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Geographical Correlation-based Data Collection
for Sensor-augmented RFID Systems
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Abstract—This paper studies the practically important problem of data collection for sensor-augmented RFID systems. However,
existing RFID data collection protocols suffer from two common limitations: execution time is naturally in proportion to the number of
tags, thus they cannot satisfy time-stringent application scenarios; none of them is complaint with the C1G2 standard, thus they cannot
be implemented using Commercial-Off-The-Shelf (COTS) RFID tags. To overcome these two limitations, this paper proposes the
Geographical correlation-based RF-data Collection (GRC) protocol. GRC is fast because it is able to approximately capture the
sensing data of all tags by only actually gathering data from a small set of sampled tags. This is based on the observation from the
real-world data set that sensing data has a strong geographical correlation, i.e., data gathered from nearby RFID tags has similar
values. In GRC, we use a greedy approach to find the minimum sampling tag set to cover the whole monitoring region such that each
un-sampled tag has at least one sampled tag nearby. Then, RFID reader runs the Framed Slotted Aloha (FSA) protocol specified in
C1G2 standard to collect sensing data from the sampled tags. For each un-sampled tag, we approximate its sensing data by
calculating weight-average of the data collected from its nearby sampled tags, where a faraway sampled tag should be given a small
weight, and vice versa. Compared with existing RFID data collection schemes, the advantages of GRC are two-fold: (1) Extensive
simulation results demonstrate that the time cost of our GRC scheme is only 1/28∼1/3 of the state-of-the-art data collection scheme;
(2) GRC is totally complaint with C1G2 standard, thus it can be easily deployed on the COTS RFID tags.

Index Terms—Sensor-augmented RFID, Sensing Data Collection, Time-efficiency, Geographical Correlation.
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1 INTRODUCTION

1.1 Background and Motivation

Radio Frequency Identification (RFID) has been widely used
in various promising application scenarios such as supply chain
management [1], [2], warehouse monitoring [3], [4], and inventory
control [5], [6]. An RFID system typically consists of readers,
tags, and a back-end server [7]. A tag is a microchip with an
antenna in a compact package that has limited computing power
and communication ranges. RFID tags can be classified into two
types: active tags, which use the internal battery to power their
circuits [8], and passive tags, which do not have their own power
source and are powered up by harvesting the energy from the
reader’s electromagnetic fields [9]. The back-end server controls
the RFID reader to send commands to query the tags, and the tags
respond over a shared wireless medium [10]. Thus, information
on tagged items can be automatically gathered.

With the development of chip manufacturing technology,
RFID tags could be augmented with sensors [11], e.g., WISP tags
[12]. Thus, RFID tags can not only provide static ID information
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for inventory, but also real-time information about the state of
the tagged object or the environment where these objects reside
Compared with active tags and traditional sensors, WISP tags
(a kind of sensor-augmented passive tags) have almost infinite
lifetime due to battery-free manner, and thus more suitable for
long-term monitoring purpose.

Information collection is a classical problem in sensor-
augmented RFID systems. For example, in a large cold-chain stor-
age facility, sensor-augmented RFID tags are attached to stacked
food items and timely monitor their temperature. If abnormal
temperatures of tagged items are discovered, we can take proper
countermeasures to prevent from food spoilage. A great deal
of efforts have been made to investigate how to gather exact
information from a large number of sensor-augmented tags [13],
[14]. However, time-efficiency of the existing solutions is still not
satisfactory for tag-dense applications because they need to collect
data of all tags. We observe from the real dataset [15] that, the
sensing data measured by nearby tags has a strong correlation. For
better time-efficiency, we propose to collect data from just a set
of sampled tags (instead of all), and then use the collected data
to approximate the data of un-sampled tags. Such a time-efficient
solution with satisfactory data accuracy is preferred in many time-
stringent applications.

1.2 Limitations of Prior Work

Due to its practical importance, a great deal of effort has been
made by the academic community to address the problem of RFID
data collection [14], [16], [17]. Chen et al. proposed a multi-
hashing method called Multi-hash Information Collection (MIC)
protocol [14], which makes use of the known tag IDs and the hash
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Fig. 1. The overview of geographical correlation-based data collection.

functions embedded in RFID tags to improve the frame utilization
and avoid the transmission of tag IDs. Qiao et al. investigated how
to efficiently collect information from a subset of given tags [17].
Yue et al. focused on the multi-reader RFID systems, and proposed
to use the bloom filter to filter out the tag IDs that may reside
in other reader’s coverage [13]. A common objective of existing
protocols is to alleviate the signal collisions among RFID tags to
improve utilization of time frame, thereby achieving better time-
efficiency. However, even if tag collisions are totally avoided, their
ideal execution time is naturally in proportion to the number of
tags, and thus cannot satisfy time-stringent application scenarios.

Although, statistical inferring-based data approximation prob-
lems have been extensively studied in the wireless sensor networks
(WSN) [18], [19], the existing schemes cannot be directly used
in sensor-argumented RFID system due to the following reasons.
First, the RFID system is a single-hop network, and the sensor-
augmented tags can only communicate with the reader but cannot
communicate each other. On the contrary, the WSN is a multi-
hop network consisting of multiple transmission links, and nearby
sensor nodes can communicate each other in a distributed manner
[20], [21]. Compared with WSN, the signal collision issue is much
more serious in the RFID system because hundreds of tags simul-
taneously communicate with the single reader. Hence, the WSN
protocols, which were mainly designed for distributed routing
and networking, may not be able to handle such serious signal
collisions in RFID systems. Moreover, sensor-augmented RFID
tags can only harvest energy from the radio waves of reader, hence,
their computation and communication capabilities are normally
much weaker than battery-powered sensors. Hence, the complex
WSN protocols [18], [22], which require heavy hardwares, usually
cannot be applied on RFID tags. Due to the above two reasons, we
need to propose designated protocols for RFID systems. We also
proposed an error-bounded data collection protocol named SIC
[23], which applies the sampled data to compute a fixed length
interval that is expected to maximize the number of un-sampled
tags. This straightforward method is of low accuracy because it
uses a single value to approximate all the un-sampled tags.

