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Abstract—Mobile CrowdSensing (MCS) is a promising
paradigm that recruits users to cooperatively perform various
sensing tasks. In most realistic scenarios, users dynamically
participate in MCS, and hence, we should recruit them in an
online manner. In general, we prefer to recruit a user who can
make the maximum contribution at the least cost, especially when
the recruitment budget is limited. The existing strategies usually
formulate the user recruitment as the budgeted optimal stopping
problem, while we argue that not only the budget but also the time
constraints can greatly influence the recruitment performance.
For example, if we have less remaining budget but plenty of
time, we should recruit users with more patience. In this paper,
we propose a dynamic user recruitment strategy with truthful
pricing to address the online recruitment problem under the
budget and time constraints. To deal with the two constraints, we
first estimate the number of users to be recruited and then recruit
them in segments. Furthermore, to correct estimation errors and
utilize newly obtained information, we dynamically re-adjust the
recruiting strategy and also prove that the proposed strategy
achieves a competitive ratio of (1− 1/e)2/7. Finally, a reverse
auction-based online pricing mechanism is lightly built into the
proposed user recruitment strategy, which achieves truthfulness
and individual rationality. Extensive experiments on three real-
world data sets validate the proposed online user recruitment
strategy, which can effectively improve the number of completed
tasks under the budget and time constraints.

Index Terms—Mobile CrowdSensing, online user recruitment,
submodular secretary problem, truthful pricing.

I. INTRODUCTION

With the increasing popularity of portable devices, Mobile
CrowdSensing (MCS) [1] has recently become a promising
paradigm for recruiting users to cooperatively perform various
sensing tasks [2]–[4], such as the monitoring of environment,
traffic, and urban infrastructure. In most cases, we should
provide rewards for the recruited users, in order to cover
the sensing costs and encourage user participation [5]–[7].
However, due to the budget constraint, we have to select some
effective users, which raises the fundamental user recruitment
problem in MCS.

Most of the existing user recruitment strategies are con-
ducted offline [8]–[10]. As shown in Fig. 1 (upper part), the
offline method recruits users from a pre-determined pool at the
beginning of the MCS campaign. However, in most realistic
scenarios, users may dynamically participate in MCS and we
should recruit them online. Fig. 1 (lower part) shows such
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Fig. 1: Offline vs. online user recruitment in MCS.

an online scenario, where tasks are distributed in different
areas and users unconsciously move among the sensing areas
to perform the tasks. We prefer to recruit a user who can make
the maximum contribution at the least cost. However, in the
online cases, users’ costs and contributions are invisible until
they participate in MCS. Hence, deciding whether to recruit
the current user is more challenging in the online scenario,
especially when the total recruitment budget is limited. To this
end, some existing works formulate the online user recruitment
as the optimal stopping problem and utilize the dynamic
programming [11] or secretary problem [12] to deal with
it, but they ignore the budget constraint. Some researchers
further consider the budget constraint [13]–[15], but ignore
the influence of the remaining time on user recruitment. We
study a similar online scenario, but consider not only the
budget but also the time constraints. The two constraints
seem to be independent but jointly affect the online user
recruitment. For example, when there is little time left, we
prefer to recruit all participating users, in order to use up
the budget as soon as possible. Similarly, if we have less
remaining budget but plenty of time, we should recruit users
with more patience. Hence, how to address the budget and time
constraints in online user recruitment is the first challenge.
Moreover, the dynamical participation introduces a lot of
uncertainty, especially regarding the user’s mobility, cost and
participating rate. Therefore, the second challenge is how we
can dynamically re-adjust our online user recruitment strategy



along with the online recruiting process. Finally, in order to
encourage user participation and also avoid being deceived,
we should determine a truthful price for each recruited user
in this online manner.

To deal with the budget and time constraints, we assume
that the distribution of all users’ participating time is peri-
odic and can be learned from historical data. Thus, we first
estimate the number of all participating users according to
the time constraint. Then, taking the budget constraint into
consideration, we further estimate the number of users to be
recruited. In this way, the online user recruitment problem can
be naturally interpreted as ‘recruit k out of all participating
users to maximize the total contributions’, which is actually
a classic k-secretaries problem. Note that the tasks only need
to be completed once. After a task has been completed by
the previous recruited users, it becomes invisible to the later
users, and hence, the recruited users are actually expected to
have diminishing contributions. Thus, we further extend the k-
secretaries problem with a submodular contribution function
[16]. We approximately divide the real participating users into
k equally-sized segments and try to recruit the best user in
each segment, while for different segments, we recruit users
according to their submodular marginal contributions.

Note that we could not accurately calculate a user’s con-
tribution (estimated by the user’s coverage of tasks based
on his uncertain mobility) and cost (randomly claimed from
an independent cost distribution). Moreover, although the
participation is assumed to be periodical, its period still needs
to be learned through historical data. All these uncertain
factors make the estimated numbers not always precise. In
order to correct the errors in estimation and make use of
the new information obtained during this online process, we
further present a dynamic user recruitment strategy. The basic
idea is to conduct a re-estimation according to the remaining
budget and time after recruiting a new user, which is actually
a dynamic iteration of estimation and online user recruitment
in the above k-segments strategy. Furthermore, we prove that
the proposed dynamic online recruitment strategy achieves a
competitive ratio of (1− 1/e)2/7.

