subarea
selection, and user–subarea-cross (US-cross) selection. We first
select some candidate user sets, which may cover the most sub-
areas under the budget constraint (user selection), then estimate
which subareas are more useful on data inference according to
the selected candidates (subarea selection), which finally guides us
to recruit the best user set (US-cross selection). Extensive experi-
ments on two real-world data sets with four types of sensing tasks
verify the effectiveness of our proposed user recruitment algo-
rithms, which can effectively enhance the data inference accuracy
under a budget constraint.

Index Terms—Compressive sensing (CS), local beam search
(LBS), mobile crowdsensing (MCS), reinforcement learning (RL).
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I. INTRODUCTION

MOBILE crowdsensing (MCS) is a promising mecha-
nism [1], which allows a large number of users with

mobile devices to address various sensing tasks, such as the
monitoring of the environment [2], traffic congestion [3], and
urban infrastructure status [4]. In order to provide high-quality
sensing services, traditional MCS systems are built to recruit a
large number of mobile users to cover most of the target sens-
ing areas [2]–[7], which obviously costs a lot and can hardly
deal with some subareas with no user. Hence, researchers have
proposed to collect data from only a few subareas, and then
exploit the inherent correlations among the sensing data and
use data inference algorithms to deduce the data in the remain-
ing subareas, which is called sparse MCS [8]–[12]. In this way,
sparse MCS can significantly reduce the number of required
users while high-quality sensing services can still be achieved.

In sparse MCS, one key issue is user recruitment, that is, the
organizer expects to recruit a limited number of users (under
budget constraints), who can collect data from a few use-
ful subareas that are the key to data inference, in order to
achieve the highest data accuracy for sensing services. Fig. 1
illustrates a general scenario of the user recruitment in sparse
MCS, where the target sensing area is split into 5 × 4 sub-
areas and the users are unconsciously moving among them.
We prefer to recruit two effective users (under budget con-
straints) who collect data from the 3 + 2 = 5 subareas they
pass by during a period of time. Then, with these five use-
ful values, we can infer the data of the remaining unsensed
subareas with the highest data inference accuracy. However,
due to the variable user mobility, we cannot accurately predict
which subareas will be covered by the users. Moreover, with-
out foreknowing the true values of the subareas, it is hard to
predict which subareas are more helpful for the complicated
data inference. Hence, exploiting the user mobility with data
inference to recruit the most effective users is more challeng-
ing in sparse MCS, especially, when the number of recruitment
users is limited.

The existing works mainly focus on the data infer-
ence [8]–[15] while ignoring the user mobility. In order
to reflect the inherently sophisticated value distribution and
the prior correlations between sensing values, the existing
works mainly use the compressive sensing (CS) technol-
ogy and its variants (e.g., spatio–temporal CS [8], [9], [13]
and Bayesian CS [15]) as the data inference algorithms. By
using the CS-based methods, these works can collect data
from a few subareas and infer the full map. To select the
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Fig. 1. Users sense data from the subareas they pass by, then upload them
to infer the data of unsensed subareas.

most useful sensing subareas for data inference, they also
design some subarea selection strategies. Liu et al. [14] and
He and Shin [15] infer the current sensing data for all sub-
areas, compare them with those collected/inferred data in the
last sensing cycle, and then decide to sense the subarea which
has the largest difference. Wang et al. [8], [9], [13] used
various inference algorithms and sensed the most uncertain
subarea, in which the inferred data of various algorithms have
the largest variance. All these works mainly focus on select-
ing the effective subareas, but they ignore whether the selected
subareas could be easily achieved by the users. In fact, some
subareas may be useful for data inference but no users will
reach there and collect data. Therefore, the more practical
approach is to turn attention from subarea selection to user
selection/recruitment, i.e., to select the effective users who col-
lect data from the subareas they pass by, and then use these
useful data to infer the data of the unsensed subareas.

In this article, by exploiting the data inference with user
mobility, we propose several approaches to address the user
recruitment problem in sparse MCS. Considering the variable
user mobility and complicated data inference, it is really chal-
lenging to directly select the best user set which helps the most
in data inference. From the user’s side, we can only obtain the
probabilistic coverage by using the mobility prediction model
to predict the users’ mobilities, while the probabilistic cover-
age cannot indicate the data inference accuracy directly. From
the subarea’s side, we may identify some effective subareas
under certain states (e.g., the previous sensed subareas and
the current expected coverage) for the CS-based data inference
algorithms, while these effective subareas may not be covered
by the users. Moreover, both the user mobility and data infer-
ence introduce a lot of uncertainty, e.g., a newly recruited user
sensing, some abnormal data may lead to bad results, which
yields nonmonotonicity and thus nonsubmodularity in the user
recruitment problem. In other words, we should select the best
user set from such a large number of possible user sets (due to
the user mobility), each of which has a probabilistic coverage
of subareas with a nonlinear utility (due to the data inference).
Therefore, considering the user mobility and data inference,
the user recruitment problem in sparse MCS becomes so chal-
lenging that we should study the problem on both the user and
subarea sides and propose a three-step strategy that consists
of user selection, subarea selection, and US-cross selection.

First, by using the mobility prediction, we select some
candidate user sets to cover the most subareas under the bud-
get constraint (user selection), which significantly reduces the
number of candidates without considering the data inference.

Specifically, we propose a local beam search (LBS) method to
select the best k candidate user sets which can cover the most
subareas, instead of considering directly data inference accu-
racy. In general, the more covered subareas will provide more
information for enhancing the data inference accuracy, based
on which we can roughly, but significantly, reduce the possi-
ble candidate user sets. Moreover, we aim to roughly select
k candidate user sets, rather than search the best one. Thus,
we propose the LBS method to cut the bad user sets while
hold the good ones, which can further reduce the resource
consumption and improve the time efficiency. In addition, we
can use the beamwidth k in the LBS method to ensure that
our kept k candidate user sets will cover the best one for data
inference.

Then, according to the expected coverage by the candi-
date user sets, we identify the useful subareas under the
current states (subarea selection), which may achieve the high-
est inference accuracy without considering the user mobility.
Specifically, we formulate the subarea selection as a finite
Markov decision process (MDP) and use a reinforcement
learning (RL) method to select the useful subarea sets. The
basic idea is to try out all the possible subareas and record
their inference accuracies. Note that the effectiveness of sub-
areas is determined by the different states and the selected
subareas will also change the states. Hence, we use RL to
deal with such interactions between the selected subareas and
the states through trial and error. Compared with the existing
subarea selection methods, which mainly use some indirect
measures (the difference between the sensing cycles or algo-
rithms), RL can select the more effective subareas, which
directly influences the cumulative inference accuracy.

Finally, we cross the candidate user sets and useful subareas
to recruit the best user set (US-cross selection). Due to the
variable user mobility and complicated data inference, we first
use the LBS-based user selection to reduce the large number
of candidates and provide the possible states, which are then
used in the RL-based subarea selection to identify the useful
subareas. Considering the changed effectiveness of subareas
under different states, we conduct a weighted cross between
the candidate user sets and the useful subareas to select the
best one. In this way, considering the user mobility and data
inference, our proposed three-step strategy can deal with the
user recruitment problem in sparse MCS on both user’s and
subarea’s sides.

In summary, this article has the following contributions.
1) We formalize the user recruitment problem in sparse

MCS, in order to make full use of user mobility with
data inference and provide high-quality sensing services.

2) Due to the variable user mobility and complicated data
inference, we propose a three-step user recruitment strat-
egy on both user and subarea sides. We first propose an
LBS method to select k user sets as candidates, which
cover the most subareas. Using RL, we then identify
which subareas are more effective in data inference,
which finally guides us to recruit the best user set from
the candidates.

3) We evaluate the proposed algorithms on two real-world
data sets with four typical sensing tasks and verify the
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effectiveness of our proposed algorithms in enhancing
the accuracy of the inferred results.

The remainder of this article is organized as follows. First,
we review related works in Section II. Then, the user recruit-
ment problem is formulated in Section III and we present our
three-step strategy in Section IV. The performance is eval-
uated in Section V and, finally, we conclude this article in
Section VI.

