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ABSTRACT

Urban environmental monitoring related to such issues as
air pollution and noise helps people understand their living
environments and promotes urban construction. It is more
and more important nowadays. By crowdsourcing, we can
get mobile users at a low cost to collect measurement at d-
ifferent locations. This paper studies how to select optimal
mobile users to construct an accurate monitoring map un-
der a limited budget. We extend the noise Gaussian Process
model to construct the data utility model. Because the mon-
itoring map is updated in each time slot, we try to maximize
the time-averaged data utility under the time-averaged bud-
get constraint. This problem is particularly challenging given
the unknown future information and the difficulty of solv-
ing the one-slot problem: maximizing a non-monotone sub-
modular objective under the budget constraint. To address
these challenges, we first make use of Lyapunov optimiza-
tion to decompose the long-term optimization problem into
a series of real-time problems which do not require a priori
knowledge about the future information. We then propose a
time-efficient online algorithm to solve the NP-hard one-slot
problem. As long as the algorithm for the one-slot problem
has a competitive ratio e, the time-averaged data utility of
our online algorithm has a small gap compared with e times
the optimal one. Evaluations based on the real air pollution
data in Beijing [2] and real human trajectory data [1] show
the efficiency of our approach.
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1 INTRODUCTION

Urban environmental monitoring on issues such as air pollu-
tion [4][13], noise [3][29], solar [20] and wireless signal [11][26]
is more and more important nowadays. Environmental moni-
toring helps people understand their living environments and
promotes urban construction such as pollution abatement
and wireless network development. Existing environmental
monitoring applications on industry[4][3] use pre-deployed
sensor networks to collect monitoring data. Because of a high
deployment and maintenance cost, the sensing node distri-
bution is sparse and monitoring is coarse-grained. Instead,
we use crowdsourcing over mobile devices which are embed-
ded with rich sensors [8][5]. Crowdsourcing is cheap and can
provide fine-grained monitoring because mobile devices such
as smartphones are ubiquitous.

As shown in Fig. 1, in environmental monitoring by crowd-
sourcing, such as air pollution monitoring, the considered
area, such as a city, is divided into many grids. The color
of a grid is darker if pollution is serious and lighter in the
contrary case. The monitoring map is updated in each time
slot. In a time slot, the crowdsourcer recruits mobile users
to collect measurements. Because of budget limitation, some
grids do not have measurements. The crowdsourcer needs to
infer levels of air pollution in these grids.

The big concern of the crowdsourcer is: how to get accu-
rate monitoring maps under the limited average budget. As
shown in Fig. 2, the total payment in a slot can be dynam-
ic as long as the average payment is below the set budget
Bavg. What’s more, because the available budget in a slot is
finite, the total payment in a slot cannot exceed the upper
bound U . We do not set a fixed budget in a slot because
the situation in each slot changes dynamically. In some slots,
the number of mobile users is small, costs of mobile users
are high or qualities of mobile users are low. Spending too
much budget on these slots is useless. We should put more
budget in other slots to achieve higher average accuracy of
monitoring maps.

The problem is non-trivial mainly due to the following
challenges. First, the time-averaged objective and budget
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Figure 1: Environmental monitoring by crowdsourc-
ing.

constraint couple the short-term mobile user selection prob-
lem across time. The dynamic future information, including
locations, costs and qualities of mobile users, is not avail-
able in advance. Thus the decisions have to be made with-
out foreseeing the future. Second, even if we only consider
one slot, the short-term problem is NP-hard whose optimal
solution cannot be found in polynomial time. Third, to de-
couple the lone-term problem, we need to adjust the origi-
nal short-term problem. The adjusted short-term problem is
even harder than the original one. It is a non-monotone sub-
modular optimization under the knapsack constraint. The
time complexities of its approximate algorithms are all ex-
tremely high [16][7]. For example, in the work of Fadaei et
al. [7], when the approximation ratio is set to 0.05, the al-
gorithm is just an exhaustive algorithm if the number of all
mobile users is less than 10000.

To overcome the above challenges, we propose an online
algorithm to select mobile users in each slot. We first adop-
t the noise-aware Gaussian Process (GP) model for sensing
data and extend it to construct our data utility model. GP is
usually used to estimate the distribution of unobserved ran-
dom variables by observed values of related random variables.
We use the entropy of the estimated distribution as the un-
certainty of estimation. If we are more confident about the
estimation, the data utility of measurements is large. Then
we formulate our time-averaged data utility maximization
problem under the limitation of the average budget and the
upper bound β of the budget in a slot.

We apply the Lyapunov optimization technique to trans-
form this long-term problem to a series of real-time one-slot
optimization problems. Each one-slot problem selects mobile
users to maximize a non-monotone submodular objective un-
der the limited budget β. This objective considers both the
data utility and the overused budget. We propose an online
algorithm to solve the one-slot problem. The online algorith-
m does not pick any mobile user from the first half of the
stream. At the end of the first half, it computes the highest
objective G achieved by mobile users in the first half and
uses ρ = G/β as an reference of the contribution per cost
of mobile users which will be selected in the second half of
stream. In the second half, the crowdsourcer selects a mobile

Figure 2: The budget constraint.

user if the remaining budget can afford the cost, and more-
over, the contribution per cost is at least ρ. The difficulty
is how to compute G. As we introduce above, approxima-
tion algorithms for the one-slot problem usually have high
time complexities. Therefore, we recursively call this online
algorithm until the number of mobile users is very small and
we can easily get the solution by enumerating all possible
solutions. We have made the following main technical contri-
butions.