Finally, we also conduct a reverse auction-based pricing
mechanism, as a supplement to the dynamic user recruitment
strategy. This pricing mechanism determines the payment for
each recruited user and also satisfies the budget and time
constraints. We can easily build this mechanism into our online
user recruitment strategies without much extra computation. In
addition, this online pricing mechanism is proved to achieve
truthfulness [17] and individual rationality.

In summary, this paper makes the following contributions:
• Dynamic Online User Recruitment: We study the online

user recruitment problem with the budget and time con-
straints. To deal with the two constraints, we first estimate
the number of users to be recruited and then propose a
segmented online user recruitment strategy. Furthermore,
a dynamic re-estimation is presented to correct the esti-
mation errors and utilize the newly obtained information,
where the competitive ratio is proved to be (1− 1/e)2/7.

• Reverse Auction-based Online Pricing: We present a
reverse auction-based pricing mechanism, which can be
built into the online user recruitment strategy without
much extra computation. Meanwhile, this mechanism
achieves truthfulness and individual rationality.

• Extensive Evaluation: We conduct an extensive evaluation
based on three real-world data sets. The results verify the
effectiveness of our strategy on improving the number of
completed tasks under the budget and time constraints.

II. RELATED WORK

Mobile CrowdSensing is a promising paradigm, which
allows us to recruit users carrying portable devices, in order to
cooperatively perform various sensing tasks [18]–[20]. Consid-
ering the sensing costs, Karaliopoulos et al. [21], Zhang et al.
[22], Song et al. [23], and Wang et al. [24] study the user
recruitment problem to achieve the goal of the MCS campaigns
and minimize the total costs. Similarly, Liu et al. [8] and
Wang et al. [9] propose the prediction-based algorithms to
recruit the effective users, in order to complete more tasks
under a budget constraint. However, most of the existing user
recruitment strategies are conducted offline and cannot deal
with the users’ dynamic participation, which is actually a more
realistic online scenario.

Recently, the user recruitment problem has been studied for
the online scenarios. Wang et al. [25] study the location-aware
and location diversity based online MCS but focus on the task
assignment. Li et al. [26] propose a dynamic user selection
algorithm but divide the online recruiting process into many
time slots and greedily recruit users for each time slot in an
offline manner. Yang et al. [12] present a prediction-based
online user selection framework, however, they only recruit a
pre-determined number of users and ignore the variable costs
of users under the budget constraint. Zhao et al. [13], Gao
et al. [14], and Li et al. [15] further consider the budget
constraint in online incentive mechanisms and user selection.
These methods divide the total budget into some stages and
recruit users until the sub-budget in each stage is exhausted,
however, they haven’t dealt with the total budget and ignore
the influence of the remaining time of the MCS campaigns.

For the secretary recruitment, the classic secretary problem
is to recruit only one best user from all participating users in an
online manner [27]. As a variant, Preater [28] studies that the
more than one user may be recruited in the secretary problem.
Considering the submodular utility function, Bateni et al. [16]
propose the submodular k-secretaries problem, where they
divided the participating users into the fixed k equally-sized
segments and select the best user from each segment.

III. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

We first discuss the system model of online user recruitment
under the budget and time constraints in this section and the
main notations are listed in Table I. We consider a practical
online scenario of MCS, where a crowd of rational users
move around and participate in the MCS campaign in real



TABLE I: Main notations
Notation Meaning
u, c, [Ab, Ae] User, cost, and active time of users.
s, l, [T b, T e] Task, location, and duration time of MCS.
p, B Payment and budget.
S, U , µ Set of tasks, users and recruited users.
m, n, k Number of tasks, users and recruited users.
Zu(li, lj , T ),
Qu(li, lj , T )

Probability that u moves from li to lj within
time T , and just at time T .

P (ui, sj) Probability that ui will complete sj .
E(µ, sj) Expected probability that µ will complete sj .

time to perform the sensing tasks. Users are denoted as
U , {u1, u2, ..., un}, each with an active time (working time)
[Abi , A

e
i ] and sensing cost ci, which indicates that user ui

will work from Abi to Aei with cost ci1. Tasks are denoted as
S , {s1, s2, ..., sm} each with a location lj , which indicates
that a user ui moving to location lj within his active time
[Abi , A

e
i ] can perform the task sj . Under the online scenarios,

users are participating in real time and we decide whether to
recruit them immediately, with the payments pi ≥ ci under a
limited budget B. Then, the recruited users, denoted as µ with
the set cardinality k = |µ|, perform the sensing tasks within
the duration time of the MCS campaign [T b, T e].

We assume that all tasks are equal in quality and only
need to be completed once2. We consider that the tasks
are uniformly distributed and the active time of users is far
less than the total time of the MCS campaign, otherwise
the users participating later have great disadvantages and we
would better recruit the earlier users. Actually, this setting is
reasonable for most practical purposes, since users won’t work
for a long time for the MCS campaigns. Similarly, users won’t
wait for the recruitment decisions for a long time, and thus we
need to decide whether to recruit them immediately, without
knowing the future. After receiving the decisions, users will
leave and their next participation will be seen as the new ones.