1.3 Proposed Approach
We observe from a real-world dataset [15] that sensing data

usually has strong geographical correlation, i.e., data gathered
from nearby sensing nodes within a certain distance usually has
similar values. Making use of such geographical correlation, we
propose the Geographical correlation-based RF-data Collection
(GRC) scheme. At the beginning GRC, we carefully select a
sampled tag set based on the pre-learned inherent data correlation,
which ensures that each un-sampled tag can find at least one
nearby sampled tag. A greedy algorithm is used to find a minimum
sample set by giving preference to the tags with the maximum

number of un-sampled nearby tags. Then, the reader issues Gen2
commands to gather sensing data from sampled tags as follows:
The reader uses Select command to activate these sampled tags.
Each Select command is embedded with a 96-bit ID, to activate
the matched tags. Since tags communicate to the reader through a
shared wireless channel, the reader issues Inventory command
to resolve tag collisions. The Inventory command initializes a
slotted time frame of f slots and each active tag randomly chooses
a slot in the frame. The reader uses QueryReap commands to
go through these slots one by one. Generally, there are three
types of slots: empty slot in which no tag responds; singleton
slot in which only one tag responds; collision slot in which
two or more tags respond. RFID reader can only receive the
sampled tags’ data in singleton slots. The sampled tags in collision
slots cannot successfully report their data, and will participate
in subsequent inventory processes. Such a process will repeat
until all sampled tags are successfully read. Next, the controller
estimates the data on un-sampled tags using the weighted-average
of multiple sampled data. The sensing data from nearer sampled
tags are given higher weights because their data are more similar
to that of the un-sampled tag. Moreover, a direction-based nearby
tag selection algorithm and a compensation algorithm is used
to preprocess these sampled data for improving the estimation
accuracy. Our GRC scheme is much more time-efficient than the
classical information collection scheme. The underlying reason
is that, GRC only needs to gather information from a small
set of sampled tags, and further makes use of the geographical
correlation inherent in the sensing data distribution to approximate
the data of un-sampled tags.

The time-efficiency of GRC is determined by the sample set,
which may change round by round due to following three reasons.
First, the distribution of sensory information across tags usually
changes over time. For example, the distribution of temperature
information in a room usually changes due to the varying sunlight.
Since the optimal sample tag set is highly related to the informa-
tion distribution, we need to dynamically adjust the sample tag
set. Second, RFID tags may be associated with multiple kinds
of sensors, e.g., temperature, humidity, and light. The results in
Fig. 1 reveal that different kinds of sensory information have
different geographical correlation. Hence, we usually need to use
different sample tag sets for collecting different types of sensory
information. Third, the tag population itself may also change over
time, e.g., the tagged items are frequently moved out or in. In
this case, we obviously need to adjust the sample tag set. When
the sensing data share a very strong correlation, the sample set
is usually small and GRC has a significant advantage over the
information collection schemes, because the ratio of tags whose
data can be approximated is large accordingly. However, this time-
efficiency comes at the expense of losing some granularity when
estimating the data of un-sampled tags. Fortunately, experimental
results reveal that GRC normally involves a very small estimation
error, which is acceptable for most RFID applications.

1.4 Technical Challenges and Solutions

We need to address the following three technical challenges
when implementing the proposed GRC protocol. The first chal-
lenge is to design an effective algorithm to select a set of sampled
tags with two objectives: First, it should minimize the number of
sampled tags and guarantee that every tag can find at least one
correlated nearby sampled tag within a certain distance. Second,
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it should return distinct sample sets at several consecutive GRC
executions, such that all the tags have chance to report their
sensory data. The proposed greedy sampling algorithm gives a
higher sampling priority to the un-sampled tag that has more
correlated neighbor tags.

The second challenge is to design an accurate estimator for
un-sampled tags’ data. In this paper, the un-sampled tags’ data is
estimated by the weighted-average of the nearby sampled tags’
data. The closer sampled tag’s data is assigned a larger weight
because the sensing data from closer tags usually have a stronger
correlation. Besides, we apply two techniques to improve the
estimation accuracy. First, we only use the samples at different
directions as the estimation input because these samples have more
chance to compensate estimation error. Second, we propose a data-
driven method to reduce the bias of the estimator by subtracting
the expected deviation between the sampled and un-sampled data.

The third challenge is to ensure that our GRC approach is com-
pliant with the EPC-Global C1G2 standard [24]. C1G2 compliant
schemes are supported by various commercial RFID devices and
can be easily deployed in current systems. Therefore, the reader
communicates with the tag using C1G2 commands and avoids
using any customized functions such as hash synchronization and
vector comprehension.

1.5 Novelty and Advantage over Prior Art

This paper proposes a time-efficient RFID data collection
scheme based on geographical correlation. Based on the real
dataset [15], we investigate several factors that may affect the esti-
mation accuracy, including distance, directions and original offset
of the sensor nodes. By jointly considering all these factors, we
design an efficient tag estimation scheme to use weighted-average
estimator, direction-based filter and dynamic parameter updating
techniques to guarantee the accuracy constrains. Compared with
previous related works, the proposed GRC scheme has three major
advantages. First, GRC leverages the geographical correlation and
only needs to collect sending data from a set of sampled tags
instead of all tags. Thus, the time-efficiency can be significantly
improved. Second, in the classical statistical inferring approach
[18], some sensing nodes may suffer from the “starving issue,
i.e., cannot be sampled all the time. In contrary, the proposed
GRC protocol can ensure the fairness among tags, i.e., each tag
has a chance to be sampled and report its sensing data. Third,
GRC is complaint with C1G2 standard, whereas previous RFID
data collection protocols [14], [16] are not. Hence, GRC has
better deployability. The simulation results reveal that our GRC
scheme takes only 1/28 ∼ 1/3 of the execution time, compared
with the state-of-the art information collection schemes. Table 1
summarizes the main notations used in this paper.

The rest of the paper is organized as follows. Section 2
introduces some preliminary knowledge about C1G2 standard.
Section 3 presents the detailed design of our GRC approach.
Section 4 discusses the communication cost, computation cost,
and error control of GRC. Section 4 reviews the related work.
Section 6 evaluates the performance of our GRC approach through
extensive simulations. Finally, Section 7 concludes this paper.

2 MODEL & ASSUMPTIONS

This section first presents the multiple access protocol used in
GRC, and then presents the assumptions made in this paper.

TABLE 1
Key notations.

Notations Descriptions
I/S/U Set of integrated tags; sampled tags; un-sampled tags
N∗ Size of set ∗, ∗ can be
Q Parameter controls the length of time frame f = 2Q

XI Integrated data set XI = {i1, · · · i|I|}
XS Sampled data set XS = {s1, · · · s|S|}
XU Un-sampled data set XU = {u1, · · ·u|U|}
XE Evaluation data set XE = {e1, · · · e|E|}
L Locations of the tags
Ai Covered area of antenna i

T1/T2 Waiting time on the reader/tag side
d Distance threshold for geographical correlation

di,j Distance between tag i and j
xi, yi The x and y coordinates of tag i

k Number of neighbor tags used for estimation
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Fig. 2. Frame slotted aloha protocol specified in the C1G2 standard.