• We show that as long as the algorithm for the one-slot
problem has a competitive ratio e, the time-averaged
data utility of our online algorithm has a small gap
compared with e times the optimal one.

• We prove that the one-slot problem is a non-monotone
submodular optimization under the knapsack constrain-
t and propose an online algorithm with computing ef-
ficiency to solve the one-slot problem.

• We evaluate our approach using the real dataset and
compare our approach with other baselines to show its
efficiency.

Paper organization. The remainder of this paper is
structured as follows. The system model and problem for-
mulation are presented in Section 2. In Section 3, we de-
scribe the design details of the online algorithm. We present
the theoretical analysis in Section 4. We evaluate the perfor-
mance of the proposed algorithm in Section 5. Related work
is discussed in Section 6. Finally, we conclude in Section 7.

2 MODELING AND PROBLEM
FORMULATION

2.1 System Model

The environmental monitoring map needs to be updated at
each time slot t ∈ [0, · · · , T − 1]. The set of grids on the
map is L = {l1, · · · , lm}. In each slot t, a set of mobile users
U t = {ut

1, u
t
2, · · · , ut

nt
} is willing to provide sensing services.

The notation nt is the number of mobile users in slot t. The
location of mobile user ut

i belongs to grid l̂ti and the cost is cti.
A mobile user ut

i has noise nt
i compared with the truth. The

noise can be estimated from the collected historical data [18].
The average total cost of recruited mobile users in a slot can-
not exceed the average budget Bavg. The total cost in a slot
has an upper bound β. The interactions between the crowd-
sourcer and mobile users are as follows. The length of a time
slot is T . In a slot, mobile users come online. When a mo-
bile user arrives, he/she submits the information including
the location and the cost. Then the crowdsourcer determines
whether to recruit this user or not immediately because this
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mobile user may move to another grid later. Selected mo-
bile users collect measurements in corresponding grids and
upload them to the crowdsourcer. After receiving all upload-
ed data at the end of the time slot, the crowdsourcer pays
mobile users according to their costs. Then environmental
values of observed grids are calculated and environmental
values of unobserved grids are estimated from collected mea-
surements. Because of the limited budget, the crowdsourcer
chooses at most one mobile user for each grid.

2.2 Data Utility Model

Obviously, the crowdsourcer hopes that measurements at im-
portant grids can be collected. Then exact environmental val-
ues of these grids can be obtained by filtering noises [18]. At
the same time, inferences of other grids should be as accurate
as possible. To select a set of mobile users that satisfy the re-
quirement of the crowdsourcer, we use data utility to model
the contribution of measurements uploaded by a set of mo-
bile users. In the data utility model, the importance of grid li
is denoted as ei. Intuitively, a grid with a higher population
density is more important because more people refer to the
environmental value at this grid. The accuracy of inferences
is usually measured by two metrics: Root Mean Square Error
(RMSE) and Mean Absolute Error (MAE) [29][11]. Assume
that x̂t

i is an inference of grid li in slot t and xt
i is the ground

truth. The two metrics are defined as follows.

RMSEt =

√∑
li
(xt

i − x̂t
i)

2

m

MAEt =

∑
li
|xt

i − x̂t
i|

m

(1)

To achieve higher accuracy, the crowdsourcer should select
mobile users who can reduce the error to the minimum value.
However, it is difficult to calculate the error before mobile
user selection, which is a common problem for environmental
map construction [29][11]. To solve this problem, we adopt
the noise-aware Gaussian Process model [9] for sensing data,
and extend it to involve certainty of estimated environmental
values.

In GP, the environmental value Xt
i of grid li in slot t

is assumed to be a random variable which follows a one-
dimension Gaussian distribution with mean μt

i and variance
Σt

i. The joint distribution over environmental values in al-
l grids is a multivariate normal distribution with a mean
vector μt = {μt

1, · · · , μt
m} and a symmetric positive-definite

covariance matrix Σt whose element Σt
i,j is the covariance

for environmental values in grids li and lj . The value of Σt
i,i

is equal to Σt
i.

At the beginning of each time slot, we have an initial mean
vector and an initial covariance matrix. They can be estimat-
ed as average values of means and covariances in the recent
past or means and covariances in the same time duration in
the previous cycle. Initial covariances of the first time slot
can be estimated through distances as shown in the evalua-
tion. The longer the distance between two grids is, the larger
the covariance is. As for means, before the first time slot, we

can recruit more mobile users to measure environmental val-
ues in all grids and use them as initial means. This is the
necessary cost of starting up the environmental monitoring
project.

We next introduce how to infer environmental values of
unobserved grids after receiving measurements from mobile
users. Suppose the set of grids having measurements in s-
lot t is At ⊆ L and the unobserved grid set is Rt = L\At.
The mean vector and the covariance matrix of the joint dis-
tribution of environmental values can be expressed by the
following form, where μAt and μRt are vectors and ΣAtAt ,
ΣAtRt , ΣRtAt and ΣRtRt are matrices.

μt =

[
μAt

μRt

]
Σt =

[
ΣAtAt ΣAtRt ,
ΣRtAt ΣRtRt .