B. Mobility Prediction

From the opportunistic perspective, when a recruited user
reaches the location of one task within his active time, we
consider that the task can be completed successfully. We
estimate the user’s contribution according to his mobility
prediction3. For the prediction, as shown in Fig. 2, we divide
the full map into some grids. Tasks are distributed in the grids
and users reaching one grid can complete the tasks in this grid.
Then, we use a modified Semi-Markov Process Model [8],
[9], [12] to predict the time-dependent transition probabilities
between the grids as the user’s mobility prediction. In order
to further reduce the great amount of calculation, for each
gird, we only consider its transitions between the nearby grids,
i.e., up, down, left, right and itself. The time-dependent semi-
Markov kernel Zu(li, lj , T ), i.e., the probability that user u

1Resource consumption, risk compensation and other costs.
2Different settings can be easily added at the contribution function of users.
3Other measures of contribution could be modified easily, in order to judge

whether the user is good or not.
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Fig. 2: An example of mobility prediction model.

will move from his current grid li to his next grid lj within
time T , is defined by Eq. (1).

Zu(li, lj , T ) = Z(Ln+1
u = lj , t

n+1
u − tnu ≤ T |Lnu = li), (1)

where Lu indicates the user’s moving sequence of grids and tu
is the arrival time. Note that the user’s next grid is associated
with his current grid and we can derive the probability Z from
the statistical results of the user’s history records. Then, we
obtain another kernel Qu(li, lj , T ), i.e., the probability that
user u will move from the grid li to lj just at the time T ,
denoted by Eq. (2).

Qu(li, lj , T )=



ΣLu

lk
ΣTt=1(Zu(li, lk, t)−Zu(li, lk, t−1))·

Qu(lk, lj , T − t), li 6= lj

1− ΣLu

lk,lk 6=li(Zu(li, lk, T )−
ΣTt=1(Zu(li, lk, t)− Zu(li, lk, t− 1))·
Qu(lk, li, T − t)), li = lj

(2)

where Qu(li, li, 0) = 1 and Qu(li, lj , 0) = 0, if li 6= lj . Specif-
ically, when li 6= lj , we consider the relay state transitions
as li → lk → lj and calculate the total probability. When
li = lj , we further consider the probability that users stay at
the same grid. With the Qu(li, lj , T ) from mobility prediction,
we obtain the probability that user ui can complete task sj ,
and finally calculate the expected contribution of the recruited
user set for each task, as follows:

P (ui, sj) = 1−Π
Ae

i

t=Ab
i

(
1−Qui(lui , lsj , t)

)
, (3)

E(sj , µ) = 1−Πui∈µ
(
1− P (ui, sj)

)
. (4)

C. Problem Formulation

Problem [Online User Recruitment under the Budget and
Time Constraints]: Given a set of MCS tasks, with a limited
budget and the duration time of the MCS campaign, we recruit
a set of sequential participating users who move around to
perform sensing tasks, with the objective of maximizing the
expected number of completed tasks:

maximize Σsj∈SE(sj , µ) (5)

subject to µ ⊆ U, Σui∈µpi ≤ B, T b ≤ t ≤ T e (6)

A running example shown in Fig. 3 provides an intuitive
interpretation of our online user recruitment problem. Con-
sidering that there are three users moving around the 5 × 4
grids. They will participate in the MCS campaign in real time,
and we can only recruit two of them under the budget and
time constraints. At 8:00, user 1 participates and we predict
that he will reach the location of task 3 within his active
time. However, user 1 may perform task 3 but cannot perform
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Fig. 3: An example of online user recruitment in MCS.

any other tasks. His contribution seems relatively less and we
decide to keep waiting since we have enough time. When user
2 connects to server, we find that he can perform tasks 2 and
3, which contributes a lot and thus we recruit him. After user 2
completes tasks 2 and 3, we then drop these tasks. When user
3 connects to server, although he may perform only one task
but we have less remaining time, and hence, we recruit him.
Finally, we recruit users 2 and 3 in an online manner, and they
move around the sensing areas and complete the most tasks
under the budget and time constraints.

IV. ONLINE USER RECRUITMENT UNDER BUDGET AND
TIME CONSTRAINTS

A. Problem Hardness

Before prescribing an online strategy, we first prove that the
online user recruitment problem under the budget and time
constraints is NP-hard, as shown in the following theorem.
Theorem 1. The online user recruitment problem under the
budget and time constraints is NP-hard.
Proof. Without loss of generality, we ignore the mobility
prediction but consider the pre-determined traces. Here, the
completed tasks by user ui are denoted as Sui

and the total
completed tasks by the recruited user set µ is ∪ui∈µSui .
Further considering a special case that all users cost equally,
i.e., under a budget B and the user cost c, we could recruit
k = bB/cc users at most, which is indeed a classic NP
problem, Max k-cover [29]: given a collection of task sets
{Su1 , Su2 , ..., Sun}, each will cover several tasks Sui =
{si1, si2, ...}, then the objective is to select k sub-collections
to cover the most tasks. That is to say, the special case is NP-
hard. Consequently, further considering the budget and time
constraints, the online user recruitment problem is NP-hard.
The theorem holds.

In this paper, we use a mobility prediction model to es-
timate the users’ coverage of tasks as their contribution. To
simplify the notation, we use f(µ) = Σsj∈SE(sj , µ) as the
predicted contribution of the recruited user set µ, which has
the following property:
Theorem 2. 1) f(∅) = 0; 2) f(µ) is non-decreasing; 3) f(µ)
is submodular.
Proof. 1) µ = ∅ means that we don’t recruit users and thus no
tasks can be completed, i.e., E(sj , ∅) = 0 for each sj ∈ S,
according to Eq. (4). Therefore, f(∅) = Σsj∈SE(sj , ∅) = 0.

Observe_k

Estimate k=2

Observe Select

k1 k2

Observe Select

(1) Estimation (2) User Recruitment

Fig. 4: Segmented online user recruitment strategy.

