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Abstract—Signal map is of great importance, especially in the
dawn of 5G network, for site spectrum monitoring, location-based
services (LBS), network construction, and cellular planning.
Despite its significance, the traditional signal map construction,
e.g., through full site survey, could be time-consuming and labor-
intensive as the signal varies frequently over time and the
accuracy requirement grows rapidly with the emergence of new
applications. Even with crowdsourcing scheme, the participants
tend to be unevenly distributed in space while the encouragement
budgets for the participants could be far from enough to collect
adequate high-quality measurements. Therefore, the signal map
constructed by crowdsourcing is often sparse and incomplete. To
this end, in this paper, we study how to effectively reconstruct
and update the signal map in the case of partially measured
signal maps with minimum cost and propose an auto-encoder-
based active signal map reconstruction method (AER). Our
method is mainly innovative in three parts. Firstly, AER can
effectively update the signal map with only a small number
of observations while also fully using the incomplete historical
signals to effectively update the signal map online. Secondly,
AER consists of an active query mechanism which quantitatively
evaluates the most valuable measurement site for reconstruction,
which further reduces the measurement cost to a large extent.
Thirdly, to cope with the measurement dynamics, we give a new
signal map model describing not only the signal strength but also
the signal dynamics, based on which an advanced AER algorithm
is proposed. The simulation results demonstrate the advantages
and effectiveness of our approach in both accuracy and cost.

Index Terms—Signal map, active matrix completion, auto-
encoder, crowdsourcing

I. INTRODUCTION

Signal maps, which consist of Received Signal Strength
Indication (RSSI) at different locations, play an important role
in site spectrum monitoring [1], location-based services (LBS)
[2], [3], network construction [4], and network distribution.
For example, signal maps can be used for fingerprint based
indoor location to provide better location services, while users
can use signal maps to understand current network conditions
to select the right location to experience better mobile network
services. ISPs can use signal maps to understand network
conditions and optimize network architecture to provide better
coverage. Especially, in the dawn of 5G network, signal maps
could also be used to analyze the current 4G network to
guide the deployment of 5G network. Despite its importance,
constructing the signal maps, mostly through on-site surveys,
is time-consuming and laborious, which often takes several
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Fig. 1. Application scenario and the dilemma

days or months. However, the signal may change with time and
surroundings, which leads to a dilemma that the acquisition
and updating of the signal map could hardly meet the require-
ments of the applications, no matter in quality or timing.

Therefore, crowdsourcing schemes are proposed to ad-
dress this issue[4], [5] by acquiring the signal measurements
from nonprofessional participants instead of professional sur-
veys. At present, many organizations, e.g. Sensorly! and
OpenSignal?, have obtained signal maps through crowdsourc-
ing for analysis and optimization. However, collecting signals
through crowdsourcing suffers from random and insufficient
participants, which leads to incomplete or low-quality mea-
surements.

To cope with this, existing works mainly try to complete
the signal map in condition of partial observations (Fig.1) with
signal propagation model, matrix completion or compressive
sensing. For example, Gaussian process[6], [7] requires com-
plex signal propagation model for specific environment, which
is also quite difficult and not scalable. The traditional matrix
completion algorithms[8], [9] require the prior knowledge
of rank of the signal map, which is impossible in reality.
Recent work [1], [10] uses Bayesian compressed sensing to
reconstruct the signal map and uses the confidence provided
by the Relevance Vector Machine (RVM) to determine the
location of the next crowdsourced signal acquisition. However,
Bayesian compressed sensing reconstruction method requires
low-rank and sparse property of the genuine signal map, which
is often not the case in reality.

I'Sensorly:https://www.sensorly.com/
2OpenSignal:https://www.opensignal.com/



Therefore, in this paper we mainly solve this problem
by answering the following questions: given the historical
signal map with incomplete observations, how to effectively
reconstruct the signal map online without the assumption
of prior map structure knowledge, and further, whether we
could actively guide the crowdsourcing process, e.g. encourage
the clients to report the measurement on intended sites with
reward, so that the cost could be reduced to the minimum
without compromising the accuracy.

The main contributions of this paper are summarized as:

o Accurate construction in general situation: we use
the auto-encoder to solve the problem of signal map
reconstruction. Firstly, we learn the nonlinear temporal
features of the signal in the target area by means of the
auto-encoder, and then apply this temporal features to
the signal map reconstruction process. Compared with
the current popular signal map reconstruction algorithm
(BCS, MCQ), our algorithm can achieve lower reconstruc-
tion error with the same number of crowdsourced signals.

