
IEEE TRANSACTIONS ON MOBILE COMPUTING 1

Interaction-Oriented Service Entity Placement
in Edge Computing

Yu Liang, Jidong Ge, Member, IEEE, Sheng Zhang, Member, IEEE, Jie Wu, Fellow, IEEE,

Lingwei Pan, Tengfei Zhang, and Bin Luo, Member, IEEE

Abstract—Distributed Interactive Applications (DIAs) such as virtual reality and multiplayer online game usually require fast processing

of tremendous data and timely exchange of delay-sensitive action data and metadata. This makes traditional mobile-based or

cloud-based solutions no longer effective. Thanks to edge computing, DIA Service Providers (DSPs) can rent resources from Edge

Infrastructure Providers (EIPs) to place service entities that store user states and run computation-intensive tasks. One fundamental

problem for a DSP is to decide where to place service entities to achieve low-delay pairwise interactions between DIA users, under

the constraint that the total placement cost is no more than a specified budget threshold. In this paper, we formally model the service

entity placement problem and prove that it is NP-complete by a polynomial reduction from the set cover problem. We present GPA,

an efficient algorithm for service entity placement, and theoretically analyze its performance. We evaluated GPA with both real-world

data trace-driven simulations, and observed that GPA performs close to the optimal algorithm and generally outperforms the baseline

algorithm. We also output a curve showing the trade-off between the weighted average interaction delay and the budget threshold, so

that a DSP can choose the right balance.

Index Terms—Edge computing, distributed interactive applications, interaction delay, service entity placement.

✦

1 INTRODUCTION

D ISTRIBUTED Interactive Applications (DIAs), e.g.
multiplayer online game [1], virtual or augmented

reality [2], and collaborative computer-aided design [3],
are becoming popular, as they allow a group of
geographically-distributed users to interact with each
other synchronously via their mobile devices or comput-
ers. A DIA usually consists of two components: service
entity and client. A service entity maintains application
metadata (including user state and application state) [4],
while a client (user) is only responsible for sending user-
initiated operations to the service entities and receiving
updates from the service entities. A service entity can
serve a certain number of clients, depending on the
service capacity of the entity. In a traditional DIA archi-
tecture, service entities are placed in the remote cloud,
while clients are computers or mobile devices.

A typical interaction between two DIA users consists
of three phases. Firstly, a user u sends an operation to u’s
service entity; secondly, after necessary computations,
u’s service entity sends the results to v’s service entity;
lastly, after necessary computations, v’s service entity
sends the results to user v. Since DIAs are human-in-

• Y. Liang, J.D. Ge, S. Zhang, L.W. Pan, T.F. Zhang, and B. Luo are with
the State Key Lab. for Novel Software Technology, Nanjing University,
China. Y. Liang, J.D. Ge, L.W. Pan, T.F. Zhang, and B. Luo are also
with the Software Institute, Nanjing University. S. Zhang is also with
the Department of Compute Science and Technology, Nanjing University.
E-mail: {dg1832003, mg1832005, mf1832244}@smail.nju.edu.cn,
{gjd, sheng, luobin}@nju.edu.cn.

• J. Wu is with the Center for Networked Computing, Temple University,
Philadelphia, PA 19122, USA.
E-mail: jiewu@temple.edu.

the-loop applications, it is important to improve the
interactivity of DIAs by minimizing pairwise interaction
delays. However, in a traditional DIA architecture, the
wide area network (WAN) latency between a DIA user
and its service entity is very unlikely to improve in the
foreseeable future, since the primary targets of WAN
networking today are security and manageability, which
are at odds with delay [5].

Edge computing is one of the emerging technolo-
gies aiming to enable fast computation at the network
edge [6–8]. Small-scale edge servers are placed at the net-
work edge, geographically near users and data. Thanks
to edge computing, the interaction delay in DIAs can be
reduced by moving service entities from remote clouds
to nearby edge servers. To achieve this, DIA Service
Providers (DSPs) can rent resources from Edge Infras-
tructure Providers (EIPs) to place service entities that
store user states and run computation-intensive tasks,
and DIA users can reach these service entities via local
wireless connections. It is easy to see that, the interaction
delay is directly affected by where the DSP places service
entities. Usually, placing a service entity at different edge
servers may have different placement costs. Therefore,
one fundamental problem for a DSP is to decide where
to place service entities to minimize the weighted average
interaction delay between users, under the constraint that
the total placement cost is no more than a specified budget
threshold. We refer to this problem as the Interaction-
oriented Service Entity Placement (ISEP) problem.

Fig. 1 shows an example. Multiple edge servers are
connected through a metropolitan-area network. Sup-
pose the service entities of u1 and u2 are located at
edge servers s2 and s4, respectively, then the dashed

IEEE TRANSACTIONS ON MOBILE COMPUTING 2

Access
Point ap1Edge Server s1 User u1

u2

 s2

 s3
 s4

Interaction

Remote
 Cloud C

u3

u4

u5

u6

 ap2

MAN Router mr

Fig. 1: An example scenario to illustrate the edge computing-enabled
DIA architecture. Edge servers are connected through a metropolitan-
area network. Suppose the service entities of u1 and u2 are located at
s2 and s4, respectively, then the dashed red line shows the interaction
path between u1 and u2.

red line shows the interaction path between u1 and u2.
From the perspective of a DSP, it should carefully decide
the placement of service entities under a given budget
threshold, so as to minimize the weighted average pair-
wise interaction delay.

The ISEP problem is non-trivial due to the following
intertwined challenges. First, when multiple service enti-
ties are placed, each user has to choose one as its service
entity. The way each user chooses its service entity also
affects the pairwise interaction delay. Second, the place-
ment costs at different edge servers are heterogeneous,
and making the placement decisions should respect such
heterogeneity. Last but not least, the interaction path
between any two users consists of three parts, and it is
impossible to give a closed-form expression for an inter-
action delay. These intrinsically intertwined challenges
together complicate the ISEP problem.

In this paper, we formally model the ISEP problem and
prove that it is NP-complete by a polynomial reduction
from the set cover problem. We present GPA, an efficient
algorithm for placing service entities, and theoretically
analyze its performance. We evaluated GPA with both
real-world data traces and large-scale simulations, and
observed that GPA performs close to the optimal al-
gorithm and generally outperforms the baseline algo-
rithm. Our main contributions are three-fold: (1) To the
best of our knowledge, we are the first to present the
interaction-oriented edge-enabled service entity place-
ment problem and prove that it is NP-complete. (2) We
design an efficient algorithm for service entity placement
and theoretically give the performance gap between
GPA and the optimum. (3) Both real-world data traces
and large-scale simulations show that the proposed al-
gorithm performs close to the optimal algorithm and
generally outperforms the baseline algorithm.

The rest of the paper is organized as follows. We
survey related work in Section 2. We introduce the back-
ground and problem in Section 3. The NP-completeness
results are presented in Section 4. We then present an
efficient algorithm in Section 5. Evaluation is given in
Section 6. We conclude the paper and discuss limitations
in Section 7.

2 RELATED WORK

There are many works considering efficient offloading in
edge computing. The multi-user computation partition
problem with the objective of minimizing the average
completion time for all users was studied in [9, 10]. Time
slot assignment for energy-efficient mobile offloading is
investigated in [11]. Chen et al. [12] adopted a game
theoretic approach to solve the multi-user multi-channel
computation offloading problem. Zhang et al. [13] fo-
cused on minimizing the completion time of mobile
workloads. Some other works proposed offloading mo-
bile workloads to nearby edges or remote clouds from
the architecture perspective [10, 11, 14–18].

Some studies focused on job dispatching in edge
computing. Tong et al. [19] proposed a hierarchical edge
architecture and designed a heuristic workload dispatch-
ing algorithm to minimize average job execution delay.
Given multiple jobs and multiple edge servers, Tan et
al. [20] proposed to greedily dispatch jobs and schedule
jobs using the Highest Residual Density First rule. Given
an application that contains dependent tasks, Sundar
and Liang [21] investigated the problem of dispatching
tasks to multiple edges with deadline constraints, so as
to minimize application execution cost. Liu et al. [22]
focused on edge server assignment and frame resolution
selection to minimize service latency for mobile aug-
mented reality applications. Gao et al. [23] considered
both edge workload and access network congestion
when placing service entities. Distributed support for
machine learning jobs was discussed in [24, 25] .