2) Consider two user subsets µ1 and µ2, and µ1 ⊆ µ2.
According to Eq. (4), we obtain the following inequation:

E(sj , µ1)− E(sj , µ2)

= Πui∈µ2
(1− P (ui, sj))−Πui∈µ1

(1− P (ui, sj)) (7)
= Πui∈µ1

(1− P (ui, sj))·(Πui∈µ2\µ1
(1−P (ui, sj))−1)≤0.

Since P (ui, sj) is the probability that user ui can complete
task sj , according to Eq. (4), we have 0 ≤ P (ui, sj) ≤ 1.
Thus, f(µ1) − f(µ2) = Σsj∈S(E(sj , µ1) − E(sj , µ2)) ≤ 0
and f(µ) is non-decreasing. 3) Similar to 2), we consider an
arbitrary user uk ∈ U\µ2, and obtain the following inequation:

(f(µ1 ∪ {uk})− f(µ1))− (f(µ2 ∪ {uk})− f(µ2))

= Σsj∈S(E(sj , µ1 ∪ {uk})− E(sj , µ1))−
Σsj∈S(E(sj , µ2 ∪ {uk})− E(sj , µ2))

= Σsj∈S(Πui∈µ1
(1− P (ui, sj)) · P (uk, sj)−

Πui∈µ2
(1− P (ui, sj)) · P (uk, sj))

= Σsj∈SΠui∈µ1
(1− P (ui, sj)) · P (uk, sj)·

(1−Πui∈µ2\µ1
(1− P (ui, sj))) ≥ 0. (8)

As discussed above, we know that 0 ≤ P (ui, sj) ≤ 1, and
thus f(µ1 ∪ {uk}) − f(µ1) ≥ f(µ2 ∪ {uk}) − f(µ2), which
holds the submodular property of f(µ).

B. Segmented Online User Recruitment Strategy

In online scenarios, all the users participate in real time and
they form a sequence according to their participating time.
We should make an immediate decision on whether to recruit
the current participating user according to his predicted con-
tribution and cost, without knowing the future users. Further
considering the budget and time constraints, the online user
recruitment problem becomes more challenging. In order to
deal with the two constraints, we present a segmented online
user recruitment strategy, which first estimates the number of
users to be recruited and then segmentally recruits them in an
online manner, as shown in Fig. 4.

1) Estimation via Submodular Maximization with Knapsack
Constraint: In the online user recruitment problem, the biggest
difficulty is the unknown future information, especially when
we need to deal with the constraints and online recruiting
simultaneously. In order to reduce the difficulty, we first make
an assumption to deal with the budget and time constraints
before the online recruiting, as shown in Assumption 1.
Assumption 1. The distribution of user participating time is
periodical and the users have an independent cost distribution.

In many scenarios where humans are involved, Assumption
1 is common and reasonable, such as people’s check-in records
of an App, the numbers of which within the same periods in



Algorithm 1 Greedy Offline Estimation()
Input: S, B, T = [ts, te], Uh
1: Estimate n′ and conduct U ′ = {u′1, u′2, ..., u′n} from Uh

according to the time T ;
2: Initialize µ = ∅;
3: while U ′ 6= ∅ do
4: Calculate δui

= f(µ∪{ui})−f(µ)
ci

,∀ui ∈ U ′;
5: Find u∗ = arg maxui∈U ′ δui

;
6: if

∑
uj∈µ cj + ci ≤ B then µ← µ ∪ ui;

7: U ′ ← U ′ \ u∗;
return n′, k = |µ|

weekdays are roughly the same and independent from people.
Under this assumption, we can explore the historical data to
estimate the number of all participating users and the number
of users to be recruited, in order to satisfy the budget and
time constraints in the online user recruitment. The basic
idea is to learn the periodical distribution to estimate the
number of participating users, according to the remaining time
of the MCS campaign. Then, we can conduct a simulated
user set from historical data, which can actually be seen as
a replacement of real participating users. With the simulated
user set, we consider the user recruitment problem under the
budget constraint as the submodular maximization with knap-
sack constraint [30] and propose a greedy offline estimation
algorithm to estimate the number of users to be recruited.

The algorithm is summarized in Algorithm 1. We first
estimate the number of participating users n′ and conduct a
simulated user set U ′ from historical data Uh, according to
the time T (line 1). From the simulated user set, we greedily
select the users who contribute most in an offline manner
(line 3) and recruit the users under the budget constraint
(lines 4-5). Finally, we obtain the estimated n′ and k, which
actually reflect the budget and time constraints and directly
influence the online user recruitment. In this way, with the
help of Assumption 1, we estimate the number of participating
users and the number of users to be recruited from historical
data before the real online recruiting process, in order to
approximately deal with the budget and time constraints first.

2) User Recruitment via Submodular k-Secretaries Prob-
lem: With the estimated numbers n′ and k, we formulate the
online user recruitment problem as a variant of the famous
secretary problem, i.e., the submodular k-secretaries problem
[16], without considering the budget and time constraints but
focusing on the online recruiting process.