]
(2)

In the noise matrix ΓAt , the diagonal entries are noises of
mobile users collecting measurements in corresponding grids
in set At and the other entries are zeros. Then given the mea-
surement vector xAt , we can calculate the probability distri-
bution P (XR|XAt = xAt), which is a conditional Gaussian
distribution with the mean vector μRt|At and the variance
matrix ΣRt|At . The environmental values of unobserved grid-
s are inferred as the means in μRt|At .{

μRt|At = μRt +ΣRtAt(ΣAtAt + ΓAt)
−1(xAt − μAt)

ΣRt|At = ΣRtRt − ΣRtAt(ΣAtAt + ΓAt)
−1ΣAtRt

(3)
The entropy of the random Gaussian variable XRt is a

good measurement of the uncertainty of our inference. If its
distribution is very smooth and goes to the uniform distri-
bution, the uncertainty of the inference and the entropy are
both high. If its distribution is steep and the probability of
the mean is close to 1, we would be very confident about
our inference and the entropy is low. Therefore, the contri-
bution of xAt to uncertainty reduction can be set as the
difference between the entropy H(XRt) of XRt , and the en-
tropy H(XRt |XAt) of XRt on condition that XAt has been
observed. According to the definition of entropy, H(XRt)
and H(XRt |XAt) can be calculated as follows.

H(XRt) =
1

2
ln[(2πe)|Rt||ΣRtRt |]

H(XRt |XAt) =
1

2
ln[(2πe)|Rt||ΣRt|At |]

(4)

For the selected set of mobile users St in slot t, the contri-
bution F (St) of their measurements considers both the im-
portance of observed grids and the certainty of estimated en-
vironmental values inferred by the uploaded measurements.

The set of grids having measurements is At = {l̂ti |ut
i ∈ St}

and the set of unobserved grids is Rt = L\At. Then F (St)
can be expressed by the following formula.

F (St) =
∑

li∈At

eli +W [H(XRt)−H(XRt |XAt)]. (5)

The notation W is the tradeoff between the importance of
observed grids and the certainty of estimation.
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2.3 Time-averaged Data Utility
Maximization Problem

Because the crowdsourcer needs to monitor environmental
values for a long time period, we propose to optimize the
long-term time-averaged data utility subject to the time-
averaged budget constraint, which is formulated as follows.

max
1

T
lim

T→∞
∑T

t=1 F (St)

s.t. At = {l̂ti |ut
i ∈ St}, ∀t

Rt = L\At, ∀t
St ⊆ U t, ∀t
F (St) =

∑
li∈At

eli +H(XRt)−H(XRt |XAt), ∀t
Ct =

∑
ut
i∈St

cti, ∀t
1

T
lim

T→∞
∑T

t=1 Ct ≤ Bavg

Ct ≤ β, ∀t.
(6)

The sixth constraint means that the average total cost of re-
cruited mobile users cannot exceed the average budget Bavg.
The last constraint restricts the upper bound of the total
cost in a time slot. We assume that in each grid, there is
only one mobile user. In this setting, the problem has been
NP-hard and very difficult to solve. The scenario where there
are multiple mobile users in a grid will be considered in the
future work.

3 MOBILE USER SELECTION
ALGORITHM

In this section, we present our mobile user selection algorith-
m. In the time-averaged data utility maximization problem,
mobile user selection in different slots are coupled with each
other. Decision making is difficult because the future infor-
mation is not available in advance. We first exploit Lyapunov
optimization [19] to transform the long-term problem to a
series of real-time one-slot optimizations. We then present
details of our online algorithm.

3.1 Decoupling the Time-averaged
Problem

To decouple the time-averaged problem, we first construct
a queue to represent the over spent budget. Then we show
that as long as the queue is stable, the time-averaged bud-
get constraint would be satisfied. At last, we formulate the
real-time one-slot problem which maximizes the current da-
ta utility and controls the length of the queue at the same
time. The real-time problems in all slots compose the origi-
nal long-term problem.

3.1.1 Queue construction. We construct a virtual queue Q
whose length at slot t, Q(t), represents the over used budget
at the beginning of slot t. We assume that the initial queue
backlog is 0, i.e., Q(0) = 0. The queue length is updated by
the following formula.

Q(t+ 1) = max[Q(t) + Ct −Bavg, 0]. (7)

3.1.2 Queue stability. We show that as long as the virtual
queue Q is stable, i.e., limT→∞�{Q(T )}/T = 0, the time-
averaged budget constraint is satisfied. By adding up the
inequality Q(t+1) ≥ Q(t)+Ct−Bavg derived from equation
(7) over time, we get

Q(T )−Q(0)
T

+Bavg ≥ 1
T

∑T−1
t=0 Ct. (8)

Because Qi(0) = 0, we can take an expectation of the above
inequality and have

lim
T→∞

�(Q(T ))
T

+Bavg ≥ lim
T→∞

1
T

∑T−1
t=0 �{Ct}.

If the virtual queue Q is stable, we can get

lim
T→∞

1
T

∑T−1
t=0 �{Ct} ≤ Bavg.

That is to say, the long-term time-averaged budget constrain-
t is satisfied.

To stabilize the virtual queue, we define a quadratic Lya-
punov function as follows.

L(Q(t)) = 1
2
Q2(t), (9)

The Lyapunov function represents a measure of queue con-
gestion. Intuitively, to achieve queue stability, we should con-
trol growth of the Lyapunov function, which is measured by
the one-step conditional Lyapunov drift Δ(Q(t)).