Service entity placement was investigated in some
recent works. Jia et al. [26] studied the load balancing
between multiple edge clouds. Yu et al. [27] investigated
the problem of joint edge server provisioning and rout-
ing path selection from the perspective of networking.
Xu et al. [28] considered the caching and offloading
problem in resource-limited edge servers to minimize
computation latency. Zhang and Tang [3] studied the
client assignment problem for DIAs. Liang et al. [4]
proposed a utility-based entity placement framework.
Wang et al. [29] studied a similar service entity place-
ment problem that resembles the uncapacitated facility
location problem [30] while ours can be reduced from
the set cover problem.

In summary, none of existing studies has investi-
gated the interaction-oriented edge-enabled service entity
placement problem, in which we focus on reducing
the weighted average user-to-user interaction delay to
improve DIA interactivity. We provide a non-trivial NP-
complete result and design an efficient heuristic. We also
reveal the trade-off between delay and budget.

3 PROBLEM FORMULATION

The interaction delay in DIAs can be reduced by mov-
ing service entities from remote clouds to nearby edge
servers. In edge computing environments, edge servers
are usually deployed on a business premise such as

IEEE TRANSACTIONS ON MOBILE COMPUTING 3

in a doctor office or a coffee shop [5]. According to
the Open Edge Computing initiative [31], edge server
resources tend to be virtualized and can be allocated at
a fine granularity by the aid of lightweight virtualization
techniques. Therefore, DSPs can rent resources from EIPs
to place service entities, and DIA users can reach these
service entities via local wireless connections. However,
where DSPs place their service entities to optimize inter-
action delay is not trivial.

We consider a metropolitan-area edge computing sce-
nario which contains a set of n edge servers, denoted by
S = {s1, s2, ..., sn}. These servers are dispersed within
a city, e.g. inside restaurants and in schools. Given a
DIA, its provider can leverage historical data analysis
and market investigate to find a set of stable and regular
users (e.g., faithful fans of an online multi-player game).
The provider wants to optimize the quality of experience
indicated by the interaction delay of these users, since
they are the majority of all users. For the other users
that irregularly visit the DIA, the provider can reserve
a fixed number of service entities that provide service
for them. Therefore, in this paper, we assume the set of
users is stable and denote it by U = {u1, u2, ..., um}. The
remote cloud, denoted by C, serves as the default server
that runs service entities. Compared with edge servers,
the cloud is far more powerful and we can place any
number of service entities in it, and thus, the cloud is
assumed to be able to serve all users simultaneously.

Network and delay. Edge servers and users are usu-
ally connected to a metropolitan-area network (MAN)
through access points (APs) and MAN routers, as shown
in Fig. 1. We can model the network by a graph G =
(V,E, d), in which V consists of edge servers, users, APs,
MAN routers, and the remote cloud, while E contains
the communication links1. The delay function d: E → R

gives the delay of each link in E. For example, d(u4, ap1)
represents the delay between user u4 and AP ap1. These
delays can be obtained from EIPs or by measuring
historical delays and updating them over time.

For a pair of a user and an edge server that are not
directly connected by a link, we use p(ui, sj) to denote
the delay of the shortest path between user ui and edge
server sj . By the definition of p(·, ·), we know it satisfies
the triangular inequality, i.e., for any ui, sj , and uk, we
have p(ui, sj) + p(sj , uk) ≤ p(ui, uk).

Placement cost. DIAs are distributed networked sys-
tems that contain service entities and thin clients. A
client or user can be thought of as an I/O device that
sends user-initiated operations to the service entities and
receives state updates from the service entities, while a
service entity can be thought of as a daemon run in an
edge server. The service capacity of each service entity is
K , i.e. each entity can serve at most K users. Each edge
server si is associated with a placement cost wi, i.e. it
costs wi to place a service entity at server si. We use xi

1. We use “link” instead of “edge” in a graph for clarity, as “edge”
means edge server in this paper.

to represent the number of service entities placed at edge
server si. The placement budget threshold is denoted by
Q. We have the following cost constraint:

∑

i∈{1,2,...,n}

wixi ≤ Q. (1)

Running a service entity at an edge server requires a
certain amount of physical resources. Suppose a service
entity requires b units of resources and the resource
capacity of edge server si is Bi. We have the following
cost constraint:

bxi ≤ Bi, ∀i ∈ {1, 2, ..., n}. (2)

For simplicity, let W = [w1, w2, ..., wn] be the cost
vector, let B = [B1, B2, ..., Bn] be the resource capacity
vector, and let X = [x1, x2, ..., xn] be a placement vector.

Service entity association. As we mentioned earlier,
when multiple service entities are placed, each user
has to choose one as its service entity. The way each
user chooses its service entity also affects the pairwise
interaction delay. In this paper, for simplicity, we assume
that each user chooses the nearest service entity among
all placed service entities under a placement X , while
respecting the constraint that each service entity can
serve at most K users; for a service entity, when more
than K users choose it as their service entity, it selects
the top K nearest users.

We let s(ui,X) be the server where the service entity
of ui is located under a placement X . If no service entity
can accommodate more users, i.e., every service entity is
full, and a user ui does not have a service entity yet, then
its service entity would be placed in the cloud C, that
is, s(ui,X) = C.

Take Fig. 1 for example; suppose that K = 2, the place-
ment X = [1, 0, 0, 1], p(u1, s1) < p(u1, s4), p(u2, s1) >

p(u2, s4), p(u3, s1) > p(u3, s4), p(u4, s1) < p(u4, s4),
p(u5, s1) < p(u5, s4), p(u6, s1) > p(u6, s4), therefore, u1,
u4, and u5 would choose the entity placed at s1 as
their service entity, while the other users would choose
the entity placed at s4 as their service entity. However,
since K = 2, p(u4, s1) < p(u1, s1), p(u5, s1) < p(u1, s1),
p(u2, s4) < p(u6, s4), and p(u3, s4) < p(u6, s4), s1 can
only serve u4 and u5 while s4 can only serve u2 and
u3. In summary, s(u4,X) = s(u5,X) = s1, s(u2,X) =
s(u3,X) = s4, and s(u1,X) = s(u6,X) = C.

Interaction delay and weight. Given a placement X ,
the interaction path between ui and uj consists of three
parts: the path from ui to s(ui,X), the path from s(ui,X)
to s(uj ,X), and the path from s(uj ,X) to uj . Therefore,
the interaction delay D(ui, uj ,X) between between ui

and uj under a placement X is

D(ui,uj ,X) = p(ui, s(ui,X))

+ p(s(ui,X), s(uj ,X)) + p(uj , s(uj,X)).
(3)

Different pairs of users may have different interaction
frequencies. We use fij to represent the weight of the
interaction between ui and uj , where a larger fij means

IEEE TRANSACTIONS ON MOBILE COMPUTING 4

more interactions between them. Without loss of gener-
ality, we have fij = fji for any i, j ∈ {1, 2, ...,m}, and
fii = 0 for any i ∈ {1, 2, ...,m}. We make two notes. On
one hand, these frequencies capture the heterogeneous
interaction preferences of users and they only affect
the weighted average interaction delay; without these
frequencies, the proposed algorithm still works. On the
other hand, some DIAs may have stable interaction
patterns, for example, several friends form a team that
makes explorations together in the World of Warcraft [1].
In this case, the historical interaction information can be
used to infer future interaction frequency.

Note that, there are a total of m(m−1)
2 pairs of users.