The classic secretary problem is to recruit the best one out of
n participating users, where users are participating in sequence
and the recruitment decisions should be made immediately.
As a variant, the submodular k-secretaries problem presented
by Bateni et al. [16] further considers the multiple recruited
users with submodular utility function, which provides an
appropriate solution for our online user recruitment problem
with a submodular contribution function. Without considering
the budget and time constraints, our online user recruitment

Algorithm 2 Online User Recruitment Segmented()
Input: S, B, U = {u1, u2, ..., un}, n′, k, µ = ∅
1: Initialize l = bn′/kc, lob = bl/ec and ε = 0;
2: while U 6= ∅ do
3: Wait for the next user ui’s coming, U ← U \ ui;
4: if i > n′ and

∑
uj∈µ cj + ci ≤ B then µ← µ∪{ui};

5: else
6: Initialize segmentID = i/l;
7: Calculate δui

= (f(µ ∪ {ui})− f(µ))/ci;
8: if i ≤ segmentID ∗ l + lob then
9: ε = max{ε, δui}; . Observe

10: else if i > segmentID ∗ l + lob and δui ≥ ε then
11: if

∑
uj∈µ cj + ci ≤ B then

12: µ← µ ∪ {ui}; . Recruit
13: i = segmentID ∗ l + 1 and ε = 0;
14: Continue; . Break at Algorithm 3

return µ

can be naturally formulated as a submodular k-secretaries
problem, interpreted as ‘recruit k out of n users to maximize
the expected number of completed tasks’. Then, we propose a
k-segments online user recruitment algorithm to deal with the
problem, as summarized in Algorithm 2.

According to the estimated n′ and k, we approximately par-
tition the real participating users into k equally-sized segments
and select the best user from each segment. If the real number
of participating users n is larger than our estimated n′, we will
continue to recruit them until the budget is exhausted (line 3).
For each segment, under the budget constraint, we observe
the first lob users, record the largest contribution/cost ratio as
a threshold ε (line 9) and select the next one who has a larger
δui

than ε (line 10). Finally, we obtain the recruited user set
µ in an online manner from the real participating users.

C. Dynamic Online User Recruitment Strategy

By exploiting the historical data, our proposed segmented
strategy can deal with the online user recruitment problem
under the budget and time constraints well. However, due to
the users’ dynamical participation, we could not accurately
calculate a user’s contribution and cost. Moreover, although
the participation is assumed to be periodical, its period still
needs to be learned through historical data. All these uncertain
factors make the estimated numbers not always precise. In
order to correct the errors in estimation and make use of the
new information obtained during the online recruiting process,
we further propose a dynamic user recruitment strategy ex-
tended from the Algorithms 1 and 2, i.e., the Estimation()
and Segmented() mentioned above.

The basic idea of the dynamic user recruitment strategy is
to conduct a re-estimation after recruiting a new user, which
actually can be seen as a dynamic iteration of Estimation()
and Segmented(). Fig. 5 illustrates a straightforward example,
where the dynamic strategy first estimates the numbers n′ = 6
and k = 2 from historical data, and partitions the online users
into 2 equal-sized segments for online recruiting (Round 1).



Algorithm 3 Dynamic Online User Recruitment
Input: S, B, T = [ts, te], U{u1, u2, ..., un}
1: µ = ∅, Brest = B, Srest = S, Urest = U , Trest = [ts, te];
2: while Brest > 0 and U 6= ∅ do
3: n′, k ← Estimation(Srest, Brest, Trest);
4: . If k = 0 or n > n′, recruit users under Brest
5: µ← Segmented(Srest, Brest, Urest, n′, k, µ);
6: . Break after a new user has been recruited
7: Update Srest, Urest, Brest, Trest;

return µ

After one user has been recruited, the dynamic strategy then re-
estimates the remaining numbers of participating users n′ = 4
and recruited users k = 2, according to the currently obtained
information, i.e., the remaining tasks, users, budget and time.
The formal dynamic strategy is provided in Algorithm 3. We
iteratively run Estimation() and Segmented() for each recruit-
ment (lines 3-6), until the budget is exhausted or the MCS
campaign is finished (line 2). Specifically, Segmented() will
break after one user has been recruited (line 5 in Algorithm
3 and line 12 in Algorithm 2), and then we update the current
information for re-estimation. For the special case, e.g., k = 0
or n > n′, we will recruit the remaining users who can satisfy
the budget constraint. In this way, our proposed dynamic
strategy can make use of the newly obtained information and
correct the estimation errors constantly, and better solve the
online user recruitment under the budget and time constraints.

D. Competitive Ratio for the Algorithms

We first give the competitive ratio of the segmented online
user recruitment strategy in the following theorem.
Theorem 3. The segmented online user recruitment strategy
approximately achieves a competitive ratio of (1−1/e)2

7 .
Proof. 1) We first relax the online user recruitment to an
offline scenario, where all of the users and tasks are pre-
determined and we select a user set in a totally offline manner.
As proved in Theorem 2, our objective function f(µ) is non-
decreasing and submodular. Then, the user selection prob-
lem is formulated as a variant of submodular maximization
problem with a knapsack constraint, and our offline greedy
algorithm can achieve a (1 − 1/e) approximation of the
optimal value4, denoted as f(µ U) ≥ (1 − 1/e)f(OPT U),
where OPT U is the optimal user set in U and µ U is the
greedily selected user set with cardinality k = |µ U |. 2)
Similarly, we consider the online user recruitment problem
as a submodular k-secretaries problem, where f(µ) is proved
as a non-decreasing submodular function and the users are
participating in real time. Under the online scenarios, our
segmented user recruitment strategy can be proved to achieve
an expected competitive ratio of (1−1/e)/7 [16], denoted as
E{f(µ)} ≥ (1−1/e)/7 · f(OPT k U), where OPT k U is
the optimal set in U with cardinality k. 3) As discussed in 1)