Δ(Q(t)) = �{L(Q(t+ 1))− L(Q(t))|Q(t)}. (10)

The above conditional expectation is with respect to ran-
domness in the submitted information of mobile users. The
drift Δ(Q(t)) denotes the change of the Lyapunov function
over one slot.

3.1.3 One-slot utility-minus-drift maximization. In order to
consider queue stability and data utility at the same time,
we define a utility-minus-drift function as follows.

V F (S(t))−Δ(Q(t)). (11)

The non-negative control parameter V represents how much
we stress data utility.

This objective is hard to optimize because of its quadratic
terms. Instead, we optimize its lower bound given by Theo-
rem3.1. The proof is shown in Appendix A.

Theorem 3.1. For any slot t, for any possible Q(t) by
using any mobile user selection algorithm, the utility-minus-
drift function could be bounded as follows.

V F (S(t))−Δ(Q(t)) ≥
V F (S(t))−Q(t)�{Ct −Bavg|Q(t)} −D,

where D = 1
2
(β2 +B2

avg) is a constant value.

As shown in Theorem4.1, by optimizing the lower bound,
we can get a pretty good performance with respect to the
time-averaged data utility and the queue would be stable.
At the beginning of each time slot, Q(t) is observed, thus
Q(t)Bavg is a constant. We just need to maximize V F (S(t))−
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Algorithm 1: Online Mobile User Selection Algo-
rithm

Require: L, {eli |li ∈ L}, V , Bavg , β, initial μ and Σ

1: Q(0) = 0.
2: for t = 1, · · · , T do
3: Solve the one-slot problem, i.e., problem (12) by Alg. 2.
4: Update the lenght of the virtual queue according to

Equ. 7.

Q(t)Ct in each slot. Then the one-slot problem in slot t, i.e.,
the utility-minus-drift maximization problem, is defined as

max V F (St)−Q(t)Ct

s.t. At = {l̂ti |ut
i ∈ St}

Rt = L\At

St ⊆ U t

F (St) =
∑

li∈At
eli +H(XRt)−H(XRt |XAt)

Ct =
∑

ut
i∈St

cti

Ct ≤ β.

(12)

This problem is NP-hard. It is the classic knapsack prob-
lem if the objective is additive. We prove that the objective
is a submodular function which is defined by the following
definition. As submodularity includes additivity, this prob-
lem is harder than the classic knapsack problem.

Definition 3.2 (Submodular function). For a finite uni-
verse set U , S1 ⊆ S2 ⊆ U and u ∈ U\S2. Then, a function G
is a submodular function if and only if G(S1∪{u})−G(S1) ≥
G(S2 ∪ {u})−G(S2).

Theorem 3.3. The objective G(St) = V F (St) − Q(t)Ct

is a non-monotone submodular function.

We cannot directly adopt classical online and offline greedy
algorithms for monotone submodular optimization [27][12],
because the objective G(St) is a non-monotone submodular
function. If it is a monotone submodular function, Gut

i
(St) =

G(St ∪ {ut
i}) − G(St) must be equal to or larger than 0 for

any subset St ∈ U t and any mobile user ut
i ∈ U t\St [6]. How-

ever, Gut
i
(St) might be negative if the growth of V F (St) is

small or the growth of Q(t)Ct is large.

3.2 Online Mobile User Selection
Algorithm

We design an online mobile user selection algorithm shown
in Alg. 1. In each slot, the crowdsourcer solves the one-slot
problem (12) online by Alg. 2. At last, the length of the vir-
tual queue is updated according to Equ. 7. Alg. 1 is online,
which means that making decisions in the current slot does
not need the information of the future slots. Alg. 2 is also on-
line, which means that determining whether to recruit the
coming mobile user in the current time step in a slot does
not need to know mobile users coming latter in this slot.

To explain the online algorithm solving the one-slot prob-
lem, we first define marginal efficiency of a mobile user which

is the marginal contribution per cost with respect to the cur-
rent set of selected mobile users. More formally, it is defined
as follows.

Definition 3.4 (Marginal Efficiency). Given the current
set of selected mobile users in slot t, denoted by St, the
marginal contribution of a newly coming mobile user ut

i is

Gut
i
(St) = G(St ∪ {ut

i})−G(St). (13)

Then, marginal efficiency of mobile user ui is the marginal
contribution per cost, i.e., Gut

i
(St)/c

t
i.

The algorithm for the one-slot problem is inspired by the
work of Bateni et al. [6]. In a slot with length T , mobile user-
s come online. The algorithm in this work [6] does not pick
any mobile user from the first half of the stream. At time
step T /2, it finds a set S′ of mobile users from the first half
to achieve the highest objective with respect to the knap-
sack constraint, i.e., the total cost cannot exceed β. Then,
the crowdsourcer obtains an estimation G(S′) of the optimal
objective by looking at the first half of the stream and gets a
threshold ρ = G(S′)/(6β) of marginal efficiency. The factor
6 is added because of submodularity. Mobile users who come
later have lower marginal efficiency. If the threshold is too
high, we may not recruit enough mobile users. In the second
half, the crowdsourcer selects a mobile user if the remain-
ing budget can afford the cost, and moreover, the marginal
efficiency is at least ρ.

Algorithm 2: Online Algorithm for One-slot Prob-
lem

Require: L, {etli |li ∈ L}, V , β, μt, Σt, Q(t) and T .