« Active crowdsourcing for minimum cost: with the help
of auto-encoder and a large amount of historical data,
we propose an algorithm to further reduce the cost of
signal map reconstruction by actively acquiring the data
in certain most valuable position rather than as randomly
reported by the participants, which requires far more
measurement to achieve the same level of reconstruction
accuracy.

« A new signal model with fluctuation estimation: in the
real process of signal collection, the signals often fluc-
tuate around a certain value. Therefore, we estimate the
fluctuation of the reconstructed signal map to make the
reconstructed signal map more realistic. Corresponding
construction algorithm is proposed for this model.

« Comprehensive evaluation: we conduct extensive eval-
uations based on simulation data sets for indoor WLAN
positioning. The experimental results further show the
effectiveness and applicability of the proposed algorithm.
Compared with the state-of-the-arts, the proposed algo-
rithm can further improve the accuracy of signal graph
reconstruction with fewer observations, and the algorithm
has better robustness.

II. RELATED WORK

Signal maps have received much attention due to its im-
portant role [4], [11]. However, the acquisition of the signal
map is very time consuming and labor intensive. In many
recent works, crowdsourcing-based approaches [12] have been
proposed to replace professional website surveys with explicit
and unprofessional user participation. These studies focus on
how to motivate more participants to be enrolled and how
to improve the signal collection quality, and the algorithm
we propose is complementary to the above work. The main
consideration we have is to reconstruct the entire signal
map more accurately using the small amount of signal we
have collected. Some approaches have also been proposed to
address the issues above. Typical algorithms include Gaussian

processes [6], [7], compressive sensing [10], [13], and ma-
trix completion [8], [9]. The Gaussian Process (GP) models
the relationship between the signal fluctuation and distance
between reference points based on measurements by WiFi
sniffer. In contrast to GP, our proposed algorithm does not
assume any signal propagation model, so our algorithm is
more versatile and can be used in more complex indoor
environments. The compressive sensing algorithms [1], [10]
are based on the sparsity of the reconstructed signal. But the
actual signal is often not sparse, and it is cumbersome to
construct a suitable observation matrix. Our algorithm does not
need to consider these, so our algorithm is much simpler. Some
recent studies[8], [9] have used matrix completion to construct
missing RSSI values in the signal map. But the traditional
matrix completion is a deterministic algorithm that considers
only the linear relationships of matrix elements and needs to
know the rank of the matrix in advance. Recently, studies
have shown that the auto-encoder can learn the nonlinear
relationship in the matrix [14], [15], [16]. Inspired by this, our
algorithm learns the continuous temporal features by means
of auto-encoder and realizes online update of the signal map,
so there is no need to know the rank in advance. Classical
active learning research [13], [17] uses labels as a measure
of the informativeness. However, signal map reconstruction
is unsupervised learning and cannot be classified by labels in
advance. Therefore, how to define the informativeness and find
the largest informativeness in this case is a huge challenge. The
algorithm proposed by us can effectively solve this problem,
which seeks the most informative signal from the encoder and
historical data to effectively reconstruct the signal map with
very little observed signal.

ITII. PRELIMINARIES & SYSTEM FRAMEWORK

In this section, we first introduce the signal map and the
auto-encoder in Section III-A and Section III-B, then we define
the key concepts used throughout this paper in Section III-C,
followed by the system framework in Section III-D.
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A. Signal Map

Signal map consists of signal strength at different locations.
And we first divide the signal collection area into a finite
(for example, m rows and n columns) grid. Then we assume
that there is only one access point (AP) and m x n reference
points (RPs) in the target area. We use uy” = ([L;, L], z”)
to represent the collected signals (Fig.2) uploaded by the
crowdsourcing participants at time ¢, where x;”’ presents RSSI
at time ¢ and [L;, L;] indicates geographical coordinates. And
we use X; to represent the signal map at time ¢, the elements
of which are z;”. In this paper, we assume that the grid
granularity is given in advance.