II. RELATED WORK

A. Sparse Mobile Crowdsensing

With the rapid development of mobile communications and
smart devices, MCS becomes a powerful sensing paradigm,
which allows users to use the smart devices carried by them
to sense data from the target areas they pass by [1], [2], [16].
In order to provide high-quality sensing services, most of the
existing MCS systems have to recruit a large number of users
to sense data from all of the target sensing areas [6], [17]–[19].
Obviously, these systems cost a lot for user recruitment, and
it is still hard to avoid that there are some subareas that have
not been covered, since we may find no participants in these
subareas. To deal with this problem and further reduce the
costs, some researchers proposed to sense data from only a
few subareas and use some data inference algorithms to infer
the data in unsensed subareas, which is called sparse MCS [8].

Recently, many sparse MCS systems have been developed
for various large-scale sensing systems and achieve very good
performances. Rana et al. [20] presented a participatory urban
noise mapping system, which uses the incomplete and random
crowdsourcing data to infer the urban noise map by using CS.
Zhu et al. [21] also proposed a CS approach for the traffic
estimation from the data periodically collected by probe vehi-
cles. Wang et al. [8]–[10], [13] formally proposed the sparse
MCS paradigm and presented a framework with three stages:
1) data inference; 2) quality assessment; and 3) cell selection.
They also conducted experiments with applications in temper-
ature, humidity, air quality, and traffic monitoring to verify
the effectiveness of sparse MCS. Liu et al. [14] presented an
incentive design for the air pollution monitoring system in
sparse MCS. He and Shin [15] also presented an incentive
mechanism based on Bayesian CS in sparse MCS, in order to
steer the crowdsourced signal map construction. With sparse
MCS, these works can use only a few sensed data to infer the
full sensing map with high accuracy, which can significantly
reduce the sensing costs while providing high-quality services.

B. User Recruitment

In MCS, user recruitment is a foundational issue where
the organizer would like to recruit the most effective
users, in order to provide high-quality sensing services.
Karaliopoulos et al. [22] considered user recruitment as a min-
imum cost set cover problem and proposed a greedy method to
deal with it. Pu et al. [23] formulated an online multiple stop-
ping problem to dynamically select users for the self-organized
MCS systems. Xiao et al. [24] further considered the deadlines
and sensing duration of tasks. Liu et al. [6] paid more attention
to user mobility and proposed a prediction-based user recruit-
ment strategy to effectively select users to perform more tasks.

Wang et al. [17] also considered the cost of data uploading
and proposed an efficient prediction-based solution for user
recruitment. All of the above works intend to utilize the user
mobilities to effectively select the best user set which can cover
more target sensing areas (or complete more sensing tasks).
In order to further reduce the costs, sparse MCS is presented
to use data inference algorithms to infer the full sensing maps
from partially sensed data.

In sparse MCS, almost all of the existing works use the CS
or its variations as the data inference algorithms to infer the
full map from the partially sensed data, in order to enhance
the data accuracy. However, these works mainly focused on
the data inference but paid less attention to user recruit-
ment. Rana et al. [20] and Zhu et al. [21] ignored the user
recruitment and mainly used the incompletely and randomly
collected data to recover the full map. Some researchers
ignored the user mobilities and assumed that the users in
one subarea can be recruited immediately when the subarea
has been selected to sense, and thus they considered the sub-
area selection as user recruitment. Liu et al. [14] and He and
Shin [15] designed the incentive mechanisms to steer users
to sense data from the subareas with more value differences
between the last and current sensing cycles. Wang et al. [8],
[9], [13] used several inference algorithms to deduce the full
maps, and then choose the most uncertain subarea to sense, in
which the inferred data of various algorithms have the largest
variance. These previous works intend to select the effective
subareas to sense, in order to achieve the high data infer-
ence accuracy. However, the subarea selection methods ignore
whether the selected subareas could be easily covered by the
users, since they have not considered the user mobilities.

III. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first present the system model. Then,
the mobility prediction model and CS method are introduced
briefly. Finally, we formulate the user recruitment problem
in sparse MCS and provide a running example. The main
notations used throughout this article are illustrated in Table I.

A. System Model

We consider a general sensing scenario where the requester
wants to obtain fine-grained sensing results around a large-
scale sensing area for a period of time. In order to provide
high-quality sensing services, the whole sensing campaign
is equally divided into some sensing cycles, denoted as
T � {t1, t2, . . . , tτ } with t1 = [tb1, te1]. Similarly, the tar-
get sensing area is split into m subareas, denoted as A �
{a1, a2, . . . , am}, and then fine-grained sensing results of all
m subareas are provided for each sensing cycle. The lengths
of sensing cycles and the sizes of subareas are determined
according to the requirements of the certain sensing task.1 As
an example, Zheng et al. [25] split the Beijing urban area
into 1000 × 1000 m2 subareas and would like to provide fine-
grained air quality sensing services for all subareas every hour.
Under such a large-scale target area, we usually have a large m

1If they are irregular, we may further utilize some algorithms, such as
numerical interpolation method, to better capture their inherent correlations
for data inference.
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TABLE I
MAIN NOTATIONS

for the fine-grained sensing results and need to recruit a large
number of users, which costs a lot, and thus we introduce the
sparse MCS to deal with this problem.

At each sensing cycle, we consider that there are n users,
denoted as U � {u1, u2, . . . , un}, moving around the m sub-
areas. During a sensing cycle, users may pass by several
subareas, denoted as li � {ai1 , ai2 , . . . , ai|li| } for user ui. We
assume that they can successfully and accurately sense data at
their covered subareas if they have been recruited.2 We also
consider a budget constraint Bu on the number of recruited
users, that is, we only recruit a number of Bu users for each
sensing cycle and use μu to denote the recruited user set. These
users may cover some subareas according to their mobilities
(mobility prediction in Section III-B). Then, we use some
historical data sensed from the previous cycles and the cur-
rent data collected by μu to infer the data of the remaining
unsensed subareas in the current sensing cycle (data inference
in Section III-C).

B. Mobility Prediction via Semi-Markov Model

From the opportunistic perspective, the recruited users are
unconsciously moving among the sensing subareas and we
consider that they can successfully and accurately sense data
at their covered subareas. Considering the time constraints of
the sensing cycles and strong laws governing the mobility of
humans, we use a modified semi-Markov model [6], [7], [17]
to predict the time-dependent transition probabilities between
the subareas as the user’s mobility prediction. In this model,
the subareas can be seen as the states and mobile users moving
between subareas can be seen as the transition between states.
Then, we can predict the probabilities that users cover each

2Note that the sensed data are usually error prone and private in MCS,
which will directly influence the data inference. Actually, the sensing data
quality and privacy protection are important research problems [26]–[28],
while they are not the main concerns of this article. Therefore, to simplify the
problem, we assume that the recruited users can successfully and accurately
sense data from the subareas they pass by.