4The offline submodular maximization problem with knapsack constraint
in Estimation() is NP-hard and has been proved that the greedy algorithm
achieves a (1− 1/e) approximation combined with partial enumeration [30].
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and 2), OPT k U is the optimal set and µ U is the greedy
result under the same cardinality k, and OPT U is the global
optimal set without cardinality constraints. Thus, we obtain
the following inequation:

E{f(µ)} ≥ 1− 1/e

7
f(OPT k U) ≥ 1− 1/e

7
f(µ U)

≥ (1− 1/e)2

7
f(OPT U). (9)

4) In the online scenario, we cannot exactly obtain the users
who will participate in the MCS campaign in advance. Under
Assumption 1, we conduct the simulated user set U ′ as a re-
placement of the real user set U , and greedily select µ U ′ from
U ′ to estimate µ U . Therefore, we have f(µ U ′) ≈ f(µ U)
and E{f(µ)} approximately achieves (1−1/e)2/7 competitive
ratio of the optimal f(OPT U).

Actually, the dynamic user recruitment strategy is an ex-
tension of the segmented strategy, which can correct the
errors and make use of new information during the online
recruiting process. Thus, the dynamic strategy can outperform
the segmented strategy in expectation. The proof is simple
and we provide some intuitive examples in Fig. 6: after one
user has been recruited, if the estimated k in the dynamic
strategy is the same as the one in the segmented strategy,
the dynamic strategy has more participating users, since it
doesn’t need to skip over some users to the next segment
like the segmented strategy. Thus, the dynamic strategy will
expectedly outperform the segmented strategy. Similarly, if the
estimated k in the dynamic strategy is different with the one
in the segmented strategy, it means that the previous recruited
users in segmented strategy cost too much/little. However, the
segmented strategy cannot correct the errors and make use of
new information in time, which leads to a worse performance.

V. REVERSE AUCTION-BASED TRUTHFUL PRICING FOR
ONLINE USER RECRUITMENT

A. Reverse Auction-based Online Pricing Mechanism

In general, the organizers and users in MCS are rational and
selfish. From the user side, the organizer should provide proper



Algorithm 4 Reverse Auction-based Pricing
Input: S, B, U = {u1, u2, ..., un}, n′, k, µ = ∅

In Segmented(), ui is coming:
1: if i > n′ and

∑
uj∈µ pj + ci ≤ B then

2: Recruit ui with pricing ci;
3: else if i > segmentID ∗ l + lob and δui

≥ ε then
4: pi = ci · δui

/ε;
5: if

∑
uj∈µ pj + pi ≤ B then

6: Recruit ui with pricing pi;

rewards for the recruited users to cover the sensing costs
and encourage user participation. From the organizer side, the
pricing mechanism also needs to ensure that users bid their
costs truthfully, in order to pay less and earn more. Recently,
the reverse auction has been used for pricing in MCS to si-
multaneously satisfy the truthfulness and individual rationality
[5], [31], where users bid first according to their costs and then
the organizers determine the payments. However, the existing
mechanisms determine the prices for the recruited users by
ordering them according to their contributions and costs in an
offline manner, which can hardly be used in online recruitment,
especially considering the budget and time constraints.

In our proposed dynamic and segmented strategies, the
user recruitment in segments can actually be seen as an
online ordering of users, and thus a reverse auction-based
pricing mechanism can be easily modified, as summarized
in Algorithm 4. We first deal with the special cases, i.e.,
the real number of participating users n is larger than our
estimated n′, where we will recruit the extra users and only
pay their claimed costs until B is exhausted (lines 1-2). For
the user recruitment in each segment, we use the claimed costs
observed from the first lob users and determine a price for the
recruited user (lines 3-4), denoted as pi = ci · δui/ε. Note that
the total payments (instead of costs) of recruited users are
constrained by B, and thus we only recruit the users we can
afford (lines 5-6). In this way, the pricing mechanism has been
lightly built into the online user recruitment strategy without
much extra computation, and the truthfulness and individual
rationality will be proved next.

B. Truthfulness and Individual Rationality
Theorem 4. The reverse auction-based online pricing mech-
anism is truthful.
Proof. 1) We first prove that our proposed online user re-
cruitment strategy is bid-monotone. Suppose that a user ui
has been recruited by the online strategy, we obtain δui

=(
f(µ∪{ui})−f(µ)

)
/ci and δui

≥ ε according to Algorithms 2
and 4. If ui bids a smaller cost c′i < ci, we have

(
f(µ∪{ui})−

f(µ)
)
/c′i >

(
f(µ ∪ {ui})− f(µ)

)
/ci ≥ ε. With a smaller c′i,

the user’s contribution/cost ratio is larger than the threshold ε.
Thus, ui will still be recruited by the proposed online strategy,
which holds the bid-monotone. 2) Then, we prove that the pay-
ment determined by our proposed online pricing mechanism
is the critical value, i.e., if the recruited user ui bids a larger
cost ci than the determined payment pi, he won’t be recruited,

and otherwise, ui will be recruited. According to Algorithms
2 and 4, we have pi = ci · δui

/ε =
(
f(µ ∪ {ui})− f(µ)

)
/ε.

Assume that user ui bids a larger cost c′i > pi, and we obtain(
f(µ ∪ {ui}) − f(µ)

)
/c′i <

(
f(µ ∪ {ui}) − f(µ)

)
/pi = ε.