B. Auto-Encoder

The auto-encoder is a machine learning model which in-
cludes two parts (the structure is shown in Fig.4): an encoder
and a decoder. The encoder is responsible for extracting latent
features z € R (d is the dimension of the latent feature) in the
input data € R",n >> d (n is the dimension of the input
data), and the decoder restores the latent features z extracted
by the encoder to the reconstructed data £ € R™. To realize
the auto-encoder by neural network, it can be expressed by
the following formula:

z = f(l') g O—(Wenx + be’n)»
T = fT(Z) & o(Waex + bge ),

where f(-) is a nonlinear map, f7(-) is an approximation for
the inverse of f(-), o is the activation function, We,,, Wye
are the encoder and decoder weight matrices respectively, and
ben, bge are the corresponding bias vectors. Therefore, in the
training phase, given a data matrix X € R™*"™, auto-encoder
solves the following problem:
1 m
min m Z(HIZ U(WdeU(WenIz + ben)

i=1

A
- bae)|2) 4 5 (1 Wenl [ + [ Wae I3,

(1

where )\ is a hyperparameter which can be set in advance.

C. Definitions

We model this problem as a matrix completion (MC) prob-
lem, and in order to understand this paper more conveniently,
we first define some related concepts about MC.

Definition 1. Ground-Truth Matrix. For a signal collection
task which has already been divided into grids according to
the requirement, involving m rows and n columns, its ground-
truth matrix is denoted as M, x., where each entry M (i, j)
denotes the true signal in [L;, L;].

Definition 2. Observed Matrix. A observed matrix O xn
denotes the actual collected observed signal:

O=QeM,

where o denotes the Hadamard product and if the entry of
[Li, L;] is observed : Q(i,j) =1, otherwise, (3, j) = 0.
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Definition 3. Reconstruction Algorithm. A matrix completion
algorithm V.4 attempts to reconstruct a complete matrix
M, xn from the observed matrix Op,xp -

U(Opmxn) =M~ M

D. System Framework

Wireless signal maps tend to change over time due to the
randomness of signal gain, and such changes are often random
and non-linear. The work of [15], [16] shows that the auto-
encoder can learn the nonlinear relationship in the matrix.
And compared with many other methods (GP, BCS, CNN),
the auto-encoder is simple in structure (as shown in Fig.4).So
we consider using a large amount of historical incomplete
signal map to train the auto-encoder and we reconstruct the
current incomplete signal map using the temporal features
of the auto-encoder learning. Therefore, we propose an auto-
encoder-based signal map reconstruction method (AER). The
framework of AER (as shown in Fig.3) consists of two phases:
the offline training phase and the online update phase.

IV. BASIC MODEL AND SOLUTION

In this section, we consider a simple version of our problem
and propose the corresponding solution in terms of active
sample collection and signal map reconstruction.

A. Assumptions and Formulation for Basic Problem Model

We make the following assumptions for the basic problem.

Assumption 1. A large amount of historical incomplete signal
maps. For the target area, signal maps at different times are
collected.

We believe that this assumption is realistic in many reali-
ties, especially when sparse crowdsourcing and crowdsourcing
participants are unevenly distributed in space and time. This
assumption is correct.

Assumption 2. High quality observations. In other words,
there is no noise in any of the observations (every crowd-
sourced signal is an element in Ground-Truth matrix) and any
locations can be observed.



Although in real life, errors often occur when making
observations. This assumption is also reasonable if attractive
incentives are used. After that, we will relax this assumption.

Assumption 3. No movement during observation. Each time
the signal observation of the position is determined, the signal
observation of the next position cannot be performed until
the observation is completed. In other words, the observation
value at each position is only the exact value of the signal at
the position.
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Assumption 3 ensures that if we assign an collection task
to a participant in in [L;, L;], the upload RSSI will actually
represent the location (4, 7). This assumption can usually be
met if the collection task does not take too much time.

Based on these assumptions, we define the research problem
as follows: Given a signal map reconstruction task in the target
area, how to use the incomplete signal O collected randomly
at time ¢ and a large amount of incomplete signal maps at
different times to reconstruct a complete signal map M and
minimize the error between the M and M. The formulation
is as follows:

min & = error(M, M)
s.t. MZ ‘I’Old(Oan) 2
O=QeM

B. Basic Algorithm

In this section, we will solve the above signal map recon-
struction with auto-encoder and we propose an auto-encoder-
based signal map reconstruction method (AER). The workflow
of AER is as shown in Fig.3. The algorithm is divided into
the offline training phase and the online update phase.