Fig. 2. Example of the mobility prediction model.

subarea within the sensing cycle, which are further used to
estimate the data inference accuracy.3

Specifically, we consider the user mobility prediction among
the target sensing subareas. In order to further reduce the large
number of computations, for each user, we only consider the
transitions between the nearby subareas he can reach (by walk,
bicycles, or vehicles) within the sensing cycles, while ignor-
ing the other invalid subareas. Fig. 2 provides an example
of our mobility prediction model, where we only consider
the user’s nearby subareas. The time-dependent semi-Markov
kernel Zu(ai, aj, t), i.e., the probability that user u will move
from his current subarea ai to his next subarea aj within time
t, is defined by

Zu
(
ai, aj, t

) = Z
(

An+1
u = aj, tn+1

u − tnu ≤ t|An
u = ai

)
(1)

where t indicates the time constraint and Au is the user’s
moving sequence of subareas. For this probability Zu, we only
consider the nearby subareas and calculate it from the statisti-
cal results of users’ historical mobility records. Furthermore,
we consider the relay state transitions and obtain Qu(ai, aj, t),
i.e., the probability that user u will move from the subarea ai

to aj just at the time t as follows:

Qu
(
ai, aj, t

) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

�
Au
ak �

t
t′=1

(
Zu

(
ai, ak, t′

) − Zu
(
ai, ak, t′ − 1

))

× Qu
(
ak, aj, t − t′

)
, ai �= aj

1 −�
Au
ak,ak �=ai

(Zu(ai, ak, t)
−�t

t′=1

(
Zu

(
ai, ak, t′

) − Zu
(
ai, ak, t′ − 1

))

× Qu
(
ak, ai, t − t′

))
, ai = aj

(2)

where Qu(ai, ai, 0) = 1 and Qu(ai, aj, 0) = 0, if ai �= aj.
Specifically, when ai �= aj, we consider the relay state tran-
sitions as ai → ak → aj and calculate the total probability.
When ai = aj, we further consider the probability that users
stay at the same subareas. With the Qu(ai, aj, t) from mobility
prediction, we obtain pui(aui , aj, ts), i.e., the probability that
user ui (at the subarea aui ) can cover the subarea aj within the
sth sensing cycle as follows:

pui

(
aui , aj, ts

) = 1 − tes
�

t=tbs

(
1 − Qu

(
aui , aj, t

))
. (3)

Then, we derive the probabilities that the recruited user set μu

can cover the subareas aj ∈ A within the sth sensing cycle and

3Note that the mobility prediction will influence the performance of our
sparse MCS, but the impact will not be significant. On the one hand, we focus
on the predicted coverage of users in a certain period of time but not the more
accurate mobility. On the other hand, the data inference algorithm will give
us another guarantee and infer the data as accurately as possible.
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also calculate the expected number of the covered subareas as
follows:

P
(
μ, aj, ts

) = 1 −�ui∈μ
(
1 − pui

(
aui , aj, ts

))
(4)

E(μ, ts) =
∑

aj∈A

(
1 −�ui∈μ

(
1 − pui

(
aui , aj, ts

)))
. (5)

C. Data Inference via Compressive Sensing

In sparse MCS, we recruit some users for each sensing cycle
and the recruited users unconsciously move among the subar-
eas to sense and upload data. Then, we use the historical and
current sensed data to infer the data of the remaining unsensed
subareas via CS techniques. We model the ground truth of the
full map at the sth cycle as Vs � [vs

1, vs
2, . . . , vs

m]T , with the
inferred values V̂s and the actual sensed values Vs’. In order
to measure the data inference accuracy, the error function is
defined as E(Vs, V̂s) with the ground truth Vs and the inferred
data V̂s as follows:

E
(

Vs, V̂s
)

=
m∑

i=0

∣
∣∣vs

i − v̂s
i

∣
∣∣. (6)

Considering the last l sensing cycles and the current one, we
obtain the ground-truth matrix F � [Vs−l, . . . ,Vs−1,Vs], with
the inferred matrix F̂ and the actual sensed matrix F′. Given
historical and current sensed data matrix F′, we can use CS as
the data inference algorithm to infer the unsensed data at the
current sensing cycle. Mathematically, for a certain task, we
infer the F̂ from the F′ based on the low-rank property [29]
as follows:

min rank
(

F̂
)

(7)

s.t. F̂ ◦ C = F′ (8)

where ◦ represents the elementwise multiplication and C
marks whether one subarea has been sensed, i.e., C[i, j] = 1
means that the subarea ai has been sensed at the jth cycle;
otherwise, C[i, j] = 0. Using singular value decomposition,
i.e., F̂ = LRT , we can convert the above optimization problem
from minimizing the rank of F̂ to minimizing the Frobenius
norms of L and R as in the following optimization:

min λ
(
‖L‖2

F + ‖R‖2
F

)
+ ∥∥LRT ◦ C − F′∥∥2

F (9)

where the condition F̂ ◦C = LRT ◦C = F′ has been converted
into the optimization and λ allows a tunable tradeoff between
rank minimization and accuracy fitness.

In order to better capture the inherent correlations in sensing
data, we further present temporal and spatial correlations [9],
[29], [30] considered in the optimization

min λr

(
‖L‖2

F + ‖R‖2
F

)
+ ∥∥LRT ◦ C − F′∥∥2

F

+ λt
∥∥(

LRT)
T

T
∥∥2

F + λs
∥∥S

(
LRT)∥∥2

F (10)

where λr, λt, and λs control the tradeoff between different
correlations and T and S are temporal and spatial correlation
matrices defined as follows.

1) T presents the temporal correlations among the sens-
ing results of the same subarea at different cycles.

A simple correlation matrix can be used as T =
Toeplitz(0, 1,−1), which intuitively reflects that two
continuous sensed values from the same subarea are
usually similar.

2) S presents the spatial correlations among the sensing
results of the different subareas at the same cycle. In
general, the closer subareas usually have the similar
sensed values. Therefore, we use the distance between
two subareas to model the spatial correlations, denoted
as S[i, j] = exp (−distance(i, j)/σ 2

s ). Then, we nor-
malize the matrix S as

∑m
j=1,j �=i S[i, j] = 1 and set

S[i, i] = −1 ∀i = {1, . . . ,m}.
Moreover, if we have domain knowledge or historical data,

we can further learn and train a more sophisticated T, in order
to capture and express more correlations, such as the periodic
changes in sensing data, e.g., traffic speed. Similarly with T,
we can further capture the correlations between different but
not close subareas in S, e.g., some subareas that have similar
surroundings and thus similar sensed results. Without loss of
generality, we use the Toeplitz matrix and distance function to
express the typical temporal and spatial correlations in sens-
ing data. Actually, the other constraints or correlations can be
easily applied in (10). Then, the alternating least squares [29]
procedure is used to estimate L and R iteratively to get the
optimal F̂ (i.e., F̂ = LRT ), which converges quickly in our
experiments (less than 20 iterations and costs ∼ 0.5 s, which
is totally acceptable in practical use).

D. Problem Formulation

Based on the above system model, mobility prediction
model, and CS method, we describe our user recruitment
problem for sparse MCS.

Problem (User Recruitment in Sparse MCS): Given a sparse
MCS task with m subareas and τ sensing cycles, for each
cycle, we recruit a total of Bu users who unconsciously move
among the subareas to sense data from their covered subareas,
and then use the historical and current sensed data to infer the
unsensed data, with the objective of minimizing the cumulative
inference errors

minimize
τ∑

s=0

E
(

Vs, V̂s
)

(11)

subject to
∣∣μs

u

∣∣ ≤ Bu, 0 ≤ s ≤ τ. (12)

We now provide an example to illustrate our user recruit-
ment problem for sparse MCS in more details, as shown in
Fig. 3. Consider that there are three users moving around the
target sensing area, which is spilt into 5 × 4 subareas. User 1
will pass by three subareas while users 2 and 3 only cover two
subareas. For this sensing cycle, we can only recruit Bu = 2
users because of the budget constraint. If we recruit users 1
and 3, we can only sense data from the left corner subareas,
which may not be a good choice. If we recruit users 2 and
3, they only cover four subareas. Therefore, we would like to
recruit users 1 and 2, which can sense five subareas and may
achieve better data inference accuracy than other choices, and
then use the five sensed results to infer the data of unsensed
subareas.
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Fig. 3. Example of user recruitment in sparse MCS.

Note that this example is only used to intuitively under-
stand our problem. Actually, not only the number and locations
of the covered subareas may influence data inference accu-
racy but also the complicated inherent correlations among the
sensing data and even the previous sensed data would also
influence the current decision and data accuracy. In fact, the
user recruitment problem in sparse MCS is hard to model and
difficult to deal with, and we would like to discuss it in detail
in the next section.

IV. USER RECRUITMENT IN SPARSE MCS

In this section, we focus on the user recruitment problem
and elaborate on the algorithms used in the three-step strat-
egy: 1) user selection; 2) subarea selection; and 3) US-cross
selection. Before the detailed descriptions, we first present
an overview of the three-step strategy to see the relationship
among the three stages.