2.1 C1G2 Background

To be compliant with COTS RFID devices, we adopt the
Q-protocol specified in C1G2 standard as the multiple access
protocol. As illustrated in Fig. 2, the reader first issues Query
command to start a frame of f = 2Q slots, where Q is an integer
embedded in the Query command. Since Q ∈ [0, 15], the maxi-
mum frame size is 32768. After receiving the Query command,
each tag randomly chooses an integer ranging from 0 to f to
initialize its slot counter. The tag whose slot counter equals to 0
needs to immediately respond to the reader by backscattering a 16-
bit random number called RN16, which is used by the reader for
tag verification in the subsequent process. Upon receiving RN16,
the reader acknowledges the tag by sending an ACK command
together with the received RN16. If multiple tags respond in the
same slot, the reader cannot receive the correct RN16 and send
a NACK command to tags. If a tag receives an ACK command, it
will respond with its 96-bit ID along with other information to
the reader. Then, the reader issues a Req_RN command to gather
information stored in the tag memory. The target tag responds with
a 16-bit handle for verification. Next, the reader issues the Read
command embedded with the received handler to read certain
memory block stored on the tag. The tag with the verified handler
responds with the target data to the reader. At this point, the whole
transaction cycle for information collection is done in this slot. The
reader issues the QueryRep command to start the follow-up slot.
After receiving QueryRep command, all tags decrease their slot
counters by 1. Then, the tags whose slot counters become 0 will
repeat the above transaction cycle. This process does not terminate
until reader goes through all slots in the time frame.

2.2 Assumptions

RFID systems can be deployed in various ways to fulfill
the needs of different applications. In this paper, we consider a
scenario meets the following assumptions:
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• Controller: We assume the central controller is connected
with the RFID reader for conducting heavy computation
tasks, generating reader commands on-line, and storing
RFID data [14].

• Antennas: The RFID hardware part contains a reader that
connects with multiple antennas [14], [25] to cover the
monitoring region. We assume the antenna is idealized
and all the antennas cover the same area of a circular
region and are uniformly deployed at the region to cover
the whole monitoring area. A batch of literatures have
been proposed to study the reader antenna deployment
problem [26], [27], i.e., using the minimum number of
antennas to seamlessly cover a specific monitoring region.
Due to space limitation, we do not pay extra effort to study
this problem any more.

• Tags: We assume the deployed RFID tags are sensor-
augmented tags. Each tag is equipped with the same type
of sensors to measure environmental information. The
measured data is stored on the user block memory, which
can be read by the reader through Read commands.

• Locations: The tags are attached to retail items for the
tracking purpose. Since the objects can be placed any-
where when they are first moved into the system, their
locations can be seen as random. Once these tagged items
are deployed, we assume the tag locations are static and
will not change during the monitoring time. The location
of each tag can be obtained by executing the tag localiza-
tion schemes [28], [29].

• Data Correlation: The geographical correlation naturally
exists in a system where sensing nodes (e.g., sensors or
RFID tags) are densely deployed [18], [30]. A particu-
lar application has the specific geographical correlation.
Before applying our proposed solution to an application
scenario, we need to learn the inherent data correlation by
jointly using the tag location information and the historical
sensing data.

• Time Stringent: A long information collection process
may disturb the execution of the other RFID application
protocols, e.g., tag localization [7], missing tag detection
[31], and tag cardinality estimation [32]. Hence, we treat
“time stringent” as a major concern in this paper, and
desire a time-efficient information collection protocol.

3 GEOGRAPHICAL CORRELATION-BASED DATA
COLLECTION PROTOCOL

In this section, we will present the proposed GRC approach
in detail. We make extensive effort to optimize the parameters
on both algorithm and command levels, thereby addressing the
technical challenges specified in Section 1.4. The design goals
of our GRC approach are three-fold: be complaint with C1G2
standard; satisfy the time-stringent application requirement; and
guarantee the accuracy of un-sampled data. To achieve these goals,
we propose a novel scheme that leverages the pre-learned inherent
data correlation for estimating un-sampled data. Fig. 3 illustrates
the GRC architecture. The three major stages including sampling,
estimating and updating are specified as follows:

1) The controller applies a greedy algorithm to find a sam-
pled tag set, which ensures that each un-sampled tag can
find at least one nearby sampled tag and distinct tags
should be sampled with the similar frequency.

Choose Sampled Tags

Collect Sampled Data

Find Neighbor Sample

Filter Neighbor Sample

Add Compensa�on

Data Es�ma�on

Evalua�on

Update Parameter

Distance 
Threshold

Loca�ons IDs
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Es�ma�ng 
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Upda�ng 
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START Historical Data

INPUT  DATA
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Fig. 3. Architecture of the proposed GRC scheme.
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Fig. 4. Daily variations of four types of sensing data in one day

2) The RFID reader sequentially issues C1G2 commands
to implement the selective reading for gathering sensing
data from sampled tags.

3) The controller uses the weighted-average of multiple
sampled data to estimate the un-sampled data. The data
from nearer sampled tags are given larger weights. To
improve the estimation accuracy, only the sampled tags
in different directions of the un-sampled tag are chosen
as the inputs of the weighted average estimator.

4) Finally, to evaluate the estimation accuracy, the controller
collects the sensing data from some un-sampled tags and
compares them with their estimation values. Based on
the evaluation results, the controller will adjust the data
correlation relationship to improve the time or accuracy
efficiencies of GRC scheme.

3.1 Geographical Correlation between Sensing Data

GRC makes use of geographical correlation among sensing
data to estimate the un-sampled data in sensor-augmented systems.
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The geographical correlation naturally exists in a system where
sensing nodes (e.g., sensors or RFID tags) are densely deployed
[18], [30]. A particular application has the specific geographical
correlation related to surrounding environment, e.g., the wall can
break geographical correlation because two nearby tags separated
by the wall may not have similar sensing data at all. Therefore,
before applying our proposed scheme to an application scenario,
we need to learn the inherent data correlation by jointly using
the tag location information and the historical sensing data. The
learned data correlation can be represented as an un-directed
graph, in which each node is tag and a link means the two involved
tags are close enough (their data are similar, and one data can be
approximated by another). That is, we can dynamically learn the
data correlation for a given RFID system.