Ensure: xAt and inference μRt .

1: (τ, j, St) ← (0, 16, ∅)
2: while τ ≤ 8 do
3: if there is a mobile user ut

i arriving at time step τ then

4: St = St ∪ {ut
i}

5: if τ = 8 then

6: ρ = G(St)/(6 · β)
7: St = ∅
8: τ = τ + 1
9: while 8 < τ ≤ T /2 do

10: if there is a mobile user ut
i arriving at time step τ then

11: if ρ ≤
G

ut
i
(St)

cti
&& cti ≤ β −∑

ut
i∈St

cti then

12: St = St ∪ {ut
i}

13: if τ = j then
14: ρ = G(St)/(6 · β)
15: St = ∅
16: j = 2j
17: τ = τ + 1
18: while T /2 < τ ≤ T do

19: if there is a mobile user ut
i arriving at time step τ then

20: if ρ ≤
G

ut
i
(St)

cti
&& cti ≤ β −∑

ut
i∈St

cti then

21: St = St ∪ {ut
i}

22: Collect measurement xt
i.

23: τ = τ + 1
24: Calculate μRt .
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Figure 3: The online algorithm for the one-slot prob-
lem with multiple stages in a slot. In this example,
the time length is 32. There are 3 stages.

The difficulty is how to get the set S′. The work of Bateni
et al. does not give the solution. The one-slot problem is
NP-hard. Thus, the optimal solution cannot be found in
polynomial time. There are several offline approximate algo-
rithms for non-monotone submodular functions [16][7]. How-
ever, their time complexities are also very high. We take the
newest algorithm as an example [7]. This algorithm has an
approximation ratio 0.25 − 2ε where the constant ε is posi-
tive and smaller than 1. It enumerates all mobile user sets
whose number of elements is less than 1/ε4. For each set, it
adds some other mobile users to form a candidate solution.
At last, it chooses the best one from all candidate solutions.
If ε is 0.1, the approximation ratio is 0.05 which is not good
for an offline algorithm. What’s more, if the number of all
mobile users is less than 1/0.14 = 10000, the algorithm is
just an exhaustive algorithm. The time complexity can be
up to 210000.

To overcome the high complexity of getting S′, we propose
our algorithm shown in Alg. 2. From T /2, we recursively call
the previously introduced online algorithm until the number
of mobile users is 8. Under the following setting, if there are
only 8 mobile users, the optimal solution is recruiting them
all. In the setting, we assume that the environmental mon-
itoring map has many grids and needs many mobile users.
Therefore, the budget upper bound β is large and can al-
ways afford the cost of 8 mobile users. Besides, we would set
V to an appropriate value so that if the number of recruited
mobile users is less than 8, the marginal contribution of a
new mobile user is positive.

Specifically, the time length T in a slot is divided into
h=�log2T 	−2 stages as shown in Fig. 3. The k-th stage ends
at time-slot Tk =

⌊
T /2h−k

⌋
. At the end of the first stage, i.e.,

time step 8, we get G1 which is the objective achieved by all
arrived mobile users. We use ρ = G1/(6β) as the threshold
to choose a mobile user set under budget β in the second
stage (from time step 8 to time step 16) to get G2. Similarly,
in each stage k, we compute Gk according to the threshold
ρ = Gk−1/(6β) under budget β. At the end of stage h − 1,
we can get Gh−1 and the threshold Gh−1/(6β). In the last
stage, we recruit a mobile user if the marginal efficiency is
not less than the threshold and the remaining budget can
afford the cost.

We can see that the time complexity of the algorithm is
O(nt) where nt is the number of mobile users coming in time

slot t. Under the linear time complexity, the algorithm can
achieve at least 0.7 times the optimal objective as shown in
evaluations.

4 THEORETICAL ANALYSIS

In this section, we analyze theoretically the performance of
our online algorithm. The proofs are shown in Appendix.
Through Theorem4.1, we show that although the solution
of the one-slot problem is not optimal, we can still get a
bound on the time-averaged data utility.

Theorem 4.1. Assume Ct is i.i.d. over time slots, F opt

is the optimal time-averaged data utility with the overall in-
formation and the one-slot algorithm has a competitive ratio
e. For any non-negative control parameter V , the long-term
data utility implemented by our algorithm satisfies:

lim
T→∞

1
T

∑T−1
t=0 �{F (St)} ≥ eF opt − D

V
. (14)

Theorem4.2 studies the time-averaged length of the vir-
tual queue.

Theorem 4.2. Assuming that Bavg > 0 and Q(0) = 0,
then the time-averaged length of the virtual queue has the
following upper bound.

lim
T→∞

1
T

∑T−1
t=0 �{Q(t)} ≤ (1−e)V Fopt+Bavg

eγ
. (15)

The above formula means that limT→∞�{Q(T )}/T = 0 for
∀mi ∈�.

Combing Theorem4.1 and Theorem4.2, we can see that
the parameter V controls the tradeoff between the data util-
ity and the over consumed budget. When the value of V is
small, the upper bound of the time-averaged queue length
is small but the gap between the time-averaged data utility
and e times the optimal data utility is large. When the value
of V is large, the opposite was the case.

5 EVALUATION

Based on the real air pollution data in Beijing [2] and real
human trajectory data [1], we compare our algorithm with
baselines to verify the theoretical results and show the effi-
ciency of our algorithm.