Without loss of generality, we assume the sum of the

weights of these m(m−1)
2 pairs is 1, that is,

m
∑

i=1

m
∑

j=i+1

fij = 1. (4)

We let F = [fij]m×m denote the weight matrix.
Objective. The objective of ISEP is to minimize the

weighted average pairwise interaction delay, which is
defined as follows:

E(X) =

m
∑

i=1

m
∑

j=i+1

D(ui, uj,X)fij . (5)

Main notations are summarized in Table 1 for quick
reference. We have the ISEP problem:

min E(X) =

m
∑

i=1

m
∑

j=i+1

D(ui, uj ,X)fij (6a)

s.t.
∑

i∈{1,2,...,n}

wixi ≤ Q (6b)

bxi ≤ Bi, ∀i ∈ {1, 2, ..., n} (6c)
m
∑

i=1

m
∑

j=i+1

fij = 1 (6d)

xi ∈ {0, 1, 2, ...}, ∀i ∈ {1, 2, ..., n} (6e)

4 NP-COMPLETENESS RESULTS

By reducing the NP-complete Set Cover (SC) prob-
lem [30] to ISEP, we can prove that ISEP is NP-complete.

Theorem 1: The decision version of ISEP is NP-
complete.

Proof: We provide the descriptions on the decision
version of SC and ISEP as follows.

• Decision version of SC: Given a universe H =
{e1, e2, ..., eM} of M elements and an integer q, a
collection of subsets of H, R1, R2, ..., and RN , does
there exist a sub-collection of these subsets with size
no more than q that covers all elements of H?

• Decision version of ISEP: Given a set of users U , a
set of edge servers S, a remote cloud C, a topology
graph G = (V,E, d), the resource requirement b of
a single service entity, a placement cost vector W ,
a resource capacity vector B, an interaction weight

TABLE 1: Main notations for quick reference.

Symbol Meaning

si, S , n i-th server, set of servers, # of servers

ui, U , m i-th user, set of users, # of users
C remote cloud

K # of users that can be served by one entity

Q budget threshold
b # of required resources to place one entity

d(·, ·) delay of each direct link

p(·, ·) delay of the shortest path
wi, W placement cost at si, cost vector

Bi, B resource capacity of si, capacity vector

fij , F
weight of the interaction between ui and uj ,
weight matrix

xi, X # of entities placed at si, placement vector
s(ui,X) the server at which the entity of ui is located

D(ui, uj ,X) interaction delay between ui and uj under X

E(X) weighted average interaction delay under X

matrix F , a budget threshold Q, a service capacity
K , does there exist a placement X that makes E(X)
defined in Eq. (5) no larger than a threshold Z?

Without loss of generality, let

< M,N, q,R1,R2, ...,RN >

denote an instance of SC; let

< U ,S, G = (V,E, d),W , b,B,F , Q,K,Z >

denote an instance of ISEP.
In the following, we show that, any instance of SC

can be polynomially reduced to an instance of ISEP. The
reduction maps an instance of SC into an instance of
ISEP using the following rules:

(1◦) |U| = m←M + 1;
(2◦) |S| = n← N + 1;
(3◦) (topology) add (N + 1) APs and let si directly

connect to api; add one MAN router mr and let
every AP directly connect to the router; add one
remote cloud and let it directly connect to the router;
for every i ∈ {1, 2, ...,M} and every j ∈ {1, 2, ..., N},
let ui directly connect to apj if and only if ei ∈ Rj in
SC; let uM+1 directly connect to sN+1;

(4◦) (delay between users and APs) if there is a link
between user ui and AP apj , then d(ui, apj)←

7
8 ;

(5◦) (delay between servers and APs) for every i ∈
{1, 2, ..., N + 1}, d(si, api)←

1
8 ;

(6◦) (delay between the MAN router and APs) for
every i ∈ {1, 2, ..., N}, d(mr, api) ←

1
8 ; besides,

d(mr, apN+1)←
5
8 ;

(7◦) (delay between the MAN router and the remote
cloud) d(mr,C)← 100;

(8◦) wi ← 1 for every i ∈ {1, 2, ..., N + 1};
(9◦) b← 1;
(10◦) Bi ← 1 for every i ∈ {1, 2, ..., N + 1};
(11◦) fi,M+1 ←

1
M for every i ∈ {1, 2, ...,M}; and fij ← 0

for all other pairs of users;
(12◦) Q← q + 1;

IEEE TRANSACTIONS ON MOBILE COMPUTING 5

s1

(a) An instance of SC: M = 5 and N = 3

1/8

7/8 7/87/8 7/8 7/87/8

u1 u2
u3 u5

7/8

u6

u4

1/8

ap1 ap3

1/8

ap2

1/8

ap4

7/8

1/8
1/8

5/8

1/8

Remote
Cloud C

100

MAN Router

mr

s2 s3

s4

s1

(b) The corresponding ISEP instance: m = 6 and n = 4

Fig. 2: An example of the polynomial reduction from SC to ISEP, where
servers and users can be seen as subsets and elements, respectively.

(13◦) K ←M ;
(14◦) Z ← 3.

Rules (1◦) and (2◦) specify the number of users and
edge servers, respectively. Note that, the number of users
is one more than that of elements in SC, and the number
of edge servers is one more than that of subsets in SC.

Rule (3◦) specifies the network topology in the in-
stance of ISEP, in which servers can be seen as subsets
and users can be seen as elements. We manually add
(N + 1) APs, one MAN router, and one remote cloud.
It should be noted that, for every i ∈ {1, 2, ...,M} and
every j ∈ {1, 2, ..., N}, we let ui directly connect to apj in
ISEP if and only if ei ∈ Rj in SC. Fig. 2 shows an example
of the reduction from SC to ISEP.

Rules (4◦) to (7◦) specify various delays. Rule (4◦)
means the delay of a link between a user and an AP
is always 7

8 , e.g., d(u4, s1) = 7
8 in Fig. 2(b). Rule (5◦)

specifies the delay between servers and APs. In Rule (6◦),
the delay between apN+1 and the router is different from
that between api (1 ≤ i ≤ N) and the router. Rule (7◦)
specifies the delay between the router and the cloud. See
Fig. 2 for an example of these delays.

Rule (8◦) means the placement cost at any edge server
is 1. Rules (9◦) and (10◦) specify the resource requirement
of a single service entity and the resource capacity of
each server. Given these two rules, we can place at most
one service entity at a server.

Rule (11◦) specifies the interaction weights. There are
two types of weights: the weight between uM+1 and any
other user is 1

M , and the weight between any two users
other than uM+1 is 0. Note that, in doing so, the sum of
weights is 1.

Rules (12◦) to (14◦) specify the values of Q, K , and Z .
To confirm the validity of this reduction, we have

to show that it works in the case of either outcome
depicted. We have the following lemmas, the proofs of
which can be found in Sections 4.1 and 4.2.

Lemma 1: If the instance of SC has a yes solution, then
the corresponding ISEP instance has a yes placement.

Lemma 2: If the instance of SC does not have a yes
solution, then the corresponding ISEP instance does not
have a yes placement, either.

Finally, it is easy to see that, the reduction from SC to
ISEP (i.e., 14 rules) can be finished in polynomial time.
Hence, the theorem is proven.

4.1 Proof of Lemma 1

If the instance of SC has a yes solution, then there are
indeed q subsets that can cover all elements. Without
loss of generality, we assume that these q subsets areRi1 ,
Ri2 , ..., Riq . We then prove that the following placement
X

∗ = [x∗
1, x

∗
2, ..., x

∗
N+1] in which

x∗
i =

{

1 if i ∈ {i1, i2, ..., iq, N + 1},

0 otherwise,
(7)

is a yes placement that makes E(X∗) no larger than the
delay threshold Z = 3.