In the following, we use an example dataset [15] to illustrate
the geographical correlation between sensing nodes. The dataset
contains four types of sensing data including temperature, humid-
ity, illumination and voltage. We make three observations from
Fig. 4. First, the distance is the major impactor factor on data
correlation for all four types of sensor data. The numerical results
in Fig. 4 coincide with this statement. According to Fig. 5, we
can find that the direction is also a key factor that affects the
geographical correlation of sensing data. Besides the factors of
distance and direction, some external environment factors such
as light and wind from air conditioner may also affect the geo-
graphical correlation. As exemplified in Fig. 4(c), the geographical
correlation in illumination trace is strongly affected by the lighting
condition. The illumination data of all nodes are of similar values
because the dome light is off and all nodes have the same lighting
conditions. These factors make sensor nodes usually follow the
different distance-correlation relationship.

To compute the distance threshold for each individual tag, we
evaluate the data from nearby tags based on user-defined accuracy
metrics, such as the maximum offset or the correlation coefficient.
No matter which metric is chosen, the methodologies for finding
nearby tags are always same as shown in Algorithm 1. At the
beginning, we compute the distance between arbitrary two tags.
Then, we iterate each tag in set I to find its nearby tags, and use
an undirected graph V to store the relationships of nearby tags.
In V, each node represents a tag in I, and each link means two
involved tags are nearby with each other. The distance threshold
of the tag, is the distance to the farthest nearby tags. We use the
dataset [15] as an example to investigate the distance threshold
when determining the correlated nearby tags. Fig. 6 shows when
the maximum temperature offset is set to 1 ◦C , the distance
thresholds are uniformly distributed between 3∼8 meters at noon.

3.2 Sampling Stage

Given the distance threshold of each tag, we need a certain
set of sampled tags S to make sure that each un-sampled tag can
find at least one nearby sampled tag. The problem is to find a
minimize size of sample set to cover all the un-sampled tags.
This problem is similar to the disk covering problem, which have
been studied extensively in wireless networks [33], [34]. However,
RFID network has a different architecture. Thus, most of previous
solutions cannot be cannot be applied in RFID networks. The
sampling algorithm should return distinct sample sets at several
consecutive GRC executions, such that all the tags can be sampled
with similar frequencies. In the following, we will give two types
of sampling algorithm meets the above requirements.

3.2.1 Random Sampling

Random sampling promises all the tag have the same chance
for responding the reader. It is a naive scheme that brings little
extra overhead. However, the performance of random algorithm
is not satisfactory, because sampled tags chosen by random algo-
rithm share many overlap regions. Besides, it can not ensure that
the all the un-sampled tags are completely covered by the nearby
sampled tags due to its probabilistic manner. For simplify, we can
assume that each tag is randomly distributed within the region and
each tag has the same covering region of πd2 m2. The probability
that an un-sampled tag is covered by at least one of the k sampled
tags is presented as follows:

p ≈ 1−
(

1− πd2

wh

)k

. (1)

The required sample size to cover p of the tags is:

kr =
log(1− p)

log(wh− πd2)− log(wh)
(2)

To implement random sampling scheme on Gen2 devices. The
reader only needs to issue Inventory commands to start an
identification cycle using the frame slotted Aloha protocol. The
tags in singleton slots can be successfully identified by the reader.
Fowling each successful identification, the reader will issue Read
command to collect information stored on the tags. The reader
stops the above process until the required number of sampled tags
is identified. Let ts, te, tc and tdata denote the time length of
singleton slots, empty slots, collisions slots and data collection
slots, respectively, the total communication overhead of random
sampling scheme can be approximated to TR = |SR|× (te + ts +
(e− 2)tc + tdata), where |SR| represents the number of sampled
tags selected by the random algorithm.
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Algorithm 1: Nearby tag detection algorithm
Data: tag locations L and historical data XI
Result: data correlation graph V
initialize an undirected graph V of |I| nodes;
for each tag x in I do

sort tags in I based on their distance to x;
for each tag y in sorted I do

if x and y has geographical correlation then
add a link between x and y in V.

else
break;

end
end

end

Algorithm 2: Greedy sampling algorithm
Data: undirect graph V storing the nearby tags;

un-sampled tag set U
Result: sampled tag list S
while V 6= empty do

iterate nodes in U;
tag x = node with the maximum number of links;
add x to sample list S;
remove tag x from U remove nodes that have a link to
s from graph V;

remove node x from V.
end

3.2.2 Greedy Sampling

Alternatively, we propose a greedy algorithm to select a set
of sampled tags with two objectives. First, it should minimize
the number of sampled tags and guarantee that every tag can
find at least one correlated nearby sampled tags within a certain
distance. Second, it should return distinct sample sets at several
consecutive GRC executions, such that all the tags can be sampled
with similar frequencies. The detailed algorithm is presented in
Algorithm 2. We use U to denote the set of un-sampled tags,
which is initialized to I at the very beginning of GRC. V is
an un-directional graph used to represent the data correlation of
the system, and its initialization value can be obtained from the
methods in Section 3.1. Then, we will iterate each node in U to
find out a node x with the maximum number of links. Such a
node is equivalent to the tag that has the most nearby tags, which
should be added to the sample tag set S and removed from the un-
sampled tag set U. The tags that have links to tag x are the nearby
tags, whose data are correlated to that of tag x. Thus tag x, its
nearby tags, and their links should be removed from V. After that,
the controller again iterates each node in the updated U to find the
new node x′ with the maximum number of links, and repeats the
above processes to updating U and V. Such a process is repeated
until V becomes empty. To start the next round of information
collection, V is reset to its initialization value again. For fairness
concern (i.e., letting each tag has a chance to be sampled and report
its sensing data), we need to reset U = I when U becomes empty.
Fig. 9 uses the example dataset [15] to show a set of sampled tags
selected by the greedy algorithm.

To collect information from a certain set of sampled tags
with Gen2 devices, we need to implement a selective reading

with the Gen2 commands. First of all, the reader issues Select
commands embedded with tag IDs to active all the sampled
tags in S. Then, the issues inventory command to starts a
time frame to identify the active tags using frame slotted Aloha.
The tags in singleton slots can be successfully identified by
the reader. Following each successful identification, the reader
will further issue read command to collect information stored
on the identified tag. Let tp denote the overhead of polling
tag with the ID, the total overhead of selective reading is
TG = |SG|×(tp+ts+te+(e−2)tc+tdata), where |SG| represent
the number of sampled tags selected by the greedy algorithm.