In the offline training phase, the input data of the auto-
encoder is a large number of incomplete historical signal maps
at different times and the loss function is the formula (1).
In order to reduce the number of parameters, we set Wy, =
(Wern)T and unified with W, W7 instead. Since our input data
is incomplete, the formula (1) cannot be processed directly, so
we convert it to the following formula:

-1
1
min 1 E (i o|lz; — DWW (W + b))
= 3)

A
+ )P + Il

Algorithm 1 The Active Crowdsourcing Algorithm
Input: Small batch query quantity b;
Output: b upload signals
if no upload signals then
compute the informativeness by formula (6) and sort;
else
compute the informativeness by formula (5) and sort;
end if
Select the first b signals with the largest informativeness to
query;
Set the corresponding elements of {2 to 1;

In the online update phase, we use the incomplete signal
maps uploaded by sparse crowdsourcing participant at time ¢
as input. We use formula (3) to fine tune and then the signal
map is reconstructed using formula (4). The formula (4) is as
follows:

M = o@D WTeW(Wa + D) +62)) “)

C. Active Crowdsouring Scheme

In reality, the uploaded signals we get may be very sparse
(crowdsourced participants are few) or even no uploaded
signals (crowdsourcing tasks just released). In this case, the
signal map reconstruction accuracy is low. In order to deal
with this situation, we have designed an active crowdsourcing
method which mainly uses a large amount of existing historical
data and an auto-encoder that has been trained to find the
signal with the highest informativeness and then we acquire
these signals through some kind of incentive. In traditional
active learning, the informativeness is defined as the degree of
prediction of the instance. Inspired by this, in this paper, we
define the informativeness as the degree of changes in signal.
In this part, we define the acquisition cost of the signal as the
number of signals.

I = abs(zh? | — 2b7) ®)

Here %7 represents the informativeness in [L;, L;], abs(-) de-
notes absolute value. We reconstruct the crowdsourced signals
of the two batches by the auto-encoder and then select the
signal with the highest informativeness in the un-uploaded
signal as the candidate point for active crowdsourcing. In
order to make the active crowdsourcing mechanism work
better, we defined another informativeness in the case of the
crowdsourcing task (no upload signal) as follows:

Linitiar = abs(Mo — mean(Mps)), (6)

where Iiniiiq tepresents the informativeness at different
locations without an upload signal. M indicates a signal map
reconstructed formula (4) by setting the initial value of the
auto-encoder without uploaded signals, mean(-) represents
the element-wise mean and Mpy;, represents the historical
signal we used to train the auto-encoder. The active acquisition
algorithm has been summarized in Algorithm 1.



V. ADVANCED MODEL AND SOLUTION

In Section IV, we simply consider that the data uploaded
by the crowdsourcing participants are all ground-truth signals
(Assumption 2). However, in the actual measurement, due to
the influence of the surrounding environment and the existence
of noise, we cannot directly obtain a ground-truth signal.
Therefore, in the actual signal collection process, we usually
collect the mesh multiple times and finally use the mean as
the signal value of the grid. At the same time, the signal map
formed by the signal map reconstruction algorithm is a certain
value, but this is not consistent with the actual situation. So
we will further expand our base model next.

A. Advanced Problem Model

In order to make our model more consistent with the actual
signal acquisition situation, we extend the signal of each grid
to the signal fluctuation range.

For the problem model, we still model this extension
problem as a signal map reconstruction problem as in Section
IV-A and we further extend the previous related concepts.

Extended Signal Map : we still divide the signal collection
area into finite grids. And we assume that there is only one
access point (AP) and m x n reference points (RPs) in the
target area. At time ¢, each grid has k£ measurements, and
the upload data of the (i,j)-th RP at time ¢ is given by
u,’ = ([Li, Lj],x;”), where x;7(x € R**1) presents the
k-time RSSI measurement of that RP at time ¢. And we use
X to represent the signal map at time ¢, the elements of which
are x;”.

In order to solve this problem better, we have also extended
the Assumption 2.

Extended assumption. Temporal Relative stability. In a round
of signal collection at time t, the signal has relative stability.
And the signals of multiple measurements do not change
much, that is, when measuring a certain grid, many of the
measurements are fluctuating around a certain value due to
the influence of ambient noise.

This is very common in the actual signal acquisition process,
especially when the acquisition process of each signal is very
fast. Therefore, in a round of signal collection at time ¢, the
multiple measurements made on a certain grid do not change
much. This assumption is easy to satisfy.