Since the user’s contribution/cost ratio is less than ε, user ui
won’t be recruited by our proposed strategy. Similarly, assume
that ui bids a smaller c′i ≤ pi, ui will still be recruited, i.e.,(
f(µ ∪ {ui}) − f(µ)

)
/c′i ≥

(
f(µ ∪ {ui}) − f(µ)

)
/pi = ε.

3) Finally, with the proved bid-monotone and critical value
in 1) and 2), according to Myerson theorem [17], the reverse
auction-based online pricing mechanism is truthful.

Theorem 5. The reverse auction-based online pricing mech-
anism achieves individual rationality.
Proof. The individual rationality of the online pricing mecha-
nism means that the reward that each recruited user gets should
be no less than the cost. According to Algorithms 2 and 4,
assume that ui is one of the recruited users, we have δui ≥ ε
and pi = ci · δui/ε. Thus, we obtain pi/ci = δui/ε ≥ 1 and
pi ≥ ci. In the special cases, i.e., the real n is larger than
the estimated n′, the rewards of the extra users are equal to
their claimed costs. Therefore, the individual rationality of the
online pricing mechanism is proved.

VI. PERFORMANCE EVALUATION

A. Data sets & Settings

The three real-world data sets are used for the evaluation:
• Feeder [32] contains four kinds of data, i.e., the cellphone

CDR data, smartcard data, taxicab GPS data, and bus GPS
data collected from Shenzhen, China. We select 300 taxi
traces as the participating users, each of which has the
continuous GPS records collected from the same period
of time, i.e., 8:00-18:00, for two days.

• Shanghai contains the GPS data collected from taxis and
trucks in Shanghai, China. Similar to Feeder, we select
310 traces as the participating users, each of which was
collected from 8:00 to 18:00 in two days. Note that nearly
half of them were collected from trucks, which have the
more regular mobilities than the other trajectories.

• GeoLife [33], [34] was collected from phones carried by
182 users, which record a broad range of users’ outdoor
movements. It contains 17,000+ trajectories and has a
total duration of 50,000+ hours, from which we select 727
traces with the same period of time. Compared with the
other data sets, GeoLife has the fine-grained trajectories
but users may stay at some places for a long time.

For mobility prediction, we split the urban area of Feeder,
Shanghai and GeoLife into 15*10 grids, each with the size of
2km*2km, as shown in Fig. 10. For the selected traces, we use
the first day’s data to train the mobility prediction model and
conduct the historical data. Then, the MCS campaign begins
at 8:00 of the second day. The tasks will be generated in grids
and the users will participate in the MCS campaign in real
time, with the uniform costs and active time. If we recruit one
user, he will perform the tasks in the grids he will pass by
within his active time.
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Fig. 7: Main results of Feeder.
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Fig. 8: Main results of Shanghai
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Fig. 9: Main results of GeoLife.

(a) Feeder (b) Shanghai (c) GeoLife

Fig. 10: An example of trajectories and grids.

B. Comparison Algorithms & Metrics

The online user recruitment problem with the budget and
time constraints is quite different from the existing works,
so we mainly compare our proposed online user strategies
(referred as “ON-SEG” for segmented strategy and “ON-
DYN” for dynamic strategy) with the following algorithms:
• RANDOM, which randomly recruits users from all par-

ticipating users until the budget is exhausted.
• OFF, which greedily recruits the users who have the

largest contribution/cost ratio in an offline manner, i.e.,
arg maxui∈U

(
f(µ ∪ {ui})− f(µ)

)
/ci.

• OPT, which exhaustively recruits the optimal user set
under the budget and time constraints.

Obviously, OPT costs a lot in the submodular user recruitment
problem, and we implement it to verify our bound. In most
cases, OFF and RANDOM can be seen as the upper and lower
bound of our proposed strategies.

We use the following metrics to evaluate the compared
algorithms: 1) Number of completed tasks, which is the main
metric to evaluate our user recruitment strategy. 2) Consumed
budget, which limits the number of users to be recruited and
reflects the effectiveness. 3) Overpayment ratio, which shows
the effectiveness of our online pricing mechanism, defined as
the total payment/cost ratio, i.e.,

∑
ui∈µ(pi − ci)/

∑
ui∈µ ci.

In addition, the competitive ratio, truthfulness, and individual
rationality are also presented in the following subsection.

C. Evaluation Results

1) Completed tasks: We first illustrate the results in terms
of the main metric, i.e., the number of completed tasks, as
shown in Figs. 7, 8, and 9. In order to provide a comprehensive
evaluation, we change the number of participating users (from

100 to 300), the number of tasks (from 100 to 300), and
the average active time of users (from 60 to 180 minutes)
respectively, while keeping the others fixed. Moreover, we also
evaluate the extra time constraint, i.e., the duration time for
tasks, which means that tasks should be completed within their
duration time. The tasks will be generated with the uniform
duration time and we change the average duration time of tasks
from 60 to 180 minutes. Besides, the budget is set to 200 units
and the average cost of users is 20 units. The results over three
data sets show the similar tendencies and our proposed online
user recruitment strategies can achieve a good performance.