3.2.3 Performance Comparison
Obviously, the greedy algorithm returns a smaller sample set

compared to the random algorithm because we always select the
sampled tag that has the maximum number of neighbor tags.
What’s more, greedy algorithm is a deterministic method that en-
sures all the un-sampled tags can be covered by at least one nearby
sampled tag while uniform random algorithm is a probabilistic
method that never provides guarantee on completely coverage. We
conduct a set of simulations to compare the performance of the
proposed greedy algorithm, the random algorithm and the optimal
lower bound. In the simulations, we assume that the monitoring
region is a 17× 17m2 square area, where 1000 tags are uniform-
randomly deployed. As shown in Fig. 7, suppose each tag can
cover a πd2 circle region, the non-overlapping area covered by
each tag is a hexagon with the side of d. Therefore, given a w×h
rectangle, the optimal lower bound on sampled tags should be
larger than ko = 2

√
3wh

9d2 . As shown in Fig. 8, we can find that
the greedy algorithm always returns a smaller sample tag set com-
pared with the random algorithm. For example, when d = 3m,
the size of sample tag set returned by the greedy algorithm is
only one third of the random sampling scheme (99.9%), and is
twice the optimal lower band. Since the communication cost of
both random algorithm and greedy algorithm is a function of |S|,
where |S| is the size of sample tag set. We can assert that the
proposed greedy algorithm is much more time-efficient than the
straightforward random algorithm. Besides, the gap between the
random algorithm and our greedy algorithm becomes larger as the
increase of coverage rate. For example, when d = 4m, the size of
sample tag set for covering 99.9% of the tags is 3 times that for
covering 95% of tags.

3.3 Estimating Stage

Given the sampled data XS, the next issue is how to apply
them to estimate the data of un-sampled tags. We have made the
following two observations based on the practical dataset [15].
First, as shown by the orange line in Fig. 10, the tags closer
to sampled tags are expected to have smaller absolute errors.
Thus, when estimating the sensing data of an un-sampled tag,
we need to give larger weights to the sampled tags that are closer
to this un-sampled tag and use the weighted-average value as its
estimation data. Second, as shown by the blue line in Fig. 10, the
errors can be either negative and positive over time. Therefore,
the tag tags far from the sampled tags may have small average
errors because the above two types of errors can cancel with
each other. The underlying reason is that geographical distribution
of many kinds of environmental data can be approximated by
the multivariate normal distribution [35], [36], which generally
has opposite gradient values at opposite directions. Therefore, we
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prefer to choose samples along different directions when there are
multiple sample tags. Therefore, when estimating the sensing data
of an un-sampled tag, we prefer to choose the nearby sampled tags
at different directions. For example, in the dataset corresponding
to Fig. 4(a), the sampled tags with d = 7m and d = 12m are
at different directions to the un-sampled tag. As shown in Fig.
4(a), we can achieve a better estimation result for this un-sampled
tag if averaging the sensing data of these two sampled tags than
separately using either of them. Based on the above observations,
we estimate the un-sampled data by weighted-averaging the data
from multiple sampled data in different directions.

In the following, we present an algorithm to select sampled
tags whose data are used as the input of weighted-average es-
timator. First, the sampled tag nearer to the un-sampled tag are
sampling with high priority. Second, when selecting a new tag, we
must ensure that the degree between the new tag and any selected
tags exceeds or equals to 90 degrees. Let (xi, yi), (xj , yj) and
(xt, yt) denote the location of sampled tag i, sampled tag j and
un-sampled tags t, respectively. The cosine for the angle between
tag i and tag i is:

cosαij =
(xi−xt) · (xj−xt) + (yi −yt) · (yj −yt)√

(xi−xt)2+(yi−yt)2 +
√

(xj−xt)2+(yj−yt)2
.

αij > 90o if (xi−xt) · (xj−xt) + (yi −yt) · (yj −yt) < 0.
Fig. 12 shows an example of the filtering process. Tag i is selected
because it is the nearest tag to the un-sampled tag; tag j is selected
because αij > 90o; but tag w is not selected because αiw < 90o.

After removing sampled data at similar directions, we apply a
data driven approach to reduce the initial offset between the un-
sampled tag’s data and selected sample tags’ data. Let ûij denote
the estimator of un-sampled tag i based on sampled tag i, we have:

ûij = uj + E(ui − uj), (3)

where u∗ represents the data value of tag ∗ andE(ui−uj) denotes
the expected difference between the un-sampled data ui and the
sampled data uj . E(ui − uj) can be computed by averaging the
historical value difference between ui and uj during a certain time
like one day as follow:

E(uj − ui) ≈
T∑

t=1

(
utj − uti

)
/T. (4)

where T denotes the length of the historical data sequence and ut∗
denotes the sensing data of tag ∗ at time t.

Finally, we use the weighted average of the compensated data
to estimate the un-sampled data. Since the estimation variance of
closer tags are smaller as shown in Fig. 11, we assign a larger
weight coefficient to the data of sampled tag which is closer to the
un-sampled target. Specifically, the weight coefficient wij is:

wij =
1/d2ij∑k
j=1 1/d2ij

, (5)

where dij denotes the distance between the target tag i and its
nearby sampled tag j. The final estimation equation for estimating
the data of un-sampled tag i can be expressed as follow:

ûi =
k∑

j=1

wij · ûij , (6)

3.4 Updating Stage

In this section, we present how to update the distance thresh-
olds with the change of time. Since the geographical distribution
of the measured parameters is dynamic and changes during the
GRC executions, we need to update distance thresholds to catch
up the up to date correlation relationship between tags. Fig. 4(a)
shows that the offset between sensors is relatively large in the
middle of the day but turn to small at night. Updating the threshold
d in time is a key factor to improve both time and accuracy
efficiencies of GRC scheme. The updating strategy is chosen
based on the evaluation results on estimation accuracy. To evaluate
the estimation accuracy for un-sampled tags, besides collecting
sensing data from the sampled tags, the reader needs to collect
the sensing data from some un-sampled tags. Let E denote the
set of selected un-sampled tags used for evaluation of estimation
accuracy. For each un-sampled tag in E, we will compare the
offset between its exact data ei and the estimated value êi. If the
offset exceeds a threshold specified by the user, the correlation
link between x and its nearby sampled tag y should be removed.
Moreover, the correlation links to the sampled tags, which are
farther than the removed sampled tag y, will be also removed from
the nearby tag set of tag x. Otherwise, we will add a correlation
link between x and its nearest un-linked tag to reduce the size of
sampled tag set for better time-efficiency. If there are too many
estimation errors, we need to remove all correlation links and re-
compute all the distance threshold for each tag.