A. Overview

As introduced above, it is really challenging to directly
select the best user set which helps most on data inference.
The users may cover different subareas and the effectiveness
of subareas is changed, which makes it hard for us to select
the best user set. Also, some subareas are more useful but may
not be covered by the users. Moreover, both the user mobility
and data inference introduce a lot of uncertainty, e.g., a new
recruited user sensing some abnormal data may lead to bad
results, which yields nonmonotonicity and nonsubmodularity
and makes the user recruitment more complicated. Therefore,
we should deal with the user recruitment problem in sparse
MCS on both the user and subarea sides, in order to select
the effective user set which covers useful subareas and thus
achieves better performance on data inference.

Fig. 4 shows the overview of our proposed three-step
user recruitment strategy, consisting of user selection, subarea
selection, and US-cross selection. The basic idea is to select
some candidate user sets and useful subareas from the user’s
and subarea’s sides, respectively, and then cross these candi-
date user sets and useful subareas to select the proper user set
which covers effective subareas.

Fig. 4. Overview of the proposed user recruitment strategy in sparse MCS.

Specifically, we first propose an LBS method to select the
best k user sets which may cover the most subareas. In gen-
eral, the more covered subareas will provide more information
for data inference and the larger beamwidth k ensures that our
selected candidate user sets will cover the best one with higher
probability. Then, according to the numbers of subareas cov-
ered by the candidate user sets, we use an RL method to select
the useful subarea sets, which may achieve the highest infer-
ence accuracy, without considering the user covered situations.
Finally, we cross these candidate user sets and effective subar-
eas to select the best user set which covers the most effective
subareas.

B. User Selection

We consider the user recruitment problem in sparse MCS
on both user and subarea sides. The user selection decides
the covered subareas and these subareas influence the data
inference accuracy. Since the users will cover various subareas,
the user selection faces a large solution space. Meanwhile,
the different subarea sets covered by selected user sets may
achieve different inference accuracies. It is hard to directly
select the most useful user set for inference accuracy, due
to the huge solution space and significant computing costs
on data inference. Therefore, we would like to select some
candidate user sets first, without considering the complicated
subarea selection while providing good candidates.

Our user selection strategy is to select some user sets which
may cover the most subareas instead of considering directly
the inference accuracy. In general, the more sensed subar-
eas will provide more information for data inference and
thus achieve higher accuracy. As shown in Fig. 5, we have
done some experiments to test the number of sensed subar-
eas on four sensing tasks in two real-world data sets, i.e., the
monitoring of temperature and humidity in Sensor-Scope [31]
and PM2.5 and PM10 in U-Air [25] (will be elaborated in
Section V). We randomly select some subareas to sense and
use various data inference algorithms CS and K-nearest neigh-
bors on temporal and spatial dimensions (KNN-T/S) [9]) to
deduce other values. The results show that with the increase in
the numbers of sensed subareas, the errors of the data inference
algorithms will decrease (i.e., the higher accuracy). Therefore,
our user selection would like to select some user sets which
may cover the most subareas as the candidates, since they have
the bigger chances to achieve higher inference accuracy. Then,
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(a) (b) (c) (d)

Fig. 5. Inference errors along with the increasing numbers of sensed subareas in Sensor-Scope and U-Air data sets. (a) Sensor-Scope: Temperature.
(b) Sensor-Scope: Humidity. (c) U-Air: PM2.5. (d) U-Air: PM10.

Algorithm 1 LBS for User Selection
Initialization:

k, U = {u1, u2, . . . , un}, Bu, ts ∈ T
S = {μ1, μ2, . . . , μk}, S′ = {μ′

1, μ
′
2, . . . , μ

′
k},

f (μ) = E(μ, ts) calculates the number of covered subareas
by μ in the s-th sensing cycle.

1: Init μi = μ′
i = ∅ ∀i = 1, 2, . . . , k

2: // Select Bu users
3: for t = 1, 2, . . . ,Bu do
4: // Greedily select the best k user sets
5: for μi in S do
6: for uj in U \ μi do
7: if μtemp = μi ∪ uj not in S′ then
8: μmin = arg min f (μ′

i) ∀μ′
i ∈ S′

9: if f (μtemp) > f (μmin) then
10: μmin = μtemp

11: // Update S from the kept S′
12: S = S′
13: return S

we further consider the data inference and select the best one
from the candidates in the next two steps.

In order to select the candidates quickly and effectively, we
propose a greedy LBS (LBS) [32] method to select the best
k user sets, as shown in Algorithm 1. The basic idea of our
greedy LBS-based user selection algorithm is to expand and
keep the best k user sets as the candidates. For each selection,
we expand the kept candidates successively (line 5) by adding
one unselected user into them and keep the best k expanded
sets which may cover the most subareas (lines 6–10). Note
that we would not hold the sets with same users in our method
(line 7). Finally, we obtain the best k user sets each with Bu

users for the current sensing cycle. The parameter k is called
beamwidth; a larger k has a bigger chance to cover the optimal
result but also costs more (not only in user selection but also
in data inference).

C. Subarea Selection

Given the candidate user sets from user selection, we need
to further select the best one of them which can provide the
most information to help data inference. Although the user
selection has significantly reduced the number of candidates,
we still need to keep a large k, in order to cover the best user
set for data inference. Moreover, since we cannot accurately

Fig. 6. State, action, and reward in subarea selection.

predict how much one user set can help data inference without
knowing the ground truth, it is also a big challenge to identify
which user set is the most effective one. Fortunately, we can
use RL to learn which subareas are more effective under the
certain conditions given by the candidate user sets, and then
it will guide us to further select the best user set.

1) State, Action, and Reward: The basic idea of our RL-
based subarea selection is to try out all the possible sensed
subareas, infer the data in unsensed subareas, and record the
inference accuracy by utilizing the historical data. In this way,
we can learn that some subareas are more effective through
trial and error, which is exactly the fundamental idea of RL. In
general, RL is abstracted to take a sequence of actions under
certain states so as to maximize the cumulative rewards, and
our subarea selection can be formulated to select a sequence of
subareas to sense (action) considering the data already sensed
(state) so as to maximize the final data inference accuracy
(reward), as shown in Fig. 6.

1) State represents the current situation, which influences
the choice of action on the data inference accuracy in
our problem, denoted as s. We model the state as a one-
hot selection matrix for the several recent cycles and a
timestamp, where the selection matrix expresses when
and where we have sensed data and the timestamp helps
RL to learn the temporal patterns in the sensing data.

2) Action is what we decide to do under a certain state. In
our problem, the action is naturally the next sensed sub-
area, denoted as a. Note that we model the action as only
one subarea instead of a set of subareas to sense, since
the set space is too large and we have to add subareas
one by one, just like a greedy method.

3) Reward represents the revenues obtained by one action
under a certain state. In subarea selection, the reward is
modeled as the data inference accuracy directly, denoted
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as r = exp(−E(V, V̂)/σ 2
e ). The smaller inference error

E means the higher accuracy, where r is closer to 1.
2) RL-Based Subarea Selection: With the state, action, and

reward, we propose the RL-based subarea selection algorithm
as shown in Fig. 6. Specifically, under a certain state, we use
the Q-table/neural networks (NNs) to estimate the rewards for
all subareas and select subarea a4 as the action, since it has the
largest reward. Actually, RL is to learn the mappings between
the state–action pairs and rewards, and we will introduce them
in detail as follows.

Q-table is used in the traditional RL algorithms, e.g., Q-
learning, where we use a table to record the rewards of all
state–action pairs, denoted as Qs×a. For each selection, we
search the Q-table to find the action which records the largest
reward, i.e., a = arg max Q[s, a] ∀a ∈ A. Since RL further
considers the future rewards of one action under a certain state,
we then iteratively update Q-table according to the following
equations:

Q[st, at] = (1 − α)Q[st, at] + α(rt + γV(st+1)) (13)

V(st+1) = max
at+1

Q
[
st+1, at+1

] ∀at+1 ∈ A (14)

where st is the current state and V(st+1) represents the iterative
future reward under the learning rate α ∈ (0, 1] and discount
factor γ ∈ [0, 1] (indicating the myopic view of the Q-learning
regarding the future reward).