B. Advanced Algorithm

In order to solve this problem, we propose an extended AER
algorithm.

Extended offline training phase : The offline training
process is roughly the same as the Section IV-B. For the
multiple measurements X; € R™*"*k affected by noise
obtained at time ¢, we consider the mean X, € R™*" as
the signal observation at time ¢t. Therefore, we represent the
signal map collected at time ¢ as €2, # X ;. We will use historical
signal maps Q7 @ X7, 7 = 1,...,t — 1 as input to train our
auto-encoder model by formula (3).

Algorithm 2 The advanced AER algorithm

Input: Historical incomplete data X7, 7 =1, ...t — 1;
Initialization hyperparameter \;
Current sampled incomplete data X,
Output: Reconstructed signal map M and fluctuation s2;

The Offline Training Phase
DInitialization parameters W, b1, b(2);
while ; < ¢ do

2)Set initial values X;,; for unobserved signals and
calculate the input matrix X; = Q; @ X; + (1 — Q) X Xyni
at different times 7,7 =1,..t — 1;

3)Convert matrix X7, 7 = 1,..t — 1 into a one-
dimensional vector X € R1xmn.
end while
4)Stack historical signal map Xpis € R
5)Train auto-encoder by formula (3);
The Online Update Phase
if no upload signals OR quite a small number of signals
then

Using Algorithm 1 to actively acquire b signals
end if
1)Convert matrix X; into a one-dimensional vector X;;
2)Fine tune the auto-encoder by formula (3);
3)Reconstruct signal map by formula (4);
4)Calculate fluctuation by formula (8);

(t—1)xmn.
b

Extended online update phase : In the extended online
update phase, we divide the process into two steps:

1) In the online recovery phase, which is basically consistent
with the basic algorithm. we use the mean X; of multiple
signals collected at time ¢ as the signal value and we use
this Q; e X; as input and fine-tune the auto-encoder model
and reconstruct the signal map; 2) The fluctuation inference
phase, which mainly draws on the relationship between the
sample variance s2 and the population variance §2 in statistics
(as shown in formula (7)). And it uses the multiple signal
measurements obtained in each observation grid to infer the
fluctuation range of the reconstructed signal map.

Pt T (o) @
Here z; is the sample, Z is the sample mean, and k is the
number of measurements.

Because the signal map we collected is incomplete, we draw
on this relationship and design a formula that fits our model,
as follows:

Si _ ﬁ Zf:l Qt.HXitl_XHQF‘7 (8)
where s, represents the fluctuation range of the signal map,
k represents the number of measurements at time t, X;,7 =
1, ...k represents the i-th signal map at time ¢, {2; represents
which grid is collected at time ¢, |€);| represents the number
of meshes collected at time ¢. For collected grids (2; = 1),
X represents the observed mean matrix X, at time t, and for
uncollected grids (Q; = 0), we set x to the maximum X}%%®
or minimum X7%" of the grid signal in the historical signal.




So the Ground-Truth of the signal map should be mostly
concentrated in (M — s,, M + s,).

C. Active Crowdsourcing Scheme

We found that the active crowdsourcing strategy mentioned
in Section IV-C can still be applied to the advanced model,
but the advanced model has new features. Therefore, we have
extended the original active crowdsourcing strategy to make it
more consistent with the advanced model. We extend formula
(6) to the following :

I = abs(Xo — mean(Xp;s)), 9)

where I represents the informativeness at different locations.
Xo indicates a signal map reconstructed formula (4) by
setting the initial value of the auto-encoder without uploaded
signals, mean(-) represents the element-wise mean and X his
represents the mean of multiple historical signals collected.

The entire algorithm flow of advanced AER has been
summarized in Algorithm 2.

VI. EXPERIMENTAL EVALUATION

In this section, we will verify the effectiveness of the pro-
posed algorithm through some experiments. The experimental
dataset we selected is the simulated WiFi indoor positioning
dataset. The randomness of wireless signal map is mainly
derived from channel gain. Therefore, we use ray tracing
technology to generate 5000 signal maps with random changes
of channel as historical signal maps at different times, in which
each signal map has a missing rate of 50%, then we randomly
generate 4 samples from the same channel random variation
as incomplete signal maps at time ¢.