4 DISCUSSION ON PRACTICAL ISSUES

This section first analyzes the communication and computation
overhead of GRC scheme, and then present why we choose Frame
Slotted Aloha protocol specified in C1G2 [24] as the MAC layer
communication protocol.
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4.1 Communication Cost
Reading data from sampled tags is the major communication

cost of GRC. Let NA be the number of RFID antennas deployed
in the monitoring region, and m be the number of sampled tags
within the communication range of each antenna, the total number
of sampled tags can be denoted as NM = m · NA. By contrast,
the standard information collection protocol needs to collect data
from NI integrated tags, which incurs much more communication
and time cost. Since the communication cost is in proportion to
the number of collected tags, the communication costs reduced by
GRC is (NI − NM)/NI. The improvement increases as NM/NI
becomes smaller. While NM is in proportion to the area of
the monitoring region, we can conclude that GRC has a more
significant improvement when the tags are deployed with a higher
density. This is reasonable because each sample can cover so many
un-sampled tags in high density deployment. According to our
observation on temperature sensing dataset, 20 samples is enough
for the monitored area of 200m2, GRC can reduce over 90% cost
when the number of tags deployed within this region is larger
than 200, which is very common in inventory and warehouse
applications. Therefore, we believe that the proposed GRC can
significantly improve the time-efficiency than existing exact data
collection approaches.

4.2 Computation Cost
GRC significantly reduces the communication cost of the

information collection operation at the expense of involving some
extra computational cost. The computational cost of GRC mainly
contains three parts: tag sampling, un-sampled tag estimation and
distance threshold updating. The overhead of greedy sampling
algorithm is O(|I|2 log |I|). The overhead of un-sampled tag
estimation can be represented as O(T |U|), where T denotes
the length of historical data. The overhead of distance threshold
updating can be represented as O(|E|). Since |E| � |U| < |I|,
the greedy sampling algorithm accounts for the majority of com-
putational costs of GRC and the total complexity of GRC can be
represented as O(|I|2 log |I|), which can be quickly accomplished
in a normal computer. Thus, similar with most RFID literature
[37], the computation time involved in GRC is ignored because
it is negligible compared to the communication time. For fair
comparison, we also do not consider the computation time of the
benchmark approaches when comparing their performance.

4.3 Impact of Channel Errors
In real-world environment, the communication channel is

usually error-prone, because white noise may corrupt the message
exchanged between the reader and tags, e.g., 0 becomes 1 or 1

becomes 0, causing bit error. More seriously, some messages are
even not detected at all due to the path loss. Most of the literature
focuses on minimizing the transmission bits or execution time of
the protocol. They usually adopt a time-efficient data structure,
e.g., Bloom filter, and assume the data structure can be correctly
received by all tags in the system. However, it is a stringent
requirement due to the unavoidable channel errors. Therefore,
GRC uses Frame Slotted Aloha protocol specified in C1G2 [24] as
the MAC protocol, which designs a sequence of mechanisms for
handing transmission errors. Compared with existing RFID data
collection protocols, our GRC protocol provides a more reliable
transmission by exploiting various fault-tolerant mechanisms such
as well-designed state transform model and Cyclic Redundancy
Code (CRC). Since each data is packaged with CRC code, the
receiver (a tag or a reader) can detect the bit error of the message
by CRC verification. If it fails to pass the CRC verification, the
whole message is dropped. The receiver considers it receives an
invalid command and follow the state transformation defined in
[24]. If the receiver is a tag, it reselects a slot and waits for the
subsequent commands; if the receiver is a reader, it terminates the
current slot and starts a new slot. On the other hand, if the receiver
does not receive the message after a period, it resets its state which
is similar to the actions after receiving an invalid command.

5 RELATED WORK

RFID tags contain various types of concerning data, including
ID, status code, information in tag memory, and even the data
sensed by the embedded sensor. One of the most fundamental tasks
in RFID research is to design a scheme for efficiently reading these
data from a large batch of tags. ID reading is the hottest topics in
the early stage of RFID research, the major challenge is how to
resolve signal collisions among tags when the reader interrogates
these tags. The prior works on anti-collisions problem can be
classified into two categories: Aloha-based [38]–[40] and Tree-
based [41], [42]. The Aloha-based protocols can be interpreted as
a kind of Time Division Multiple Access (TDMA) mechanisms.
The reader sends a value f to the tags in its interrogation range
where f indicates the number of slots in the forthcoming time
frame. Then, each tag randomly picks a time slot in the frame to
respond to the reader. If one and only one tag responds in a time
slot (this slot is called singleton slot), the reader can successfully
identify this tag. If two tags simultaneously respond in a slot (this
slot is called collision slot), the reader cannot derive any tag IDs
due to signal corruption. The unidentified tags will participate in
the next frame. Such an iterative identification process will not
terminate until all the tags are identified.

The Tree-based protocols are also a kind of fundamental
multiple access protocols, which are first invented by U.S. Army
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for testing soldiers for syphilis during World War II. The basic idea
is that the reader first queries 0 and all the tags whose IDs start
with 0 respond with their IDs. If the reader successfully identifies
a tag (i.e., only one tag responds) or just reads an empty slot (i.e.,
no tag responds), it turns to query 1 and all the tags whose IDs
start with 1 respond. In contrary, if the reader receives a collision,
which means that there are two or more tags whose IDs start
with 0, it generates two new query strings ***0 and ***1 by
appending a 0 and a 1 to the previous query string ***. Then,
the reader sequentially uses these two strings to query the tags.
This process continues until all the tags have been identified.
Fundamentally, the Tree-based protocols can be interpreted as
depth-first-search query mechanisms. Due to its simplicity and
practicality, Q protocol, a Aloha-based protocol, is specified as
the MAC protocol of C1G2 standard [24].