5.1 Experiment Settings

We consider an application of air pollution monitoring. The
default settings are as follows. The number of slots is 2800
and the length of one slot is 1h. We set V , W , β and Bavg to
10, 100, 700$ and 450$, respectively. We divide Beijing into
2km·2km grids. The importance of each grid is in {1, 2, 3, 4, 5}.
The grid close to commercial centers or residential areas has
a high importance because it has dense population.

The number of mobile users is 2000. We set the locations
of each mobile user according to the real human trajectory
data [1] which consists of 3-year trajectories of 182 users. We
use trajectories of a user in different time durations to simu-
late multiple users. The cost of a mobile user ui in different s-
lots follows a truncated normal distribution N (δi, vi, lbi, ubi)
with the mean δi, the variance vi, the lower bound lbi and
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Figure 4: Data utility vs.
number of mobile users.
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Figure 5: Time-averaged
data utility vs. number of
mobile users.
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Figure 6: Time-averaged
error vs. number of mo-
bile users.
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Figure 7: Time-averaged
data utility vs. average
budget.
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Figure 8: Time-averaged
error vs. average budget.
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Figure 9: Time-averaged
data utility vs. upper
bound β of the budget.
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Figure 10: Time-
averaged cost vs. upper
bound β of the budget.
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the upper bound ubi. The lower bound of the cost of a mo-
bile user is selected from the uniform distribution from 0.2$
to 0.5$. The upper bound is generated by the uniform dis-
tribution from the corresponding lower bound to 1.5$. The
mean δi of the cost of a mobile user is lbi+ubi

2
. The variance

vi is 0.2 · (δi − lbi). We update the noise of a mobile user in
each slot according to the work of Liu et al. which maximizes
likelihood by EM algorithm [18].

At the beginning of each time slot, we have an initial mean
vector and an initial covariance matrix. The mean (covari-
ance) of a grid is estimated as the weighted sum of the aver-
age value of its mean (covariance) in the recent past and the
mean (covariance) in the same time duration in the previous
cycle. Initial covariances of the first time slot can be esti-
mated through distances. The longer the distance between
two grids is, the larger the covariance is. As for means, be-
fore the first time slot, we can recruit more mobile users to
measure environmental values in all grids and use them as
initial means. This is the necessary cost of starting up the
environmental monitoring project. The ground truth of each
grid is set according to the real air pollution data in Beijing
[2].

5.2 Performance Benchmark

For the online algorithm for the long-term problem, i.e., Al-
g. 1, the group of benchmarks consists of three algorithms: 1)
Cost First : in each slot, we select mobile users in an offline

way: choosing mobile users with lowest costs under the bud-
get Bavg. 2) Shortsighted UPR: in each slot, the data utility
is maximized subject to the upper bound, β, of budget. 4)
Shortsighted AVG : the current data utility is maximized un-
der the constraint that the total cost of selected mobile users
is below Bavg. This strategy guarantees the average budget
constraint by limiting the total cost to Bavg.

What’s more, we compare the online algorithm for the one-
slot problem, i.e., Alg. 2, with two baselines: 1) OPT: The
offline optimal solution obtained by existing optimization
techniques. Because the objective in the one-slot problem is
submodular, it is also convex. There are many existing tech-
niques for convex optimization. 2) Bateni: The online algo-
rithm of Bateni et al. which computes the threshold of mar-
ginal efficiency at T /2 by existing optimization techniques
[6].

5.3 Experimental Results

5.3.1 The online algorithm for the one-slot problem. In Fig. 4
we compare our online algorithm for the one-slot problem
with the optimal solution (OPT) and the algorithm of Bateni
et al. (Bateni). Because OPT and Bateni need to optimize
the NP-hard one-slot problem, their time complexities are
very high. Thus, we set the number of mobile users to rel-
atively small values, i.e., from 100 to 300. We just consider
one slot and maximize the data utility in the slot. The upper
bound of the budget is $70.
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We can see that the data utility increases with the number
of mobile users because more mobile users can contribute
data. The data utility achieved by our algorithm is about
0.7 times OPT and 0.9 times Bateni. Considering the time
complexity, the sacrifice of data utility can be acceptable.

5.3.2 The online algorithm for the long-term problem. In Fig. 5
and Fig. 6, we report the time-averaged data utility and the
time-averaged error when the number of mobile users increas-
es from 2000 to 3000, respectively. In Fig. 5, the data utility
increases with the number of mobile users. When the num-
ber of mobile users is small, more users can provide more
data service. When available services are enough, the data
utility can still increase because there are more mobile users
with lower costs. In Fig. 6, we calculate the error as RMSE
which is introduced in Section II. Errors decrease with more
mobile users because there are more measurements and we
can make confident estimations. Because the data utility in-
cludes both of the importance of observed grids and the error
of estimation, we can see that the trend of the error is not
very smooth. Shortsighted UPR has a larger data utility and
a smaller error than our algorithm because it relaxes the av-
erage budget constraint. Shortsighted AVG has a lower data
utility and a larger error than our algorithm because it tries
to satisfy the time-averaged budget constraint by limiting
the total cost in each slot to Bavg.

In Fig. 7 and Fig. 8, we investigate the time-averaged data
utility and the time-averaged error when the average budget
increases from 350 to 550. The data utility increases and the
error decreases because the constraint of the average budget
is relaxed. More mobile users can be recruited and more
measurements are collected. We can see that the average
budget has no effect on Shortsighted UPR because it does
not consider this constraint.