Baseline algorithms: we compare the performance of our
algorithm to two state-of-the-art missing value inference al-
gorithms, compressive sensing (BCS)[1], [10] and matrix-
completion (LmaFit[9]).

BCS: the algorithm uses signal sparsity to model signal
map reconstruction as a compressive sensing model, which
reconstructs the signal with a small number of observations
by Relevance Vector Machine (RVM)[18].

LmakFit: a popular alternating least-squares method for
matrix completion. In our experiments, we selected the best
matrix rank r for each signal map to ensure that its perfor-
mance is optimal.

A. Experiment Setup

In this paper, both the encoder and the decoder use a single-
layer neural network and we use cross-validation to determine
the best model parameters in the training phase and the fine-
tuning phase. We consider basic experiments (no noise) and
advanced experiments (random Gaussian noise), mainly to
compare the reconstruction errors of the three algorithms on
the missing data at a lower sampling rate (5%-10%, 15%, 20%
and 25%). At each sampling rate, we have set 11 different ran-
dom sampling methods (the same number of samples, different
Indicator matrices). In order to evaluate the reconstruction
errors, we use the Relative Mean Squared Error [16] defined as

RMSE = 12201-Mle 404 g — IATMDIe 1 evajuate
. Qe M|k [IMIIF

three algorithms. Firstly we compare the recovery effects of

three different algorithms on different test signal maps at

different sampling rates, where RMSE is the average of the

errors in 11 different indicator matrices. Secondly, we compare

the RSSI error cumulative distribution function and coverage

percentage (C'P = WX_WMI’)'“’”)). Finally, we compared the
different batch signals with active acquisition and 5 random
samples at the beginning of the crowdsourcing task (no upload

signals).

B. Experiment Result

Table I is the RMSE comparisons of the three algorithms.
From the table we can clearly see that our algorithm is
far superior to the other two algorithms. The RMSE of our
algorithm is between 4% and 5%, while the RMSE of BCS
is between 6% and 7%. The RMSE of MC varies greatly,
but the minimum RMSE also exceeds 6%. Then we compare
the cumulative distribution of reconstruction errors for the
three algorithms in Fig.5. The higher the curve, the better the
reconstruction effect. We can see that the performance of our
proposed algorithm far exceeds the other two algorithms.

For the active crowdsourcing problem, we use the active
AER algorithm to compare with the random sampling AER
algorithm. Fig.6 shows that in the absence of crowdsourcing
participants, we actively obtain reconstruction errors under
different batch signals. As can be seen from Fig.6, we found
that the signal obtained by the active method is much better
than the random sampling method, and under the same RMSE,
the active AER algorithm only needs less than half of the
number of random sampling. And active AER algorithm
can greatly reduce the collection cost required to reconstruct
signals.

In the extended experiment, we compared the RE of the
three algorithms at different sampling rates. The experimental
results are shown in Fig.7. We found that in the presence of
environmental noise, the performance of the three algorithms
is almost unaffected, and the reconstruction accuracy is similar
to that in the absence of noise.

For the active crowdsourcing problem in the presence of
noise, from Fig.8, we found that the active AER performs
better. Under the same RE, random sampling AER requires
more than 5 times the number of signals required for active
AER. In an active way, AER can greatly reduce the number
of signals and reduce the cost of signal map reconstruction
under the same RE. At the same time, we use the fluctu-
ation estimation algorithm to estimate the signal fluctuation
range, making the reconstructed signal map more practical.
From Fig.9,where X, represents the coverage of the collected
grid, X"** represents the coverage of the uncollected grid
calculated by Xﬁ‘;x, Xmin represents the coverage of the
uncollected grid calculated by X", X™a% represents the
coverage of the reconstructed signal map calculated by )_(ng?,
and X" represents the coverage of the reconstructed signal

map calculated by X7, we can see that even at the lowest



TABLE I
IMPUTATION PERFORMANCE IN TERMS OF RMSE(AVERAGE + STD)