Given such a placement X∗ in Eq. (7), since Ri1 , Ri2 ,
..., Riq cover all elements in the SC instance, we know
for any i ∈ {1, 2, ...,M}, there exists at least one service
entity placed at server sj such that both ui and sj are
directly connected to the same AP. Besides, a service
entity can serve K = M users. Therefore, the delay
between any user ui and its service entity is 1

8 + 7
8 = 1

(according to Rules (4◦)(5◦)). In other words, we have

p(ui, s(ui,X
∗)) = 1, for any i ∈ {1, 2, ...,M}. (8)

Since xN+1 = 1 according to Eq. (7), and sN+1 is the
nearest server from uM+1 according to Rule (3◦), we have
s(uM+1,X

∗) = sN+1, thus,

p(uM+1, s(uM+1,X
∗)) = 1. (9)

Combining them together, we have

E(X∗) =

M
∑

i=1

D(ui, uM+1,X
∗)fi,M+1

+

M
∑

i=1

M
∑

j=i+1

D(ui, uj ,X
∗)fij

=

M
∑

i=1

(p(ui, s(ui,X
∗)) + p(s(ui,X

∗),

s(uM+1,X
∗)) + p(uM+1, s(uM+1,X

∗))) ·
1

M

+

M
∑

i=1

M
∑

j=i+1

D(ui, uj ,X
∗) · 0

=

M
∑

i=1

(1 + p(s(ui,X
∗), sN+1) + 1) ·

1

M

=
M
∑

i=1

(1 + 1 + 1) ·
1

M
(due to Rules (5◦)(6◦)) = 3,

(10)

which indicates X
∗ in Eq. (7) is a yes placement to the

ISEP instance. The lemma holds immediately.

IEEE TRANSACTIONS ON MOBILE COMPUTING 6

4.2 Proof of Lemma 2

Without loss of generality, let X
′ = [x′

1, x
′
2, ..., x

′
N+1]

denote a yes placement to the instance of ISEP. Since
Q = q + 1 and we can place at most one service entity
at a server (due to Rules (9◦)(10◦)), the number of 1’s in
X

′ is at most q + 1.
To prove Lemma 2, we first provide two properties

that a yes placement to ISEP must have.
Property 1: If X ′ = [x′

1, x
′
2, ..., x

′
N+1] is a yes placement

to the instance of ISEP, then x′
N+1 must be 1, i.e., we must

place a service entity at sN+1.
Proof: We prove this by contradiction and assume

the opposite, i.e., x′
N+1 = 0.

If x′
N+1 = 0, then s(uM+1,X

′) must be some edge
server other than sN+1. Based on Rules (4◦)(5◦)(6◦),
for any i ∈ {1, 2, ..., N}, the smallest delay between
uM+1 and si is 7

8 + 5
8 + 1

8 + 1
8 = 7

4 . Therefore, no
matter what s(uM+1,X

′) is, the delay between uM+1 and
s(uM+1,X

′) is at least 7
4 , i.e.,

p(uM+1, s(uM+1,X
′)) ≥

7

4
. (11)

For every i ∈ {1, 2, ...,M}, due to Rules (4◦)(5◦), the
delay between a user and the nearest server from the
user is at least 1, that is,

min
j∈{1,2,...,N+1}

p(ui, sj) = 1, (12)

which implies, for every i ∈ {1, 2, ...,M},

p(ui, s(ui,X
′)) ≥ 1. (13)

Combining Eq. (11) and Eq. (13) together, due to Rules
(5◦)(6◦), for each i ∈ {1, 2, ...,M}, we have

D(ui, uM+1,X
′)

=p(ui, s(ui,X
′)) + p(s(ui,X

′), s(uM+1,X
′))

+p(uM+1, s(uM+1,X
′))

≥1 + (
1

8
+

1

8
+

1

8
+

1

8
) +

7

4
=

13

4
.

(14)

Therefore, the interaction delay under x′
N+1 = 0 is

E(X ′) =

M
∑

i=1

D(ui, uM+1,X
′) ·

1

M

≥
13

4

M
∑

i=1

1

M
=

13

4
> Z = 3.

(15)

A contradiction! Therefore, we proved that, given a yes
placement X ′ = [x′

1, x
′
2, ..., x

′
N+1] to the instance of ISEP,

x′
N+1 must be 1.
Property 2: If X ′ = [x′

1, x
′
2, ..., x

′
N+1] is a yes placement

to the instance of ISEP, then
∑

i∈{1,2,...,N} x
′
i ≥ 1, i.e., at

least one of x′
1, x′

2, ..., and x′
N is 1.

Proof: If X
′ = [x′

1, x
′
2, ..., x

′
N+1] is a yes placement,

due to Property 1, x′
N+1 = 1. Since the service capacity

K of each entity is M (due to Rule (13◦)) and we can
place at most one service entity at a server (due to Rules
(9◦)(10◦)), the service entity placed at sN+1 cannot serve

more than M users. Remember that there are M+1 users,
therefore, at least one of x′

1, x′
2, ..., and x′

N must be 1.
With the above two properties, we can prove Lemma 2

now. If a placement does not have the two properties
stated in Property 1 and Property 2, then it cannot
be a yes placement and Lemma 2 holds immediately.
Therefore, in the following, we just need to prove “if
the instance of SC does not have a yes solution, a
placement—which has the two properties stated in Prop-
erty 1 and Property 2—cannot be a yes placement to the
instance of ISEP”.

Let X ′ = [x′
1, x

′
2, ..., x

′
N+1] denote such a placement.

Due to Lemma 1, x′
N+1 must be 1 in a yes placement

to the instance of ISEP; since the budget threshold is
q+ 1 (due to Rule (12◦)), we can place at most q service
entities at q edge servers among s1, s2, ..., and sN in a
yes placement to the instance of ISEP.

However, if the instance of SC does not have a yes
solution, that is, we cannot use q subsets to cover all M
elements in the instance of SC, then we cannot place q

service entities at q edge servers among s1, s2, ..., and
sN to make each user be directly connected to some AP
which is directly connected with one of these q service
entities. In other words, there exists at least one user, say
uk, who cannot be directly connected with any AP that
is directly connected to any one of these q entities.

Due to Lemma 2, at least one of s1, s2, ..., and sN has a
service entity in a yes placement to the instance of ISEP.
Without loss of generality, we assume st has a service
entity. From the view of uk, the delay between uk and
st is smaller than that between uk and sN+1, because
p(uk, st) =

7
8 + 1

8 + 1
8 + 1

8 = 5
4 (due to Rules (4◦)(5◦)(6◦))

and p(uk, sN+1) =
7
4 . Hence, s(uk,X

′) = st, and we have

p(uk, s(uk,X
′)) =

5

4
. (16)

Combining them together, we have

E(X ′) =

M
∑

i=1

D(ui, uM+1,X
′) ·

1

M

=

M
∑

i=1,i6=k

D(ui, uM+1,X
′) ·

1

M

+D(uk, uM+1,X
′) ·

1

M

≥ (M − 1) · (1 + 1 + 1) ·
1

M
+ (

5

4
+ 1 + 1) ·

1

M

= 3 +
1

4M
> Z = 3,

(17)

implying that X
′ is not a yes placement. The lemma

holds immediately.

5 ALGORITHM AND ANALYSIS

In this section, we present an efficient Greedy Placement
Algorithm (GPA) for ISEP and prove that the weighted
average interaction delay achieved by GPA is not far
away from the optimal delay in some cases.

IEEE TRANSACTIONS ON MOBILE COMPUTING 7

Algorithm 1: Greedy Placement Algorithm (GPA)

Input: U ,S, G = (V,E, d),W ,F , Q,K,Z

Output: X
1 initialize P ← the non-decreasing order of the

shortest delay between all users and all servers;
2 initialize X = [x1, x2, ..., xn]← [0, 0, ..., 0];
3 (s(u1,X), ..., s(um,X))← (C, ..., C);
4 use s(u1,X), ..., s(um,X) to compute E(X);
5 while

∑

i∈{1,2,...,n}

wixi < Q do

6 previousE ← E(X); minE ← E(X);
minServer ← −1;

7 for k = 1; k ≤ n; k ++ do
8 if bxk + b ≤ Bk and wk +

∑

i∈{1,2,...,n}

wixi ≤ Q

then
9 construct a new placement

X
† = [x†

1, x
†
2, ..., x

†
n] where (1)

x
†
k ← x

†
k + 1, and (2) x†

j ← xj for all
j 6= k;

10 (s(u1,X
†), ..., s(um,X†))←

ComputeAssoc(P,U ,S, G,K,X†);

11 Use s(u1,X
†), ..., s(um,X†) to compute

E(X†);

12 if E(X†) < minE then

13 minE ← E(X†); minServer← k;

14 if minServer 6= −1 and minE < previousE then
15 xminServer ← xminServer + 1;

16 return X

5.1 Algorithm

The main idea of GPA is as follows. GPA consists of
multiple iterations. In each iteration, we consider each
edge server in which its residual resource is sufficient to
place a new service entity, and compute the weighted
average interaction delay if we would place a service
entity in this server; we then select the edge server to
place a new service entity that reduces the weighted
average interaction delay and leads to the smallest one.
The details are shown in Alg. 1.