Neural network is a powerful tool for RL, where we use
NNs instead of Q-table to estimate the rewards for all state–
action pairs. In subarea selection, suppose that we have 50
subareas and only keep five cycles of selections as the state
(ignore the timestamp), the size of state space achieves 25×50,
which is such a huge space that the traditional Q-table-based
algorithms can hardly deal with by using Q-tables. Therefore,
we propose to use NNs to replace the Q-table, called deep Q-
learning (DQL). For each selection, we use NNs to estimate
the rewards for all actions under a certain state instead of
searching a large Q-table as shown in the following equations:

Q(st, at) = E

[
rt + γ max

at+1
Q(st+1, at+1)

]
. (15)

For the updating or training in DQL, we use the stochastic
gradient algorithm to update the neural network parameterized
by θ to approximately achieve Qθ (st, at) ≈ Q[st, at] ∀st, at.
According to (13)–(15), we have the loss function:

L(θt) = E〈st,at,rt,st+1〉
[(

rt + γ max
at+1

Qθt(st+1, at+1)

− Qθt(st, at)

)2
]

. (16)

Thus

∇θt L(θt) = E〈st,at,rt,st+1〉
[(

rt + γ max
at+1

Qθt(st+1, at+1)

− Qθt(st, at)

)
∇θt Qθt(st, at)

]
.

(17)

Specifically, we design the NNs with two dense layers,
which can deal with the heterogeneous inputs (state) and

Algorithm 2 RL for Subarea Selection
Initialization:

ε, s, a, r, P, A, |μu|
1: Init P = ∅, set ε
2: Init two neural networks with random weights θt and θ ′ =
θt

3: for t = 1, 2, . . . , |μu| do
4: Obtain st and Q(st, at) ∀at ∈ A
5: if isTrain then
6: Select at with ε-greedy algorithm
7: rt = Q(st, at), obtain st+1
8: et = 〈st, at, rt, st+1〉 → P
9: if isTrain_step_t then

10: Train by P and update θt via Eq. (17)
11: if isReplace_step_t then
12: θ ′ = θt

13: else
14: at = arg max Q(st, at) ∀at ∈ A
15: return {a1, a2, . . . , a|μu|}

achieve good enough performances.4 The detailed algorithm
is summarized in Algorithm 2. For each selection, we obtain
the current state st, feed it into NNs, and obtain the outputs
Q(st, at) for all at in A (line 4). If NNs do not need to train,
we directly select the action which has the largest Q(st, at)

(line 14). Otherwise, we use the ε-greedy algorithm for each
selection to balance the explore and exploit, where we select
the best at with the probability 1 − ε or randomly select an
action with the probability ε (line 6). Then, we conduct the
experience et and add it into memory pool P (lines 7 and 8).
For the training steps, we randomly select some experience to
learn and update the network parameters θt (lines 9 and 10).
We also use the fixed Q-targets [33], which holds a tar-
get network with the parameters θ ′ cloned from the primary
network but updates θ ′ periodically (lines 11 and 12). Finally,
we obtain the useful subarea sets according to the numbers of
covered subareas provided by user selection, which are more
effective subareas and can guide us to further select the best
user set.

D. User–Subarea-Cross Selection

After the user selection and the subarea selection, we obtain
k candidate user sets and several useful subarea sets according
to the numbers of subareas covered by k candidate sets. The k
candidates cover almost all effective user sets and the useful
subarea sets tell us which subareas are more effective under the
current state with certain numbers of covered subareas. Then,
we do a weighted cross between the candidate user sets and
the useful subarea sets as shown in the following equations:

W(ψμ,ψs) =
(

1 − �ψs

)
· �ψμ × ωavg + �ψs · �ψμ × ωrl (18)

where �ψμ � [P(μ, a0, ts),P(μ, a1, ts), . . . ,P(μ, am, ts)]T

indicates the probabilities that the selected user set μ can cover

4Other network structures and attention mechanism may further improve
the performance, while it is not the main concern of this article.
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TABLE II
STATISTICS OF TWO EVALUATION DATA SETS

the m subareas within the sth sensing cycle and �ψs records
the selected subareas by 1 and the unselected subareas by 0
in subarea selection.

Specifically, we first give the average weights ωavg to all
unselected subareas and give higher weights ωrl to the selected
subareas in the useful subareas. Using the RL training memory
pool P, we calculate the inference accuracy for the subareas
selected by RL as ωrl. Using other historical records, we obtain
the average inference accuracy for all subareas ωavg. Then, we
allocate the weights ωavg and ωrl to subareas and do a weighted
cross to select the user set with the largest total weights from
k candidates, which represents the more covered subareas and
the more effective subareas. For example, suppose that we
calculate the average inference accuracy by random and RL-
based subarea selection as 1 − ERAN = 1 − 0.2 = 0.8 and
1 − ERL = 1 − 0.1 = 0.9, and then give the weight 0.8 to all
unselected subareas and 0.9 to the selected subareas. Finally,
we calculate the total weights of k candidate user sets, respec-
tively, and then decide the final selected user set with the
largest weight. In this way, we utilize the useful subarea sets to
select the expected effective user set from k candidates, which
not only cover more subareas but also cover more effective
subareas and thus may be the most helpful for data inference.

V. PERFORMANCE EVALUATION

In this section, we conduct extensive experiments based on
two real-life data sets, which contain various types of sensed
data, including temperature, humidity, PM2.5, and PM10.

A. Data Sets

We adopt two well-known sensed data sets, Sensor-
Scope [31] and U-Air [25], to evaluate our user recruitment
strategy for sparse MCS. Sensor-Scope [31] contains two
typical types of environment readings, i.e., temperature and
humidity. U-Air has two important types of sensed data for
air quality monitoring, i.e., PM2.5 and PM10. Table II shows
the detailed statistics of Sensor-Scope and U-Air and their
descriptions are introduced as follows.

The Sensor-Scope [31] data set contains two representative
types of environment readings, i.e., temperature and humidity,
which were collected by static sensors in the EPFL campus.
The sensing area is about 500 × 300 m2 and we obtain 57
subareas each with the size of 50×30 m2 which had continual
sensing readings, as shown in Fig. 7.

(a) (b)

Fig. 7. Example of sensing readings in Sensor-Scope. (a) Temperature.
(b) Humidity.

The U-Air [25] data set collects the important air quality
data, i.e., PM2.5 and PM10, by monitor stations deployed in
Beijing, China. As in [25], we obtain 36 subareas each with
the size of 1000 × 1000 m2. In fact, U-Air has an unbalanced
subarea distribution, which is relatively dense in the urban
areas and very sparse in the suburbs. In addition, as shown
in Table II, the air quality readings have the large fluctuations
and we use the air quality index category [25] instead of the
original readings.5

Although these data were sensed by static sensors, we
assume that mobile users passing by the sensing areas cov-
ered by sensors means that they can successfully sense the
data by their mobile devices. Since we cannot obtain the real-
life mobility traces exactly mapped by the sensed time and
locations, we simply generate a large number of continuous
moving trajectories in the sensing areas as the users’ mobility
traces, according to the widely used Cambridge Haggle Trace
Set [34] for Sensor-Scope and GeoLife [35] for U-Air. The
Cambridge Haggle Trace Set contains a total of five traces
collected from office and conference environments by people
carrying mobile devices over a number of days, which can
be easily mapped to the EPFL campus of Sensor-Scope. The
GeoLife contains the GPS data collected from phones carried
by 182 users, which record a broad range of users’ outdoor
movements in Beijing (the same city as in U-Air). Thus, we
consider our experiments as the mobile users moving around
the sensing areas and collecting data from the subareas they
pass by, which can help evaluate our proposed user recruitment
strategy effectively.