Specifically, ON-SEG and ON-DYN outperform RANDOM
and achieve high competitive ratios of OFF. Note that ON-
DYN always complete more tasks than ON-SEG, since ON-
DYN can correct the estimation errors and make use of
the newly obtained information. Moreover, comparing the
subfigures (a) and (b) of Figs. 7, 8, and 9, we find that the
growth rates over the number of users are lower than tasks.
The reason is that we have already recruited the effective
users to perform the tasks, and thus the more users cannot
improve the performance significantly. In addition, compared
with GeoLife, ON-DYN performs better than ON-SEG in
Feeder and Shanghai, since the traces in these two data sets
have the stronger mobility and our dynamic strategies can
make the adjustments in time.

2) Budget: We then evaluate the budget constraint with
variable costs of users. We set the other variables fixed, then
change the budget from 100 to 300 units and change the
average cost of users from 10 to 30 units. As shown in Fig.
11, the lower budget and cost lead to a smaller number of
completed tasks, since we have to recruit fewer users, and vice
versa. Furthermore, we set the average cost to 20 units and
illustrate the consumed budget over three data sets, as shown
in Fig. 12. Obviously, the OFF and RANDOM consume more
budget, since they recruit users in the offline manner until the
budgets are exhausted. Note that ON-DYN always consumes
more budget than ON-SEG, which shows that our dynamic
strategy can make better use of the limited budget and conduct
adjustments in time. These observations match the theoretical
analysis and prove the effectiveness of our proposed strategy.



TABLE II: Completed tasks and competitive ratio.
Feeder Shanghai GeoLife

Budget ON-SEG ON-DYN OPT Ratio-DYN ON-SEG ON-DYN OPT Ratio-DYN ON-SEG ON-DYN OPT Ratio-DYN
100 22.9 30.5 71.3 0.4277 28.2 31.1 71.8 0.3927 31.6 37.1 73.2 0.4316
150 37.5 38.725 90.5 0.4279 38.5 43.85 94.4 0.4078 43.7 46.1 89.9 0.4860
200 46.4 48.75 115.3 0.4228 49.8 58.475 110.3 0.4514 55.7 56.675 102.8 0.5418
250 52.8 59.4 137 0.4335 53.7 73.125 127.1 0.4225 63.96 65.375 117.3 0.5452
300 67.5 69.6 160.5 0.4336 67.5 84 142 0.4753 70.1 72.4 123.9 0.5657
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Fig. 11: Budget and cost of Feeder, Shanghai, and GeoLife.
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Fig. 12: Consumed budget of Feeder, Shanghai, and GeoLife.

We also illustrate the competitive ratio of our proposed
strategies in Table II. Under different budget constraints, our
ON-DYN can achieve a 40%-50% competitive ratio of the
optimal results, which is far higher than (1− 1/e)2/7 proven
in Section IV.D. With the increase in budget, our ON-DYN
even achieves a better competitive ratio, since we can recruit
more effective users and the results are closer to OPT.

3) Pricing: Finally, we evaluate the performance of the
online pricing mechanism lightly built into our online strategy.
We first illustrate the overpayment ratio of the pricing mech-
anism in Table III. With the budget increase, we find that the
pricing mechanism achieves a higher overpayment ratio. On
the one hand, the larger budget allows us to pay more. On
the other hand, under the larger budget, we will recruit more
users, which means that the number of users in each segment
decreases and we may use some worse observed threshold
(ε in Algorithm 2) to set the payment (pi = ci · δui/ε in
Algorithm 4). Therefore, if we have more participating users
(or some similar historical data), the online pricing mechanism
will achieve a better performance.

In addition, we also provide two examples to verify the
truthfulness and individual rationality, as shown in Fig. 13. To
verify the truthfulness, we randomly select a recruited user,
change his claimed cost and illustrate his obtained payment
in Fig. 13 (a). The real cost of this user is 10 units, and
the payment determined by the online pricing mechanism
is 13.44 units. When the user bids a smaller cost than the
determined payment, he will be recruited and obtain his payoff
13.44− 10 = 3.44. If the user claims a larger cost, he won’t
be recruited. Note that the payment is determined according

TABLE III: Overpayment ratio.

Budget
100 150 200 250 300

Feeder 0.2201 0.3080 0.3863 0.3954 0.3966
Shanghai 0.2229 0.3045 0.3812 0.3945 0.3942
GeoLife 0.2195 0.3046 0.3801 0.3920 0.3972

�� �� �� ��
�

�

�

��

�
�
�
�

�	�
�����
��
�����

����	����
��

(a) Truthfulness

�� �� �� �� ��
��

��

��

��

��

�
�����
	��
�

�
�
�
�
�
�
�

����

(b) Individual rationality

Fig. 13: Truthfulness and individual rationality.

to the users’ claimed costs, thus they won’t claim the lower
costs, which is actually known as the individual rationality. As
shown in Fig. 13 (b), we compare the payments with the users’
claimed costs under the budget B = 200 units and the average
cost c = 20 units. We can see that each payment is larger than
the related cost, which verifies the individual rationality.

VII. CONCLUSION

In this paper, we investigate the online user recruitment
problem under the budget and time constraints in MCS, where
users participate in real time and we decide whether to recruit
them immediately when they are arriving. To deal with the
budget and time constraints, we first estimate the number of
users to be recruited and then segmentally recruit users in an
online manner. In order to correct estimation errors and utilize
newly obtained information, we further present a dynamic
re-estimation after recruiting every new user, and finally a
truthful pricing mechanism is lightly built into the dynamic
user recruitment strategy. Extensive evaluations on three real-
world data sets have verified the effectiveness of our proposed
strategy. In the future work, we would like to explore the
privacy protection mechanism in our online user recruitment
solutions for MCS.
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