Initially, no service entity is placed (line 2), and all
users choose the remote cloud as the place for their ser-
vice entities at this time (line 3). With these associations,
we can easily compute the weighted average interaction
delay E(X) (line 4).

In the while loop, for each server sk, if its residual
resource can afford a new service entity and the total
placement cost does not exceed the budget threshold if
we place a service entity in sk (line 8), we then tem-
porarily increase xk by one and compute the new service
entity associations and the corresponding interaction
delay E(X†) (lines 9-11). After we consider all possible
servers, we select the server to place a new service entity
that reduces the weighted average interaction delay and

Algorithm 2: ComputeAssoc(P,U ,S, G,K,X)

Input: P,U ,S, G = (V,E, d),K,X

Output: s(u1,X), ..., s(um,X)
1 initialize yj ← 0 for each sj ∈ S;
2 initialize zi ← 0 and s(ui,X)← C for each ui ∈ U ;
3 for each p(ui, sj) in the sorted order P do
4 if zi = 0 and yj < Kxj then
5 zi ← 1; yj ← yj + 1; s(ui,X)← sj ;

6 return (s(u1,X), ..., s(um,X))

leads to the smallest one (lines 12-15).
In the GPA algorithm, an important sub-procedure

is ComputeAssoc(P,U ,S, G,K,X), which is shown in
Alg. 2. Note that, P stores the non-decreasing order of
the shortest delay between all users and servers. Given
a delay p(ui, sj), if the user ui does not have a service
entity and the number of users that choose sj as their
service entity is less than Kxj , then we associate ui with
sj , i.e., s(ui,X) = sj (lines 3-5).

The time complexity of GPA is dominated by the
while loop. Denote by min{wi} the minimal placement
cost, then there are at most Q

min{wi}
iterations. In each

iteration, we may have to compute the associations and
weighted interaction delay for at most n times. It is not
hard to see that, computing the weighted interaction
delay costs O(m2) time, since there are m users. Com-

puteAssoc checks each pair of user and server, and it
costs O(mn) time. Thus, the time complexity of GPA is
O(Q

min{wi}
n · (m2 +mn) = O(Q

min{wi}
(m2n+mn2)).

5.2 Analysis

The analysis of GPA is hard in general, thus, we consider
some special cases of ISEP in which (1) the interaction
frequency is homogeneous, (2) each edge server is suf-
ficient to serve all users, and (3) it costs one unit of
budget to place a service entity at any server. That is,
we consider the ISEP problem in which the following
three constraints are satisfied:

fij =
2

m(m− 1)
, ∀i, j ∈ {1, 2, ...,m} and i < j, (18)

min
i∈{1,2,...,n}

Bi

b
·K ≥ m, (19)

and
wi = 1, ∀i ∈ {1, 2, ..., n}. (20)

We now show some application examples that have
these properties. Take multiplayer online game for ex-
ample. Based on market investigation and historical
information, the DSP (i.e., the game provider) knows
the number of users and fortunately these users have
uniform interaction frequency. From the EIP perspective,
it may obtain the same revenue from leasing the same
amount of resources at each server it owns, thus, it may
cost the same amount of budget for the DSP to rent a

IEEE TRANSACTIONS ON MOBILE COMPUTING 8

fixed amount of resources to place a service entity. The
capacity of each physical server is so large that it can
accommodate all users2.

5.2.1 The Optimal Weighted Average Interaction Delay

Without loss of generality, suppose that a placement
selects edge servers s1, s2, ..., and sg to deploy service
entities (note that an edge server may host more than
one service entity). Such a placement can be denoted by
X

′ = [x′
1 ≥ 1, x′

2 ≥ 1, ..., x′
g ≥ 1, x′

g+1 = 0, ..., x′
n = 0].

For each edge server si, we denote the set of users that
choose one of the entities placed on si as its entity by
Ui. According to this definition, U1, U2, ..., Ug form a
partition of U , that is, ∪gi=1Ui = U and Ui∩Uj = ∅, ∀i 6= j.

Consider two users ui and uj that select one entity
placed on si and one entity placed on sj as its entity,
respectively, then the interaction delay between them is

D(ui, uj ,X
′) = p(ui, si) + p(si, sj) + p(sj , uj). (21)

Then, the total interaction delay between the users in
Ui and the users in Uj is

∑

ui∈Ui

∑

uj∈Uj

D(ui, uj,X
′) =

∑

ui∈Ui

∑

uj∈Uj

p(ui, si)

+
∑

ui∈Ui

∑

uj∈Uj

p(si, sj) +
∑

ui∈Ui

∑

uj∈Uj

p(sj , uj)

=
∑

ui∈Ui

|Uj |p(ui, si)+|Ui||Uj |p(si, sj)+|Ui|
∑

uj∈Uj

p(sj , uj).

(22)

The total interaction delay between all m(m−1)
2 pairs of

users consists of two parts: the delay between two users
that belong to different Ui’s and the delay between two
users that belong to the same Ui. The first part is

∑

(i<j)&&(i,j∈{1,2,...,g})

∑

ui∈Ui

∑

uj∈Uj

D(ui, uj ,X
′)

=

n
∑

i=1

n
∑

j=i+1

(
∑

ui∈Ui

|Uj |p(ui, si)

+ |Ui||Uj |p(si, sj) + |Ui|
∑

uj∈Uj

p(sj , uj))

=

g
∑

k=1

∑

uh∈Uk

(p(uh, sk)
∑

h 6=k

|Uh|)+
n
∑

i=1

n
∑

j=i+1

|Ui||Uj |p(si, sj).

(23)

The second part is

g
∑

k=1

∑

(ui,uj∈Uk)&&(i6=j)

D(ui, uj,X
′)

=

g
∑

k=1

∑

(ui,uj∈Uk)&&(i6=j)

(p(ui, sk) + p(uj , sk))

=

g
∑

k=1

∑

uh∈Uk

(p(uh, sk) · (|Uk| − 1))

(24)

2. Although a single physical server can accommodate all users, it
may not be the server that has the shortest delay to all users. Hence,
the DSP should not place all entities at one server.

Combining Eqs. (23) and (24), we know the total inter-

action delay between all m(m−1)
2 pairs of users is

g
∑

k=1

∑

uh∈Uk

(p(uh, sk)(
∑

h 6=k

|Uh|+ |Uk| − 1))

+

n
∑

i=1

n
∑

j=i+1

|Ui||Uj |p(si, sj)

=

g
∑

k=1

∑

uh∈Uk

(p(uh, sk)(m− 1))

+

n
∑

i=1

n
∑

j=i+1

|Ui||Uj |p(si, sj).

(25)

Therefore, the average interaction delay under X
′ =

[x′
1 ≥ 1, x′

2 ≥ 1, ..., x′
g ≥ 1, x′

g+1 = 0, ..., x′
n = 0] is

E(X′) =
2

m(m− 1)
{

g
∑

k=1

∑

uh∈Uk

(p(uh, sk)(m− 1))

+

n
∑

i=1

n
∑

j=i+1

|Ui||Uj |p(si, sj)}.

(26)

Without loss of generality, we assume that X′ = [x′
1 ≥

1, x′
2 ≥ 1, ..., x′

g ≥ 1, x′
g+1 = 0, ..., x′

n = 0] is the optimal
placement, then OPT is equal to Eq. (26).