In Fig. 9 and Fig. 10, we study the time-averaged data
utility and the time-averaged cost when the upper bound
β of the budget in a slot increases from $625 to $775. The
value of β only has an effect on Shortsighted UPR (UPR) and
our algorithm. The data utility increases because the larger
upper bound leads to more recruited mobile users. The cost
increases due to the relaxed budget constraint. The data
utilities and the costs under our algorithm increase slower
when β is large because the time-averaged budget cannot
exceed Bavg.

Combining these two figures, we analyze our algorithm
and the three baselines. The average data utility of Short-
sighted UPR is higher than our algorithm. However, its cost
is also higher. The average cost of Shortsighted UPR even
exceeds Bavg.

In Fig. 11, we investigate how the parameter V controls
the tradeoff between the data utility and the cost. With the
increasing V, the time-averaged data utility is more empha-
sized. Thus the time-averaged utility increases and the cost
becomes larger.

6 RELATED WORK

6.1 Environmental Monitoring

Environmental monitoring has been attracting much atten-
tion due to its importance in guidance on people’s daily life
and urban construction [18][11][29][28][23][14][15]. For exam-
ple, Zheng et al. [29] aim to recover the noise map of New
York city according to complaints about noises. These com-
plaints are collected by a platform which allows people to
complain about city’s issues by using a mobile app or mak-
ing a phone call. According to the complaint data together
with social media, road network data, and Points of Interests
(POIs), they make use of a context-aware tensor decomposi-
tion approach to recover the noise situation throughout New
York city. However, they do not consider how to collect im-
portant data and only focus on recovering the monitoring
map after all data have been collected.

He et al. [11] propose an incentive mechanism for signal
map construction. By Bayesian compressive crowdsensing,
they iteratively determine the selected spatial grids and pre-
dict the remaining unexplored grids. A probabilistic user
participation and measurement model is applied for incen-
tive design. However, they select the next grid to explore af-
ter the observed value of the current selected grid has been
collected. What’s more, they do not consider the long-term
performance of the system.

Liu et al. [18] use Gaussian process to model sensing data
and propose a random adaptive greedy user selection algo-
rithm to select a set of optimal mobile users. They consider
a simplified setting where the cost of each mobile user is the
same. Then the knapsack constraint is changed to the cardi-
nality constraint which makes the problem be simple. There
are existing greedy algorithms for this problem [9]. What’s
more, they do not consider the long-term performance.

There are some other related works. Some of them [28][23]
use wireless sensor networks to collect data. They usually
study where to place sensors before network deployment. Af-
ter the network is deployed, the locations of sensors cannot
be changed. Some of them [14][15] only collect data and do
not estimate missing data. Therefore, they cannot be applied
to our problem.

6.2 Data Collection by Crowdsourcing

There are many works about data collection by crowdsens-
ing [24][17][21][25][10][22]. For example, Han et al. [10] study
the total revenue maximization problem under the budget
constraint in a multi-round scenario. The decision is which
worker should perform which task. In a round, the decision is
made by an offline way. Each round has the same candidate
set of workers. They assume that the average revenue that a
worker brings by collecting one data instance is not known
and needs to be learned in the process. They propose a learn-
ing algorithm to get more information about the revenue of
each worker and try to minimize the regret (the difference
between the total revenue achieved by their algorithm and
the optimal solution).

In another example, Wang et al. [22] want to select a set
of mobile users who have considerable expertise and whose
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total cost is smaller than the budget. They consider the long-
term performance of the system. However, the transformed
one-slot problem is not NP-hard. They can use existing opti-
mization techniques to solve it. Because the one-slot problem
is easier, the transformation from the long-term problem to
a series of one-slot problems is also easier.

7 CONCLUSION

This paper focuses on selecting optimal mobile users for long-
term environmental monitoring by crowdsourcing. Gaussian
Process is applied to infer the environmental values of unob-
served grids and construct the data utility model. The mobile
user selection problem is formulated as the time-averaged
data-utility maximization under the time-averaged budget
constraint. This problem is particularly challenging because
we have to make decisions without the future information
and maximize a non-monotone submodular objective under
the budget constraint in each slot. To address these chal-
lenges, we first make use of Lyapunov optimization to de-
compose the long-term optimization problem into a series
of real-time optimization problems which do not require a
priori knowledge about the future information. We then pro-
pose a time-efficient online algorithm to solve the NP-hard
utility-minus-drift problem in each slot.
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A PROOF OF THEOREM 3.1

Because of the fact that (max[α, 0])2 ≤ α2 for any α, for the
Lyapunov drift, we have

Δ(Q(t)) =
1

2
[Q2(t+ 1)−Q2(t)]

≤ 1

2
{[Q(t) + Ct −Bavg]

2 −Q2(t)}

≤ 1

2
[C2(t) +B2

avg] +Q(t)[Ct −Bavg].

(16)

Combining the data utility in slot t and taking an expec-
tation, we can get the lower bound of the utility-minus-drift
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function as follows.

V G(St)−Δ(Q(t)) ≥
V G(St)−Q(t)�{Ct −Bavg|Q(t)} −D,

where D = 1
2
(β2 + B2

avg) is a constant value. Hence, the
theorem is proved.