Test signal map Algorithms RMSE
5% 6% % 8% 9% 10% 15% 20% 25%
AER  0.0530+0.0011 0.0523+0.0000 0.0517-+0.0011 0.0510+0.0013 0.0507-£0.0015 0.05024-0.0015 0.0489-+0.0020 0.0486+-0.0022 0.0484-+0.0020
signal map (a) BCS 0.0716£0.0000 0.0716%0.0000 0.071540.0000 0.0716£0.0000 0.071610.0000 0.0716£0.0000 0.071540.0000 0.071520.0000 0.071540.0000
MC 0.0908+0.0024 0.085940.0017 0.0831+0.0015 0.0810£0.0013 0.079740.0000 0.0786=0.0000 0.075240.0000 0.0714=£0.0124 0.061140.0000
AER 0.0431£0.0000 0.0427+0.000 0.0423+0.0000 0.0419+0.0011 0.0417+0.0011 0.0414=0.0000 0.0409+0.0000 0.0408-£0.0011 0.0409+0.0010
signal map (b) BCS 0.0710£0.0000 0.071140.0000 0.0710+0.0000 0.0710£0.0000 0.071140.0000 0.0711=£0.0000 0.07114-0.0000 0.0710=£0.0000 0.07104-0.0000
MC 0.0917+£0.0028 0.0868+0.0019 0.0846+0.0015 0.0828+0.0012 0.0816+-0.0000 0.0807-+0.0000 0.077740.0000 0.0651£0.0024 0.06214-0.0000
AER  0.0500£0.0000 0.0496+-0.0000 0.0492-+0.0000 0.04891-0.0000 0.0485-:0.0000 0.04834-0.0000 0.0475+£0.0011 0.047140.0010 0.0471-0.0000
signal map (c) BCS 0.0592+0.0000 0.059240.0000 0.0591+0.0000 0.059140.0000 0.059140.0000 0.0591£0.0000 0.05914-0.0000 0.0595-0.0000 0.05914-0.0000
MC 0.0924+0.0024 0.087240.0022 0.0849+0.0016 0.082940.0015 0.0816+0.0012 0.0805-+0.0000 0.07731+0.0000 0.0633+0.0014 0.06204-0.0027
AER  0.0506+0.0000 0.0502+0.0000 0.0498-:0.0000 0.0495+-0.0000 0.0491-£0.0000 0.0488+-0.0000 0.0480-+0.0011 0.0476+0.0010 0.0475+0.0000
signal map (d) BCS 0.0608-£0.0000 0.0608+0.0000 0.0607=+0.0000 0.0608-£0.0000 0.06084-0.0000 0.0608-£0.0000 0.0608=0.0000 0.0608=4-0.0000 0.0608-£0.0000
MC 0.0926£0.0026 0.087340.0023 0.0851+0.0017 0.0831£0.0015 0.081740.0013 0.0805=+0.0000 0.077440.0000 0.0638-£0.0028 0.062040.0026
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Fig. 5. CDF of signal map reconstruction error (dB)

—x—ACTIVE

—e— RANDOM]1
RANDOM?2
RANDOM3

—4&—RANDOM4
RANDOM5

0.055 0.055

0.05 0.05

RMSE
RMSE
RMSE

0.045 0.045"FC

-

0.04 0.04

0 100 200 300 400 500 600 0
The batch size

100 200 300 400 500 600
The batch size

0.055 0.055
i

0.05

RMSE

0.045 0.045

0.04 0.04

0 100 200 300 400 500 600 0
The batch size

200 400
The batch size

600

Fig. 6. RMSE at different batch sizes

sampling rate, we can still guarantee that more than 90% of
the signal range contains the ground-truth of the signal.

From the above experimental results analysis, we can see
that our proposed algorithm is far superior to the other two
algorithms in RMSE. At the same time, AER can guarantee
that more than 90% of the signals have small deviations.
Moreover, we can further reduce the number of signal obser-
vations while ensuring reconstruction accuracy through active
crowdsourcing.

VII. CONCLUSIONS

In this paper, we propose a comprehensive solution for
signal map acquisition, where auto-encoder is used to learn
the nonlinear features of and compose an algorithm called
auto-encoder(AER) firstly. The AER can effectively utilize
historical incomplete signal maps collected and learn the

nonlinear temporal features therein and effectively reconstruct
the signal map; Secondly, we propose an active crowdsourcing
scheme for better performance of AER. This method can
reveal the more valuable measurement sites for reconstruction
algorithm and effectively reduce the reconstruction error with
lower crowdsourcing budget. Finally, we also propose a more
realistic signal map model with the description of the signal
dynamics in the same location over time, and correspondingly,
an extended AER algorithm is proposed to solve the recon-
struction problem on this model. The simulation experiments
results demonstrate the effectiveness of our solution.
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