In the experiments, for user mobility, we select n trajecto-
ries as the participating users who cover 0–5 subareas for each
sensing cycle during the whole sensing process, and the distri-
butions are shown in Fig. 8. Note that Sensor-Scope has a small
size (the EPFL campus) and most users will cover five subar-
eas within one sensing cycle, while U-Air has such a large size
(Beijing City) that the users will cover few subareas. For data
inference, we use the temporal–spatial CS method described
in Section III-C. For RL, we use the first two days’ data as the

5Six categories: good (0–50), moderate (51–100), unhealthy for sensi-
tive groups (101–150), unhealthy (150–200), very unhealthy (201–300), and
hazardous (>300).
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(a) (b)

Fig. 8. Distribution of the covered subareas numbers for each user per cycle.
(a) Sensor-Scope (b) U-Air.

training data and the rest for testing. In each sensing cycle, we
select Bu users and use the data sensed by their covered sub-
areas to deduce the full sensing maps and obtain the inference
error E . Then, we calculate the average E obtained from all
cycles as the data accuracy for evaluation. In order to further
reduce errors caused by random traces, we repeat this process
over 10 times to get the average results for each experiment.

B. Algorithms and Configurations

We compare our user recruitment strategy with three meth-
ods: 1) MAX-LBS; 2) OPT-RL; and 3) RAN as follows.

1) MAX-LBS first uses a greedy LBS method to select the
best k user sets, as introduced in Section IV-B. Then,
from the k candidate user sets, we directly select the
one which may cover the most subareas.

2) OPT-RL is an RL-based subarea selection algorithm.
The basic idea is to try out all of the possible subar-
eas to sense and thus learn which subarea may achieve
the largest reward under certain conditions. OPT-RL has
not considered if the subareas can be covered by mobile
users, which can be seen as the near-optimal selection
for comparison.

3) RAN randomly selects users and then we use the data
sensed from their covered subareas to infer the full
sensing maps.

For RL, we conduct a simple neural network with two fully
connected layers and initialize it with random weights. Note
that the training process of RL is not stable, and the random
initialization strategy may influence the final results. Following
the existing works, we use the experience replay, fixed Q-
targets, and ε-greedy algorithm to deal with the problems, as
discussed in Section IV-C. For the parameters, we dynamically
adjust ε from 1 to 0.1 for the whole process of training and
set the learning rate α = 0.05 and discount factor γ = 0.99
in (13). For the RL model, we keep the selection matrix with
the recent five cycles and the timestamp T from {0, 1, . . . , 47}
as the state (input) and the neural network outputs the rewards
of actions (subareas). Thus, the size of input is 5 × 57 + 1 =
343 and the size of output is 57. Similarly, for U-Air, we
also keep recent five cycles, T is set as {0, 1, . . . , 23} and the
sizes are 217 and 36. In addition, we use the Toeplitz(0,1,−1)
and distance function as our temporal and spatial correlation
matrices in the CS method and set λr = 0.2, λs/t = 0.1 for (10)
and σs = 1 for distance function, without loss of generality.

C. Experimental Results

We evaluate the performances of our user recruitment strat-
egy for sparse MCS on two real-life sensing tasks. First, we
display a complete picture of the average inference errors
which are achieved by our user recruitment strategy under
two changed conditions, i.e., the number of recruited users
Bu and the number of total users n, as shown in Fig. 9. We
can see that the inference errors over two types of sensing
tasks have the similar tendencies. Along with the increasing
of Bu and n, our proposed user recruitment strategy can recruit
the effective users to enhance the data accuracy (reduce the
inference errors). In the next sections, we will evaluate and dis-
cuss the performances of our user recruitment strategy from
the number of recruited users, the number of total users, the
beamwidth, and the running times of all tested methods in
detail.

1) Number of Recruited Users: We first test the average
inference errors under different numbers of recruited users Bu.
We change Bu from 1 to 5 while keeping the number of total
users |U| = n = 100 and the beamwidth k = 10. The results
are shown in Fig. 10. Note that we set Bu to a small number
while keeping a large n, in order to evaluate that a small num-
ber of users can achieve a high inference accuracy, which is
exactly the fundamental idea of sparse MCS.

With the increase of Bu, the inference errors drop rapidly.
The reason is that more recruited users mean more covered
subareas, which can provide more information for data infer-
ence and thus enhance data accuracy. Similarly, MAX-LBS
can recruit the user set which covers the most subareas, and
thus it achieves better performance than RAN. Moreover, our
strategy always outperforms MAX-LBS, since it finds the
more effective user sets from the candidates which can cover
the most subareas. Meanwhile, OPT-RL actually can be seen
as the upper bound because it selects subareas without con-
sidering the user mobilities, and our user recruitment strategy
is very close to it.

Specifically, for the temperature, our user recruitment strat-
egy can reduce inference errors by 14.8%–31.4% compared
with RAN, and 10.3%–25.1% compared with MAX LBS,
under the same number of recruited users. Meanwhile, it
has only 5.2%–7.8% more inference errors than OPT-RL,
which has not considered the user mobilities. Similarly, for
the humidity, our strategy can give ∼24.2% and ∼14.3% less
than RAN and MAX-LBS, and ∼9.4% more than OPT-RL.
Actually, when we select three users to sense, we can achieve
a very small inference error, i.e., 0.167 ◦C for temperature and
0.88% for humidity, which is totally acceptable.

For the other two types of sensing tasks, i.e., PM2.5 and
PM10 in U-Air, we obtain similar observations with temper-
ature and humidity in Sensor-Scope. Note that we use the air
quality index category instead of the original readings and
map the six categories into 1–6, in order to evaluate the infer-
ence errors. As shown in Fig. 10(c) and (d), our strategy has
∼25.8%/30.6% less error than RAN and 13.4%/15.6% less
than MAX-LBS in PM2.5/PM10, respectively. Meanwhile, it
increases inference errors by 38.3%/29.0% compared with
OPT-RL. We notice that in PM2.5 and PM10, when we recruit
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(a) (b) (c) (d)(a) (b) (c) (d)

�

Fig. 9. Inference errors under different numbers of recruited/total users (k = 10). (a) Temperature. (b) Humidity. (c) PM2.5. (d) PM10.

(c) (d)(a) (b)

Fig. 10. Inference errors under different numbers of recruited users (n = 100 and k = 10). (a) Temperature. (b) Humidity. (c) PM2.5. (d) PM10.

(a) (b) (c) (d)

Fig. 11. Inference errors under different numbers of total users (Bu = 3 and k = 10). (a) Temperature. (b) Humidity. (c) PM2.5. (d) PM10.

more users, our user recruitment strategy reduces the infer-
ence errors but the falling rate becomes slow and even close
to MAX-LBS. The reason is that we have such a large sensing
area in U-Air and the subarea distribution is unbalanced, which
is relatively dense in the urban areas and very sparse in the
suburbs. Thus, some of the subareas can hardly be covered
by mobile users, which results in that OPT-RL outperforms
MAX-LBS and OURS under a large budget constraint, since
OPT-RL does not consider the user mobilities.

2) Number of Users: Then, we evaluate the performances
of our user recruitment strategy over different numbers of total
users n. We change n from 50 to 150 while keeping the number
of recruited users Bu = 3 and the beamwidth k = 10. The
results are shown in Fig. 11.

Obviously, more users mean more user sets, which cost
more running time but provide more choices for our user
recruitment and thus can improve the performances, partic-
ularly, in the LBS-based user selection method. Therefore,
along with the increase of the number of users, the MAX-
LBS and OURS reduce the inference errors, while the RAN
and OPT-RL barely change, since they have not considered the
user mobilities. When we have enough users, we can select
the best user set from enough choices, and thus the curves
tend to get more steady.

Specifically, the RAN and OPT-RL change little while
MAX-LBS and OURS decrease from 0.222 ◦C/0.193 ◦C to
0.208 ◦C/0.170 ◦C and from 1.56%/1.20% to 1.39%/0.99%,
respectively. Similarly, for PM2.5 and PM10 in U-Air,
as shown in Fig. 11(c) and (d), MAX-LBS and OURS
decrease from 0.226/0.188 to 0.210/0.181 and 0.243/0.213
to 0.222/0.205, respectively. Note that the decreasing rates
are slower than temperature and humidity, since U-Air has
fewer subareas than Sensor-Scope, which needs fewer users
to recruit. Also, the unbalanced subarea distribution indicates
that the MAX-LBS and OURS have big gaps with OPT-RL.