As sensor-augmented RFID tags have been increasingly
adopted in various application scenarios, it is practically important
to design a time-efficient approach to gather the sensing data.
The data approximation problem has been extensively studied
in wireless sensor network literature, which usually leverage the
spatial and temporal correlation between sensor nodes to improve
the time and energy efficiencies of information collection [18],
[19]. For example, EEDC [43] partitions sensor nodes into clusters
based on their data similarity. Hence, the observation at any point
of the cluster can be approximated by the observation of any nodes
in the cluster, which significantly reduce the overhead to report
sensing data. On the other hand, Ken [18] uses replicated dynamic
probabilistic models to minimize the data collection overhead
from sensor nodes to PC. All the sensor nodes share a data
prediction model with the PC and knows whether the prediction
result is right or not. Hence, the sensor node only reports its data
to the controller if the value predicted by the probabilistic model
is wrong. Moreover, some most recent scheme also divides into
the physical layer and investigate how to leverage the low-level
link correlation to reduce the communication overhead [44]. They
cannot be directly applied in RFID systems because RFID network
has a different architecture and the RFID applications always
have different requirements. For example, the RFID tags cannot
communicate with each other and every sensor-augmented tag
should have the same chance to report their data. This motivates
us to design a data estimation scheme GRC for the RFID system.

In recent years, many researchers focused on collecting sens-
ing information rather than just identifying IDs. Collecting in-
formation with frame-slotted Aloha is of low time-efficiency,
because the utilization ration always below 37%. Therefore, most
of prior work on information collection focus on resolving tag
collisions for improving the utilization ration of time frame.
Chen et al. proposed a Multiple Hash information Collection
protocol (MIC) in [14]. MIC improves the utilization ration to
80% by combining multiple hash functions to select the slot.
With multiple hashing functions, the tags map to collision slots
with the first hashing, have a chance to be mapped to singleton
slots with the other hashing. The reader needs to send a message
to inform tags of the hash functions they adopted. To further
accelerate the information collection in multi-reader RFID system,
Zhang et al. [16] proposed a Bloom filter-based protocol (BIC)
to identify tags in the region of each reader, then the reader
can work in parallel for gathering sensing data from tags within
its own region. Although the above solutions improve the time-
efficiency to some extent. The time cost is still in proportion to
the number of monitored tags, which cannot satisfy time-stringent

application scenarios. Besides, these solutions are not complaint
with C1G2 standard because customized functions and additional
communication stages are involved. Thus, none of previous RFID
data collection protocols can be used in practice.

6 PERFORMANCE EVALUATION

In this section, we simulate GRC in python and evaluate
its performance through both on a practical dataset [15] and
simulated data. We investigate both the data collection accuracy
and time-efficiency of GRC under various parameters settings.
We also implement three representative RFID data collection
algorithms, i.e., Gen2 [24], MIC [14] and BIC [16], to compare
their performance with GRC side by side.

6.1 Experiments Study
First of all, we evaluate the accuracy of the proposed scheme

on a practical dataset which is collected from 54 sensing nodes
deployed in the Intel Berkeley Research lab [15]. We investigate
the number of sampled sensing nodes, cluster size and two types
of estimation error with varying unified threshold distance d.
As shown in Fig. 15(a), the number of sampled nodes selected
by the greed algorithm decreases with the increase of distance.
Since GRC only gathers sensing data from the sampled nodes, the
communication cost can be significantly reduced. Each sampled
node and the nodes whose data approximated by this node can
be seen as a cluster. The average cluster size can be regarded
as the speedup rate of GRC, which significantly increases with
the increase of distance threshold. When evaluating the estimation
error of a tag, we compare the average offset between the exact
value and its estimation value within a day. We use light dataset
and temperature dataset to conduct simulations to evaluate the
performance of the proposed GRC scheme. The simulation results
are shown in Figs. 15(c) and 15(d), respectively. It is easy to
observe that, estimation errors of both temperature and illumi-
nation increase with respect to d. We also observe an interesting
phenomenon: there are sharply increased errors at some locations.
This is because the similarity between two sensing nodes can be
strongly affected by the structure of the indoor environment. For
example, two nearby nodes separated by the wall may not have
strong correlation. With the increase of distance thresholds, sens-
ing nodes at different rooms may be assigned into the same cluster,
resulting in sharply increased estimation errors. In conclusion, the
experiment study shows that GRC can achieve approximate data
estimation with a suitable distance threshold d. To further improve
the estimation accuracy, we need to take many other environmental
factors into consideration, e.g., room layout, time and the facility
that may affect the measured parameters.

6.2 Simulation Settings
In our simulations, the monitoring area is a 50m × 30m

rectangle as illustrated in Fig. 13, where 2000 sensor-augmented
UHF tags are randomly deployed. To cover such a region, 6 RFID
reader antennas [A1, A2, A3, A4, A5, A6] with the communica-
tion range of 12m are uniformly deployed on the monitored area,
and the distance between any two reader antennas is 12

√
2m.

Let the left-bottom point of the monitored area be the origin
point (0,0), the position of each tag is randomly generated with
a granularity of 0.01m. In Fig. 13, each colored dot denotes a
RFID tag and the black squares denote the locations of reader
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Fig. 15. Performance evaluation based on Intel Lab dataset [15]

TABLE 2
Communication setting

Collisions Bits Time
Query 22 bits 0.55ms
RN16 16 bits 0.4ms

QueryRep 4 bits 0.1ms
QueryAdjust 9 bits 0.225ms

ACK 18 bits 0.45ms
NAK 8 bits 0.2ms

REQ_RN 40 bits 1ms
GRC 16 bits 0.4ms
Read 58 bits 1.45ms
data 49 bits 1.225ms

EPC+GRC+PC 128 bits 3.2ms

TABLE 3
Time cost for slots

Type Bits Time
Collision 50 bits 1.825ms
Empty 50 bits 1.825ms

Successful 345 bits 9.925ms

antennas. Besides, we use a mixture bivariate normal model to
simulate the measured temperature data in the monitoring area.
The detailed temperature at each point are shown in Fig. 14.

The communication parameter settings follow the specification
of the Gen2 standard [24]. We assume the length of sensing data
is 16-bit long. Data transmission rate between reader and tag is
equivalent, both 40kb/s, i.e., it takes 25us to transmit one bit.
All the related commands and its transmission time are shown in
Table 2. Besides, let Tpari be the backscatter-link pulse-repetition
interval, the waiting time between reader transmission and tag
response, and the waiting time between tag transmission and
reader response are T1 = 10Tpari and T2 = 3Tpari, respectively.
Because Tpari ≈ 25us, we have T1 = 250us, and T2 = 75us.
Based on Table 2, we can obtain the time cost of each type of slots
as shown in Table 3.

6.3 Evaluating the Estimation Accuracy

In the simulations, we apply GRC to collect equality number
of sampled tags from each antenna region simultaneously and
independently and combine them as the input of the proposed
data estimation algorithm. We assume there is no historical data,
thus the expected offset between any un-sampled tag and sampled
tags is set to zero.