5.2.2 Performance Gap

Suppose that sz is the first edge server selected by GPA
to place a service entity. If sz is the only server (i.e.,
the placement Xz is [x1 = 0, ..., xz−1 = 0, xz ≥ 1, xz+1 =
0, ..., xn = 0]), since sz is sufficient to serve all users (due
to Eq. (19)), all users would choose the entities at sz as
their service entities. In this case, the average interaction
delay is

E(Xz)=
2(m− 1)

m(m− 1)

∑

ui∈U

p(ui, sz)=
2

m

∑

ui∈U

p(ui, sz). (27)

Remember that p(·, ·) denotes the smallest delay be-
tween two users or servers, therefore, p(·, ·) satisfies the
triangular inequality. Hence, we have

2

m

∑

ui∈U

p(ui, sz) =
2

m
(
∑

ui∈U1

p(ui, sz) +
∑

ui /∈U1

p(ui, sz))

≤
2

m
(
∑

ui∈U1

p(ui, sz) +

g
∑

k=2

∑

ui∈Uk

(p(ui, sk) + p(sk, sz)))

=
2

m
(

g
∑

k=1

∑

ui∈Uk

p(ui, sk) +

g
∑

k=2

∑

ui∈Uk

p(sk, sz)).

(28)

Given any placement X generated by GPA, since GPA
selects a new server to place a new service entity only if
the new entity reduces the weighted average interaction
delay, we know E(X) ≤ E(Xz).

IEEE TRANSACTIONS ON MOBILE COMPUTING 9

(a) Locations of 92 Starbucks within
the 4th ring road of Beijing, China.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Proportion of Top Interactive Users

(b) y × 100% interactions are
from x×% most interactive users.

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 0.2 0.4 0.6 0.8 1

C
D

F

Normalized Delay

(c) y × 100% connections are associated
with x×% smallest delays.

Fig. 3: Simulation settings.

 0

 10

 20

 30

 40

 50

 60

 70

 20 30 40 50 60 70

E
(X

)
(m

s)

Number of Users, m

GPA
NearestAlg
OptimalAlg

(a) Impact of the number of users

 0

 10

 20

 30

 40

 50

 60

 70

 80

 1 2 3 4 5 6

E
(X

)
(m

s)

Service Capacity, K

GPA
NearestAlg
OptimalAlg

(b) Impact of the service capacity

 0

 10

 20

 30

 40

 50

 60

 25 30 35 40 45

E
(X

)
(m

s)

Budget Threshold, Q

GPA
NearestAlg
OptimalAlg

(c) Impact of the budget threshold

Fig. 4: Edge servers at synthetical locations. Randomized Delay. The default setting is n = 18, m = 40, K = 3, and Q = 30.

Therefore, the performance gap between GPA and the
optimal solution is

E(X)−OPT ≤ E(Xz)−OPT

≤
2

m
(

g
∑

k=1

∑

ui∈Uk

p(ui, sk) +

g
∑

k=2

∑

ui∈Uk

p(sk, sz))

−
2

m(m− 1)
{

g
∑

k=1

∑

uh∈Uk

(p(uh, sk)(m− 1))

+

n
∑

i=1

n
∑

j=i+1

|Ui||Uj |p(si, sj)}

=
2

m(m− 1)
[(m− 1)

g
∑

k=2

∑

ui∈Uk

p(sk, sz)

−
n
∑

i=1

n
∑

j=i+1

|Ui||Uj |p(si, sj)].

(29)

6 PERFORMANCE EVALUATION

We answer the following questions in our evaluation:
(1) How effective is GPA’s placement? (2) How well
does GPA approximate the optimal placement in terms
of interaction delay? (3) What is the effect of the number
of users and the service capacity? (4) Can GPA provide
any suggestions on choosing the budget threshold?

6.1 Setup

We consider a metropolitan area that contains edge
servers and users in this paper. For locations of edge
servers, we use the locations of Starbucks within the 4th
ring road of Beijing, as shown in Fig. 3(a). Similar to
a previous study [29], we use Starbucks’ locations as
the locations of edge servers, because the distribution
of them in a city usually achieves a decent coverage of

users, making them very suitable for placing edges. We
calculate the minimum bounding rectangle of these 92
Starbucks with two sides parallel to a meridian. Then, we
extend this rectangle by adding 5km to each side, so as
to form the area of interest, within which we randomly
generate user locations. The placement cost at each edge
server is uniformly generated from the range [1, 5].

The interaction weights among users are synthesized
following realistic distributions revealed in [32]. Fig. 3(b)
shows y × 100% interactions are from x × % most
interactive users, where the interactivity of user ui is
measured by

∑

j 6=i fij . For example, 80% interactions are
from nearly 26% most interactive users in Fig. 3(b).

Delays are generated in two ways: Proportional Delay
and Randomized Delay. In the former, the delay between
any two objects (a user or an edge server) is proportional
to the Euclidean distance between them [4, 29]. Let
AvgDelay denote the average delay generated in this
way. In the latter, we first assume there is a connection
between two objects if the Euclidean distance between
them is not larger than a pre-defined threshold, e.g., 5km;
then, the delays of these connections are synthesized
following realistic distributions disclosed in [33], making
sure the average delay of these connections is AvgDelay.
The CDF of the synthetically generated delays is shown
in Fig. 3(c), in which y×100% connections are associated
with x × % smallest delays. For example, 80% connec-
tions are associated with nearly 14% smallest delays in
Fig. 3(c). In both ways, the delay between a user or an
edge server and the cloud is uniformly generated from
the range [30ms, 50ms].

We compare GPA with OptimalAlg and NearestAlg.
OptimalAlg is a brute-force algorithm that searches the
best from a total of 2|S| different placements, and Near-
estAlg greedily places a service entity at the edge server
which has the largest number of users that choose it as

IEEE TRANSACTIONS ON MOBILE COMPUTING 10

 0

 10

 20

 30

 40

 50

 700 800 900 1000 1100 1200

E
(X

)
(m

s)

Number of Users, m

GPA
NearestAlg

(a) Impact of the number of users

 0

 10

 20

 30

 40

 50

 60

 70

 25 30 35 40 45 50

E
(X

)
(m

s)

Service Capacity, K

GPA
NearestAlg

(b) Impact of the service capacity

 0

 10

 20

 30

 40

 50

 60

 70

 40 50 60 70 80 90 100

E
(X

)
(m

s)

Budget Threshold, Q

GPA
NearestAlg

(c) Impact of the budget threshold

Fig. 5: Edge servers at Starbucks’ locations. Proportional Delay. The default setting is m = 1, 000, K = 40, and Q = 70.

 0

 10

 20

 30

 40

 50

 700 800 900 1000 1100 1200

E
(X

)
(m

s)

Number of Users, m

GPA
NearestAlg

(a) Impact of the number of users

 0

 10

 20

 30

 40

 50

 60

 25 30 35 40 45 50

E
(X

)
(m

s)

Service Capacity, K

GPA
NearestAlg

(b) Impact of the service capacity

 0

 10

 20

 30

 40

 50

 60

 70

 40 50 60 70 80 90 100

E
(X

)
(m

s)

Budget Threshold, Q

GPA
NearestAlg

(c) Impact of the budget threshold

Fig. 6: Edge servers at Starbucks’ locations. Randomized Delay. The default setting is m = 1, 000, K = 40, and Q = 70.

 0

 10

 20

 30

 40

 50

 3500 4000 4500 5000 5500 6000

E
(X

)
(m

s)

Number of Users, m

GPA
NearestAlg

(a) Impact of the number of users

 0

 10

 20

 30

 40

 50

 60

 70

 25 30 35 40 45 50

E
(X

)
(m

s)

Service Capacity, K

GPA
NearestAlg

(b) Impact of the service capacity

 0

 10

 20

 30

 40

 50

 60

 70

 200 250 300 350

E
(X

)
(m

s)

Budget Threshold, Q

GPA
NearestAlg

(c) Impact of the budget threshold

Fig. 7: Edge servers at synthetical locations. Randomized Delay. The default setting is n = 400, m = 5, 000, K = 40, and Q = 300.

the nearest edge server.
Since the number of edge servers is fixed, i.e., 92,

in the above setting, we cannot evaluate the proposed
algorithm with more edge servers. We also conduct
another set of simulations where the locations of both
edge servers and users are randomly generated within
an area. In the following, all the results are obtained by
averaging five independent runs.