3) Beamwidth: We also conduct some experiments on
beamwidth k to further evaluate the inference error and run-
ning time. We change the beamwidth k from 1 to 10, and
keep the number of recruited users Bu = 3 and the number
of total users n = 100. The results are shown in Fig. 12.
The inference errors of our user recruitment strategy decrease
rapidly when we have a small k, which shows that our user
recruitment strategy can effectively select the best user set
from candidates. When k becomes larger, the inference errors
begin to level off since we have kept enough candidates who
have already covered the most effective one for data inference.
Meanwhile, the running time over two tasks shows the linear
growth all along, since the beamwidth k mainly influences the
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(a) (b) (c) (d)(a) (b) (c) (d)

Fig. 12. Inference errors under different beamwidths (Bu = 3 and n = 100). (a) Temperature. (b) Humidity. (c) PM2.5. (d) PM10.

TABLE III
RUNTIME UNDER Bu = 3, n = 100, AND k = 10

LBS-based user selection by holding and expanding the best
k branches in LBS.

These results also verify the necessity and effectiveness
of our three-step user recruitment strategy. We can see that
although the user sets, which are added as a result of a larger
k, may cover fewer subareas (or cover the same number of
subareas), some of them are more effective on data inference.
Also, as shown in Figs. 10 and 11, OPT-RL may find out the
effective subareas, but they may not be covered by mobile
users. Thus, our user recruitment strategy considers both user
and subarea sides, which can select the best user set which
covers the most effective subareas and thus enhances the data
inference accuracy.

4) Running Time: Finally, we display the running times in
Table III, with the setting Bu = 3, n = 100, and k = 10 as
representative. Our experiment platform is equipped with Intel
Xeon CPU E5-2630 v4@2.20 GHz and 32-GB RAM. For data
inference, the CS method costs 0.35–0.50 s to infer the full
sensing maps for the four tasks, which is totally acceptable
in real-life deployments. For user recruitment, our proposed
strategy costs only 7.0–7.5 ms, in which the LBS and RL cost
∼5.9 ms and 0.7−1.3 ms, respectively. In addition, the running
of computing the mobility prediction model consumes around
5–10 min. The RL method is implemented in TensorFlow
(CPU version) and the training can be conducted offline, which
costs ∼30 min for the neural network with two fully connected
layers.

VI. CONCLUSION

In this article, we investigated the user recruitment problem
in sparse MCS, which can recruit a small number of users to
sense data from only a few subareas while inferring the data
of unsensed subareas with high accuracy. Due to the vari-
able user mobility and complicated data inference, we study
the user recruitment problem on both user and subarea sides
and proposed a three-step user recruitment strategy for sparse

MCS. First, we presented an LBS method to select some can-
didate user sets. Then, we used RL to identify which subareas
are more effective, which finally guides us to select the best
user set from the candidates by using a weighted cross method.
Extensive evaluations on two real-world data sets with four
sensing tasks have verified the effectiveness of our proposed
algorithms. In future work, we would like to introduce some
practical mobility prediction methods and explore the privacy
protection mechanism in our user recruitment solutions for
sparse MCS.

REFERENCES

[1] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: Current state and
future challenges,” IEEE Commun. Mag., vol. 49, no. 11, pp. 32–39,
Nov. 2011.

[2] D. Zhang, L. Wang, H. Xiong, and B. Guo, “4W1H in mobile crowd
sensing,” IEEE Commun. Mag., vol. 52, no. 8, pp. 42–48, Aug. 2014.

[3] Z. Liu, S. Jiang, P. Zhou, and M. Li, “A participatory urban traffic
monitoring system: The power of bus riders,” IEEE Trans. Intell. Transp.
Syst., vol. 18, no. 10, pp. 2851–2864, Oct. 2017.

[4] H. Aly, A. Basalamah, and M. Youssef, “Automatic rich map semantics
identification through smartphone-based crowd-sensing,” IEEE Trans.
Mobile Comput., vol. 16, no. 10, pp. 2712–2725, Oct. 2017.

[5] M. H. Cheung, R. Southwell, F. Hou, and J. Huang, “Distributed time-
sensitive task selection in mobile crowdsensing,” in Proc. 16th ACM Int.
Symp. Mobile Ad Hoc Netw. Comput. (MobiHoc), 2015, pp. 157–166.

[6] W. Liu, Y. Yang, E. Wang, Z. Han, and X. Wang, “Prediction based user
selection in time-sensitive mobile crowdsensing,” in Proc. 14th Annu.
IEEE Int. Conf. Sens. Commun. Netw. (SECON), San Diego, CA, USA,
Jun. 2017, pp. 1–9.

[7] Y. Yang, W. Liu, E. Wang, and J. Wu, “A prediction-based user selec-
tion framework for heterogeneous mobile crowdsensing,” IEEE Trans.
Mobile Comput., vol. 18, no. 11, pp. 2460–2473, Nov. 2019.

[8] L. Wang, D. Zhang, Y. Wang, C. Chen, X. Han, and A. M’hamed,
“Sparse mobile crowdsensing: Challenges and opportunities,” IEEE
Commun. Mag., vol. 54, no. 7, pp. 161–167, Jul. 2016.

[9] L. Wang et al., “SPACE-TA: Cost-effective task allocation exploiting
intradata and interdata correlations in sparse crowdsensing,” ACM Trans.
Intell. Syst. Technol., vol. 9, no. 2, pp. 1–28, 2018.

[10] L. Wang, W. Liu, D. Zhang, Y. Wang, E. Wang, and Y. Yang, “Cell
selection with deep reinforcement learning in sparse mobile crowdsens-
ing,” in Proc. IEEE 38th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Vienna, Austria, 2018, pp. 1543–1546.

[11] W. Liu, L. Wang, E. Wang, Y. Yang, D. Zeghlache, and D. Zhang,
“Reinforcement learning-based cell selection in sparse mobile crowd-
sensing,” Comput. Netw., vol. 161, pp. 102–114, Oct. 2019.

[12] W. Liu, Y. Yang, E. Wang, L. Wang, D. Zeghlache, and D. Zhang,
“Multi-dimensional urban sensing in sparse mobile crowdsensing,” IEEE
Access, vol. 7, pp. 82066–82079, 2019.

[13] L. Wang et al., “CCS-TA: Quality-guaranteed online task allocation in
compressive crowdsensing,” in Proc. ACM Int. Joint Conf. Pervasive
Ubiquitous Comput. (UbiComp), 2015, pp. 683–694.

[14] T. Liu, Y. Zhu, Y. Yang, and F. Ye, “Incentive design for air pollution
monitoring based on compressive crowdsensing,” in Proc. IEEE Global
Commun. Conf. (GLOBECOM), Washington, DC, USA, Dec. 2016,
pp. 1–6.

Authorized licensed use limited to: Temple University. Downloaded on July 09,2020 at 22:17:31 UTC from IEEE Xplore.  Restrictions apply. 



1814 IEEE INTERNET OF THINGS JOURNAL, VOL. 7, NO. 3, MARCH 2020

[15] S. He and K. G. Shin, “Steering crowdsourced signal map construc-
tion via Bayesian compressive sensing,” in Proc. IEEE Conf. Comput.
Commun. (INFOCOM), Honolulu, HI, USA, Apr. 2018, pp. 1016–1024.

[16] D. Yang, G. Xue, X. Fang, and J. Tang, “Incentive mechanisms for
crowdsensing: Crowdsourcing with smartphones,” IEEE/ACM Trans.
Netw., vol. 24, no. 3, pp. 1732–1744, Jun. 2016.

[17] E. Wang, Y. Yang, J. Wu, W. Liu, and X. Wang, “An efficient prediction-
based user recruitment for mobile crowdsensing,” IEEE Trans. Mobile
Comput., vol. 17, no. 1, pp. 16–28, Jan. 2018.