Figs. 16, 17 and 18 show the estimation accuracy with varying
number of sampled tags. We observe that the mean estimation
offset becomes smaller and smaller when there are more sampled
tags. This is easily interpreted because with more sampled tags,
an un-sampled tag is expected to find closer sampled tag, whose
sensing data is highly correlated to the sensing data of this un-
sampled tag. On the contrary, the maximum estimation offset is
not sensitive to the number of sampled tags, and almost keeps
unchanged. This is because GRC is hard to estimate the un-
sampled tags located at the peak points of data distribution map
shown in Fig. 14. The underlying reason is the gradient around the
peak point is extremely large, resulting a large estimation error. To
accurately estimate the peak point value, the sampled tag should
be very close to the peak point, which requires an extremely large
number of sampled tags and lower the speedup rate of GRC.

Another interesting observation from Figs. 16, 17 and 18 is
that different reader antenna regions have different estimation
accuracy. For example, the estimation accuracy in A1 is worse
than other regions. This is because the measured environmental
data have distinct geographical distribution in different Ai. By
jointly considering Fig. 14 and Fig. 13, we can find that the
A1 region has a significant temperature change, thus resulting
in larger estimation offsets. In conclusion, the estimation offset is
affected by distribution of environmental data (e.g., temperature
distribution). In the region with drastic data changes, we need to
set a smaller threshold distance and involve more sampled tags for
ensuring estimation accuracy.

Fig. 19 presents the cumulative histogram of estimation offset.
When there are 20 sampled tags, more than 70% tags have an
estimation offset smaller than 0.1. By contrast, when there are
5 sampled tags, only 50% tags have an estimation offset smaller
than 0.1. When using GRC, we need to trade-off between the time-
efficiency and estimation accuracy. If we prefer a high estimation
accuracy (e.g., offset < 0.1) with a high reliability, we need to
select more sampled tags; otherwise if certain error is acceptable,
we can accelerate GRC by collecting data from just a small set
of sampled tags. Finally, we investigate the relationship between
estimation offset and distance. From Fig. 20, we can see that the
estimation offset increases as the distance from the nearest neigh-
bor increases. We can use a linear function o = 0.02× d+ 0.02
to fit the relationship between distance d and the offset o, which
shows the estimation offset is in proportion to the distance between
an un-sampled tag and sampled tags.

6.4 Evaluating the Estimation Algorithm
In this section, we conduct simulations to compare two

kinds of estimation algorithms: nearest neighbor algorithm and
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Fig. 16. Estimation offset: 5 sampled tags.
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Fig. 17. Estimation offset: 10 sampled tags.

A1 A2 A3 A4 A5 A6
Antenna number

0.0

0.2

0.4

0.6

0.8

O
ff

se
t (

◦
C  

)

Fig. 18. Estimation offset: 20 sampled tags.
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Fig. 19. Cumulative estimation offset.
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TABLE 4
Comparison of related protocols in execution time (seconds)

NI C1G2 MIC BIC GRC (s = 10) GRC (s = 20)
1K 14.67 9.60 8.61 1.32 2.66
3K 44.57 28.79 25.82 1.33 2.71
5K 74.59 47.98 43.04 1.31 2.68
7K 103.58 67.18 60.26 1.34 2.70
9K 134.94 86.37 77.47 1.30 2.68

weighted-average algorithm. The nearest sample estimator ap-
proximates the data of un-sampled tags with the data from its
nearest sampled tag; whereas the neighbor weighted average
algorithm presented uses weighted average of several sampled
tags to estimate the data of un-sampled tag. Since our simulations
are conducted in a static case without time variant features, we
assume there is no historical data and the expected compensation
E(uj − ui) in Eq. 3 is set to 0. As shown in Fig. 21, even
without adding compensation, the neighbor weighted-average al-
gorithm always provides a more accurate estimation compared
to the nearest sample estimator. The gaps are getting larger as
the number of sampled tags increases. The underlying reason is
that the neighbor weighted-average algorithm has more chance
to eliminate the estimation offset by balancing the positive and
negative sample estimators.

6.5 Evaluating the Time Efficiency
In this section, we compare the execution time of GRC with

recent whole-set information collection protocols including C1G2
[24], MIC [14] and BIC [16]. First, we assume the monitoring area
is a triangle area of 50 × 30/m2 covered by 6 reader antennas,
and vary the number of tags from 1K to 9K . We run GRC at
two different settings: GRC (s = 10) collects 10 sampled tags
from each antenna region; GRC (s = 20) collects 20 sampled
tags from each antenna region. We run each protocol 300 times to

get the average execution time. The results in Table 4 show that
GRC significantly outperforms the state-of-the-art BIC in terms
of time-efficiency. For example, the execution time of GRC (s =
10) is only 15.3% of the time cost of BIC. As the number of
tags increases to 5K , the gap becomes larger, where GRC only
costs 0.3% of the time cost of BIC. Such huge improvement lies
in the following reasons. GRC only needs to collect data from
a small set of sampled tags, which accelerates the information
collection by significantly reducing the execution time. Although
it also brings additional computational overhead, the computation
time is negligible as we have mentioned in Section 4.2.

Another observation is the execution time of all prior works
are in proportion to the number of tags. It is because prior
methods need to collect data from all tags. By contrast, the
execution time of GRC keeps stable because its execution time is
related to the geographical distribution of the measured physical
parameters as well as the required accuracy. Due to this property,
we can conclude that GRC has a better performance than previous
protocols in the applications where tags are densely deployed.
Because the execution time and estimation accuracy of GRC is
not related to the density of tags. In an application with high tag
density, prior protocols take too much time to collect data from
so many tags, which is of low time-efficiency and may disturb
other RFID operations. In the contrary, GRC can significantly
accelerate the information collection at the expense of introducing
slight estimation offset as shown in Figs. 16, 17, 18.

7 CONCLUSION

This paper makes the following contributions. First, we pro-
pose a Geographical correlation-based RF-data Collection (GRC)
protocol, which is the first C1G2-complaint RFID data collection
protocol. As an alternative to exact information collection, our
GRC protocol is able to estimate the sensing data of un-sampled
tags with a small set of collected data of the sampled tags. Second,
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we address some challenging issues when implementing GRC in
RFID system, such as learning inherent data correlation, collecting
data from sampled tags with Gen2 commands and estimating the
un-sampled data with sampled data. Third, we conduct extensive
simulations to evaluate the performance of the our GRC protocol.
The results show that GRC takes only 1/28∼1/3 of the time
compared with the state-of-the-art data collection schemes.
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