6.2 Results

Since it is impractical to run the brute-force OptimalAlg
in general, we evaluate the performance of GPA, Op-
timalAlg, and NearestAlg under a smaller setting, in
which we randomly decrease the number of Starbucks
into 18 and we generate delays using the randomized
way. Fig. 4 shows the results. In general, GPA achieves a
near optimal placement when m is small, K is large, or Q
is large; GPA outperforms NearestAlg at all times. Specif-
ically, throughout this set of simulations, the weighted
average interaction delay achieved by GPA is 217% at
most (170% on average) as large as that achieved by
OptimalAlg, while the E(X) achieved by Nearest is
486% at most (313% on average) as large as that achieved
by OptimalAlg.

Figs. 5 and 6 show the comparison results of GPA and
NearestAlg when we generate delays using Proportion
Delay and Randomized Delay, respectively. In Fig. 5(a)

and Fig. 6(a), when the number of users increases, the
weighted average interaction delay increases in both
algorithms. The main reason is, users compete for service
entities; when more users are involved, many of them
cannot choose the nearest service entities from them
as their entities, leading to a slightly larger pairwise
interaction delay. In Figs. 5(b) and 6(b), when the service
capacity increases, more users can choose better service
entities as their entities; hence, the pairwise interaction
delay decreases in both algorithms. In Figs. 5(c) and 6(c),
when the budget threshold increases, more service enti-
ties can be placed, leading to a smaller interaction delay.

Fig. 7 shows the comparison results under a large
setting in which the number of edge servers is 400. We
see that, even in this large scale, GPA achieves a much
smaller interaction delay than NearestAlg. Most of the
findings from the previous figures still hold here. We
would like to highlight here that, the weighted average
interaction delays in Fig. 4 and Fig. 7 are of the same
order of magnitude, given that most of the settings in
Fig. 7 are the same as those in Fig. 4 except for n, m,
K , and Q. That is, even if both of the number of users
and the number of edge servers increase significantly,
the achieved delay remains the same as long as we can
increase service capacity (by forming a server cluster [3])
and budget threshold.

In Fig. 8(a), we see the running time of OptimalAlg

IEEE TRANSACTIONS ON MOBILE COMPUTING 11

 0

 5000

 10000

 15000

 20000

 30 35 40 45 50 55 60 65 70
R

u
n
n
in

g
 t

im
e

(m
s)

Number of Users, m

GPA
NearestAlg
OptimalAlg

(a) Running time in the Starbucks’ trace

 0

 5000

 10000

 15000

 20000

 3500 4000 4500 5000 5500 6000

R
u
n
n
in

g
 t

im
e

(m
s)

Number of Users, m

GPA
NearestAlg

(b) Running time in the synthetical trace

Fig. 8: Running time comparison.

is extremely high, since it is a brute-force algorithm.
Fig. 8(b) shows the running time of GPA is higher
than that of NearestAlg, since in each iteration of GPA,
it needs to find the best edge server to place a new
service entity that incurs the least interaction delay. It
is worth mentioning that, although the running time of
GPA is not small, it only runs when the set of users
change significantly. In practice, given a scenario, GPA
can output a curve (e.g., Fig. 7(c)) for the DIA service
provider. Since placing more service entities incurs more
monetary costs while the decrease of interaction delay
brings more monetary benefits, the provider can choose
the right balance based on the curve to maximize its
monetary revenue.

7 CONCLUSION AND FUTURE WORK

In this paper, we study the service entity placement at
the network edge for enhancing the interactivity of DIAs.
We present the interaction-oriented edge-enabled service
entity placement problem and show it is NP-complete.
We design an efficient placement algorithm and show
its performance bound. We evaluated GPA with both
real-world data traces and large-scale simulations, and
observed that GPA performs close to the optimal algo-
rithm and generally outperforms the baseline.

We discuss the limitations of our work which may
inspire the future work. Firstly, our work does not con-
sider processing delay at service entities as we believe
the network latency is more difficult to improve than the
processing delay [3]. A busy service entity can always be
better provisioned to meet the delay requirements.

Secondly, we assume that the wireless connections be-
tween users and access points are fixed, e.g., u5 connects
with ap1 and ap2 at all times in Fig. 1(a). In reality,
the connection between a user and an access point may
change over time, due to the physical motion of the user.
A simple way to adapt to this changing situation is to
collect the connection statistics of each user and then use
a connection distribution to represent a user.

Lastly, the service entity placement is optimized for
the pairwise interaction delay in the ISEP problem. How-
ever, more and more interactions involve more than two
users, e.g., an area-of-effect spell in DOTA can affect an
area around a point and any user within the area would
be affected. Under such a scenario, network latency has
to be comprehensively considered for improving user-
perceived quality-of-service. Extending GPA to handling
the multi-user interaction delay is part of future work.

ACKNOWLEDGMENTS

This work was supported in part by National Key R&D
Program of China (2016YFC0800803), NSFC (61872175),
NSF of Jiangsu Province (BK20181252), CCF-Tencent
Open Fund, and Collaborative Innovation Center of
Novel Software Technology and Industrialization. Jidong
Ge is the corresponding author.

REFERENCES

[1] S. Yi, C. Li, and Q. Li, “A survey of fog computing: concepts,
applications and issues,” in Proc. of Mobidata 2015, pp. 37–42.

[2] K. Ha, Z. Chen, W. Hu, W. Richter, P. Pillai, and M. Satya-
narayanan, “Towards wearable cognitive assistance,” in Proc. of
ACM MobiSys 2014, pp. 68–81.

[3] L. Zhang and X. Tang, “Client assignment for improving inter-
activity in distributed interactive applications,” in Proc. of IEEE
INFOCOM 2011, pp. 3227–3235.

[4] Y. Liang, J. Ge, S. Zhang, J. Wu, Z. Tang, and B. Luo, “A utility-
based optimization framework for edge service entity caching,”
IEEE Transactions on Parallel and Distributed Systems, pp. 1–12, 2019.

[5] M. Satyanarayanan, P. Bahl, R. Caceres, and N. Davies, “The case
for VM-based cloudlets in mobile computing,” IEEE Pervasive
Computing, vol. 8, no. 4, pp. 14–23, 2009.

[6] W. Shi, J. Cao, Q. Zhang, Y. Li, and L. Xu, “Edge computing:
Vision and challenges,” IEEE Internet of Things Journal, vol. 3, no. 5,
pp. 637–646, 2016.

[7] F. Liu, P. Shu, H. Jin, L. Ding, J. Yu, D. Niu, and B. Li, “Gearing
resource-poor mobile devices with powerful clouds: architec-
tures, challenges, and applications,” IEEE Wireless Communica-
tions, vol. 20, no. 3, pp. 14–22, June 2013.

[8] S. Chen, L. Jiao, L. Wang, and F. Liu, “An online market mecha-
nism for edge emergency demand response via cloudlet control,”
in Proc. of IEEE INFOCOM 2019, pp. 2566–2574.

[9] L. Yang, J. Cao, H. Cheng, and Y. Ji, “Multi-user computation
partitioning for latency sensitive mobile cloud applications,” IEEE
Transactions on Computers, vol. 64, no. 8, pp. 2253–2266, 2015.

[10] S. Guo, B. Xiao, Y. Yang, and Y. Yang, “Energy-efficient dynamic
offloading and resource scheduling in mobile cloud computing,”
in Prof. of IEEE INFOCOM 2016, pp. 1–9.

[11] C. You, K. Huang, H. Chae, and B.-H. Kim, “Energy-efficient re-
source allocation for mobile-edge computation offloading,” arXiv
preprint arXiv:1605.08518, 2016.

[12] X. Chen, L. Jiao, W. Li, and X. Fu, “Efficient multi-user compu-
tation offloading for mobile-edge cloud computing,” IEEE/ACM
Transactions on Networking, vol. 24, no. 5, pp. 2795–2808, October
2016.