[18] J. Wang, L. Wang, Y. Wang, D. Zhang, and L. Kong, “Task allocation in
mobile crowd sensing: State-of-the-art and future opportunities,” IEEE
Internet Things J., vol. 5, no. 5, pp. 3747–3757, Oct. 2018.

[19] H. Chen, B. Guo, Z. Yu, and Q. Han, “Crowdtracking: Real-time vehicle
tracking through mobile crowdsensing,” IEEE Internet Things J., vol. 6,
no. 5, pp. 7570–7583, Oct. 2019.

[20] R. K. Rana, C. T. Chou, S. S. Kanhere, N. Bulusu, and W. Hu, “Ear-
phone: An end-to-end participatory urban noise mapping system,” in
Proc. 9th ACM/IEEE Int. Conf. Inf. Process. Sensor Netw. (IPSN),
Stockholm, Sweden, 2010, pp. 105–116.

[21] Y. Zhu, Z. Li, H. Zhu, M. Li, and Q. Zhang, “A compressive sensing
approach to urban traffic estimation with probe vehicles,” IEEE Trans.
Mobile Comput., vol. 12, no. 11, pp. 2289–2302, Nov. 2013.

[22] M. Karaliopoulos, O. Telelis, and I. Koutsopoulos, “User recruitment
for mobile crowdsensing over opportunistic networks,” in Proc. IEEE
Conf. Comput. Commun. (INFOCOM), 2015, pp. 2254–2262.

[23] L. Pu, X. Chen, J. Xu, and X. Fu, “Crowd foraging: A QoS-oriented
self-organized mobile crowdsourcing framework over opportunistic
networks,” IEEE J. Sel. Areas Commun., vol. 35, no. 4, pp. 848–862,
Apr. 2017.

[24] M. Xiao, J. Wu, H. Huang, L. Huang, and C. Hu, “Deadline-sensitive
user recruitment for probabilistically collaborative mobile crowdsens-
ing,” in Proc. IEEE 36th Int. Conf. Distrib. Comput. Syst. (ICDCS),
Jun. 2016, pp. 721–722.

[25] Y. Zheng, F. Liu, and H.-P. Hsieh, “U-Air: When urban air quality infer-
ence meets big data,” in Proc. ACM SIGKDD Int. Conf. Knowl. Disc.
Data Min., Chicago, IL, USA, 2013, pp. 1436–1444.

[26] S. Chang, H. Zhu, W. Zhang, L. Lu, and Y. Zhu, “Pure: Blind regression
modeling for low quality data with participatory sensing,” IEEE Trans.
Parallel Distrib. Syst., vol. 27, no. 4, pp. 1199–1211, Apr. 2016.

[27] T. Luo, J. Huang, S. S. Kanhere, J. Zhang, and S. K. Das, “Improving
IoT data quality in mobile crowd sensing: A cross validation approach,”
IEEE Internet Things J., vol. 6, no. 3, pp. 5651–5664, Jun. 2019.

[28] S. Chang, C. Li, H. Zhu, and H. Chen, “Adaptive and blind regression for
mobile crowd sensing,” IEEE Trans. Mobile Comput., to be published.

[29] M. Roughan, Y. Zhang, W. Willinger, and L. Qiu, “Spatio-temporal com-
pressive sensing and Internet traffic matrices,” IEEE/ACM Trans. Netw.,
vol. 20, no. 3, pp. 662–676, Jun. 2012.

[30] S. He and K. G. Shin, “Spatio-temporal adaptive pricing for balancing
mobility-on-demand networks,” ACM Trans. Intell. Syst. Technol. (TIST),
vol. 10, no. 4, p. 39, 2019.

[31] F. Ingelrest, G. Barrenetxea, G. Schaefer, M. Vetterli, O. Couach, and
M. Parlange, “SensorScope: Application-specific sensor network for
environmental monitoring,” ACM Trans. Sensor Netw., vol. 6, no. 2,
pp. 1–32, 2010.

[32] S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach,
Upper Saddle River, NJ, USA: Pearson Educ., 2016.

[33] V. Mnih et al., “Human-level control through deep reinforcement
learning,” Nature, vol. 518, no. 7540, pp. 529–533, 2015.

[34] S. James, G. Richard, C. Jon, H. Pan, D. Christophe, and C. Augustin.
CRAWDAD Dataset Cambridge/Haggle. Accessed: Apr. 25, 2019.
[Online]. Available: https://crawdad.org/cambridge/haggle/20090529,
doi: 10.15783/C70011.

[35] Y. Zheng, L. Zhang, X. Xie, and W.-Y. Ma, “Mining interesting locations
and travel sequences from GPS trajectories,” in Proc. 18th Int. Conf.
World Wide Web, 2009, pp. 791–800.

Wenbin Liu received the B.S. degree in physics
from Jilin University, Changchun, China, in 2012,
where he is currently pursuing the Ph.D. degree with
the College of Computer Science and Technology.

He was also a visiting Ph.D. student with
the Wireless Networks and Multimedia Services
Department, Telecom SudParis/Institut Mines-
Telecom, Évry, France. His research interests
include mobile crowdsensing and ubiquitous
computing.

Yongjian Yang received the B.E. degree in autom-
atization from the Jilin University of Technology,
Changchun, China, in 1983, the M.E. degree in com-
puter communication from the Beijing University
of Post and Telecommunications, Beijing, China, in
1991, and the Ph.D. degree in software and theory
of computer from Jilin University, Changchun, in
2005.

He is currently a Professor and a Ph.D. Supervisor
with Jilin University, the Director of Key Lab
under the Ministry of Information Industry, and the

Standing Director of the Communication Academy. His research interests
include the network intelligence management, wireless mobile communication
and services, and wireless mobile communication.

En Wang received the B.E. degree in software
engineering and the M.E. and Ph.D. degrees in com-
puter science and technology from Jilin University,
Changchun, China, in 2011, 2013, and 2016,
respectively.

He is currently an Associate Professor with the
Department of Computer Science and Technology,
Jilin University. His current research focuses on the
efficient utilization of network resources, scheduling
and drop strategy in terms of buffer-management,
energy-efficient communication between human-

carried devices, and mobile crowdsensing.

Jie Wu (Fellow, IEEE) received the Ph.D. degree
in computer engineering from Florida Atlantic
University, Boca Raton, FL, USA, in 1989.

He was a Program Director of the National
Science Foundation and was a Distinguished
Professor with Florida Atlantic University, Boca
Raton, FL, USA. He is the Director of the Center
for Networked Computing and the Laura H. Carnell
Professor with Temple University, Philadelphia, PA,
USA. He also serves as the Director of International
Affairs, College of Science and Technology. He

served as the Chair of Department of Computer and Information Sciences from
summer 2009 to summer 2016 and an Associate Vice Provost for International
Affairs from fall 2015 to summer 2017. He regularly publishes in scholarly
journals, conference proceedings, and books. His current research interests
include mobile computing and wireless networks, routing protocols, cloud
and green computing, network trust and security, and social network applica-
tions.

Dr. Wu was a recipient of the 2011 China Computer Federation (CCF)
Overseas Outstanding Achievement Award. He is the Chair for the IEEE
Technical Committee on Distributed Processing. He was the General Co-Chair
for IEEE MASS 2006, IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc
2014, ICPP 2016, and IEEE CNS 2016, as well as the Program Co-Chair for
IEEE INFOCOM 2011 and CCF CNCC 2013. He was serves on several edi-
torial boards, including the IEEE TRANSACTIONS ON MOBILE COMPUTING,
the IEEE TRANSACTIONS ON SERVICE COMPUTING, the Journal of Parallel
and Distributed Computing, and the Journal of Computer Science and
Technology. He was an IEEE Computer Society Distinguished Visitor and
ACM Distinguished Speaker. He was a CCF Distinguished Speaker.

Authorized licensed use limited to: Temple University. Downloaded on July 09,2020 at 22:17:31 UTC from IEEE Xplore.  Restrictions apply. 

http://dx.doi.org/10.15783/C70011


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