[13] Q. Zhang, F. Liu, and C. Zeng, “Adaptive interference-aware vnf
placement for service-customized 5g network slices,” in Proc. of
IEEE INFOCOM 2019, pp. 1–9.

[14] E. Cuervo, A. Balasubramanian, D.-k. Cho, A. Wolman, S. Saroiu,
R. Chandra, and P. Bahl, “MAUI: making smartphones last longer
with code offload,” in Proc. of ACM MobiSys 2010, pp. 49–62.

[15] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti,
“Clonecloud: elastic execution between mobile device and cloud,”
in Proc. of ACM EuroSys 2011, pp. 301–314.

[16] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “ThinkAir:
Dynamic resource allocation and parallel execution in the cloud
for mobile code offloading,” in Proc. of INFOCOM 2012, pp. 945–
953.

IEEE TRANSACTIONS ON MOBILE COMPUTING 12

[17] M. S. Gordon, D. A. Jamshidi, S. Mahlke, Z. M. Mao, and X. Chen,
“COMET: code offload by migrating execution transparently,” in
Proc. of USENIX ODSI 2012, pp. 93–106.

[18] F. Liu, P. Shu, and J. C. S. Lui, “AppATP: An energy conserving
adaptive mobile-cloud transmission protocol,” IEEE Transactions
on Computers, vol. 64, no. 11, pp. 3051–3063, Nov 2015.

[19] L. Tong, Y. Li, and W. Gao, “A hierarchical edge cloud architecture
for mobile computing,” in Prof. of IEEE INFOCOM 2016, pp. 1–9.

[20] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau, “Online job dispatching
and scheduling in edge-clouds,” in Proc. of INFOCOM 2017, 2017,
pp. 1–9.

[21] S. Sundar and B. Liang, “Offloading dependent tasks with com-
munication delay and deadline constraint,” in Prof. of IEEE IN-
FOCOM 2018, pp. 1–9.

[22] Q. Liu, S. Huang, J. Opadere, and T. Han, “An edge network
orchestrator for mobile augmented reality,” in Prof. of IEEE IN-
FOCOM 2018, pp. 1–9.

[23] B. Gao, Z. Zhou, F. Liu, and F. Xu, “Winning at the starting line:
Joint network selection and service placement for mobile edge
computing,” in Proc. IEEE INFOCOM 2019, pp. 1–9.

[24] Y. Bao, Y. Peng, C. Wu, and Z. Li, “Online job scheduling in
distributed machine learning clusters,” in Prof. of IEEE INFOCOM
2018, pp. 1–9.

[25] Q. Chen, Z. Zheng, C. Hu, D. Wang, and F. Liu, “Data-driven task
allocation for multi-task transfer learning on the edge,” in Proc.
of IEEE ICDCS 2019, pp. 1–11.

[26] M. Jia, W. Liang, Z. Xu, and M. Huang, “Cloudlet load balancing
in wireless metropolitan area networks,” in Proc. of IEEE INFO-
COM 2016, pp. 1–9.

[27] R. Yu, G. Xue, and X. Zhang, “Application provisioning in fog
computing-enabled internet-of-things: A network perspective,” in
Prof. of IEEE INFOCOM 2018, pp. 1–9.

[28] J. Xu, L. Chen, and P. Zhou, “Joint service caching and task
offloading for mobile edge computing in dense networks,” in Prof.
of IEEE INFOCOM 2018, pp. 1–9.

[29] L. Wang, L. Jiao, T. He, J. Li, and M. Mühlhäuser, “Service
entity placement for social virtual reality applications in edge
computing,” in Proc. of IEEE INFOCOM 2018, pp. 1–9.

[30] V. Vazirani, Approximation algorithms. Springer, 2004.
[31] “Open Edge Computing,” http://openedgecomputing.org/.
[32] C. Wilson, B. Boe, A. Sala, K. P. Puttaswamy, and B. Y. Zhao, “User

interactions in social networks and their implications,” in Proc. of
ACM EuroSys 2009, pp. 205–218.

[33] T. Høiland-Jørgensen, B. Ahlgren, P. Hurtig, and A. Brunstrom,
“Measuring latency variation in the internet,” in Proc. of ACM
CoNEXT 2016, pp. 473–480.

Yu Liang is a PhD candiate in Nanjing Univer-
sity. She received her MS degree from Nanjing
University in 2011. She was a senior software
engineer in Trend Micro China Development
Center between 2011 and 2017. Her research
interests include resource allocation in cloud and
edge computing. Her publications include those
appeared in COMNET, COMCOM, ICDCS, and
Globecom.

Jidong Ge is an Associate Professor at Soft-
ware Institute, Nanjing University. He received
his PhD degree in Computer Science from Nan-
jing University in 2007. His current research
interests include cloud computing, distributed
computing, workflow scheduling, workflow mod-
eling, process mining. His research results have
been published in more than 60 papers in in-
ternational journals and conference proceedings
including IEEE TSC, JASE, FGCS, JSS, Inf. Sci.,
ESA, ICSE, APSEC, ICSSP, HPCC, SEKE etc.

Sheng Zhang (M’14) is an assistant professor in
the Department of Computer Science and Tech-
nology, Nanjing University. He is also a member
of the State Key Lab. for Novel Software Technol-
ogy. He received the BS and PhD degrees from
Nanjing University in 2008 and 2014, respec-
tively. His research interests include cloudedge
computing and edge computing. To date, he has
published more than 60 papers, including those
appeared in TMC, TPDS, TC, MobiHoc, ICDCS,
INFOCOM, IWQoS, and ICPP. He is a member

of the IEEE and a senior member of the CCF.

Jie Wu (F’09) is the Director of the Center for
Networked Computing and Laura H. Carnell pro-
fessor at Temple University. He also serves as
the Director of International Affairs at College of
Science and Technology. He served as Chair of
Department of Computer and Information Sci-
ences from the summer of 2009 to the summer
of 2016 and Associate Vice Provost for Interna-
tional Affairs from the fall of 2015 to the summer
of 2017. Prior to joining Temple University, he
was a program director at the National Science

Foundation and was a distinguished professor at Florida Atlantic Univer-
sity. His current research interests include mobile computing and wire-
less networks, routing protocols, cloud and green computing, network
trust and security, and social network applications. Dr. Wu regularly
publishes in scholarly journals, conference proceedings, and books.
He serves on several editorial boards, including IEEE Transactions on
Mobile Computing, IEEE Transactions on Service Computing, Journal of
Parallel and Distributed Computing, and Journal of Computer Science
and Technology. Dr. Wu was general co-chair for IEEE MASS 2006,
IEEE IPDPS 2008, IEEE ICDCS 2013, ACM MobiHoc 2014, ICPP
2016, and IEEE CNS 2016, as well as program co-chair for IEEE
INFOCOM 2011 and CCF CNCC 2013. He was an IEEE Computer
Society Distinguished Visitor, ACM Distinguished Speaker, and chair for
the IEEE Technical Committee on Distributed Processing (TCDP). Dr.
Wu is a CCF Distinguished Speaker and a Fellow of the IEEE. He is
the recipient of the 2011 China Computer Federation (CCF) Overseas
Outstanding Achievement Award.

Lingwei Pan received the BS degree at the Soft-
ware Institute, Nanjing University. He is currently
working toward the MS degree at the Software
Institute, Nanjing University, under the supervi-
sion of Prof. Jidong Ge. His research interests
include cloud computing and NLP.

Tengfei Zhang received the BS degree at
the Software Institute, Northeastern university,
China. He is currently working toward the MS de-
gree at the Software Institute, Nanjing University,
under the supervision of Prof. Jidong Ge. His
research interests include NLP and Data Mining.

Bin Luo is a full Professor at the Software
Institute, Nanjing University. His main research
interests include cloud computing, computer net-
work, workflow scheduling, software engineer-
ing. His research results have been published
in more than 60 papers in international jour-
nals and conference proceedings including IEEE
TSC, ACM TOIST, FGCS, JSS, Inf. Sci., ESA
etc. He is leading the institute of applied software
engineering at Nanjing University.