B PROOF OF THEOREM 3.3

Assume that mobile user sets S1
t and S2

t belong to U t, S1
t ⊆

S2
t and ut

i ∈ U t\S2
t . We prove that G(S1

t ∪ {ut
i})−G(S1

t ) ≥
G(S2

t ∪{ut
i})−G(S2

t ). The value of G(S1
t ∪{ut

i})−G(S1
t ) is

V el̂ti
−Q(t)cti + VWH(XR1

t\l̂ti )− VWH(XR1
t\l̂ti |XA1

t∪l̂ti
)

− [VWH(XR1
t
)− VWH(XR1

t
|XA1

t
)].

(17)
The value of G(S2

t ∪ {ut
i})−G(S2

t ) is

V el̂ti
−Q(t)cti + VWH(XR2

t\l̂ti )− VWH(XR2
t\l̂ti |XA2

t∪l̂ti
)

− [VWH(XR2
t
)− VWH(XR2

t
|XA2

t
)].

(18)
Then, we have

G(S1
t ∪ {ut

i})−G(S1
t )− [G(S2

t ∪ {ut
i})−G(S2

t )]

=VW [H(XR1
t\l̂ti )−H(XR2

t\l̂ti )]

− VW [H(XR1
t\l̂ti |XA1

t∪l̂ti
)−H(XR2

t\l̂ti |XA2
t∪l̂ti

)]

− VW [H(XR1
t
)−H(XR2

t
)]

+ VW [H(XR1
t
|XA1

t
)−H(XR2

t
|XA2

t
)].

The chain-rule of entropies shows that for any random
variablesX, Y , Z,H(X,Y ) = H(X|Y )+H(Y ) andH(X,Y |Z) =
H(X|Y, Z) +H(Y |Z). According to the relationship among
S1
t , S

2
t , u

t
i, and U t, we can get the relationship among L,

R1
t , R

2
t , A

1
t , A

2
t and l̂ti which is shown in Fig. 12. Then, we

have H(XR1
t\l̂ti ) = H(XR1

t\R2
t
|XR2

t\l̂ti ) +H(XR2
t\l̂ti ) because

R1
t\l̂ti = {R1

t\R2
t}∪{R2

t\l̂ti} and XR1
t\l̂ti = (XR1

t\R2
t
, XR2

t\l̂ti ).
Combining the chain-rule of entropies and Fig. 12, we can get
results of the other three subtraction formulas in the above
equation and conclude:

G(S1
t ∪ {ut

i})−G(S1
t )− [G(S2

t ∪ {ut
i})−G(S2

t )]

=VWH(XR1
t\R2

t
|XR2

t\l̂ti )− VWH(XA2
t\A1

t
|XA1

t∪l̂ti
)

− VWH(XR1
t\R2

t
|XR2

t
) + VWH(XA2

t\A1
t
|XA1

t
)] ≥ 0.

(19)

Figure 12: Environmental monitoring by crowdsourc-
ing.

C PROOF OF THEOREM 4.1

There exists an optimal mobile user selection policy achiev-
ing the optimal time-averaged data utility F opt [19]. Under
this policy, the data utility in each slot is F opt

t and the total
cost in each slot is Copt

t . The average total cost satisfies

�{Copt
t } ≤ Bavg − γ. (20)

In each slot t, with the optimal solution of the one-slot
problem, the data utility is F ∗

t and the total cost is C∗
t . Then,

V�{F (St)|Q(t)} −Δ(Q(t))

≥ V�{F (St)|Q(t)} −Q(t)�{Ct −Bavg|Q(t)} −D

≥ eV�{F ∗
t |Q(t)} − eQ(t)�{C∗

t −Bavg|Q(t)} −D

≥ eV�{F opt
t |Q(t)} − eQ(t)�{Copt

t −Bavg|Q(t)} −D.

(21)
The first two inequalities are due to Theorem 3.1 and

the approximation ratio of Alg. 2. The third inequality is
derived from the fact that the optimal solution of the one-
slot problem achieves the largest lower bound. Then,

V�{F (St)|Q(t)} −Δ(Q(t))

≥ eV Gopt + eγQ(t)−D.
(22)

Taking an expectation with respect to the distribution of
Q(t), and then we can obtain the following inequality by the
iterative expectation law.

V�{F (St)} −�{L(Q(t+ 1))}+�{L(Q(t))}
≥ eV Gopt + eγ�{Q(t)} −D.

(23)

Adding up the above inequality over all slots and dividing
each side by the total time T , we can get

V 1
T

∑T−1
t=0 �{F (St)} − �{L(Q(T ))}−�{L(Q(0))}

T

≥ eV Gopt + eγ
T

∑T−1
t=0 �{Q(t)} −D.

(24)

By deleting the non-negative terms L(Q(T )) and Q(t),

V 1
T

∑T−1
t=0 �{F (St)}+ �{L(Q(0))}

T
≥ eV Gopt −D.

When T → ∞, the theorem is proved.

lim
T→∞

1
T
·∑T−1

t=0 �{F (St)} ≥ eGopt −D/V. (25)

D PROOF OF THEOREM 4.2

We have 1
T

∑T−1
t=0 �{F (St)} = F ≤ F opt. What’s more,

L(Q(T )) and each Q(t) are non-negative. According to in-
equality (24), we get

V Gopt + �{L(Q(0))}
T

≥ eV Gopt + eγ
T

∑T−1
t=0 �{Q(t)} −D.

By rearranging the inequality, we have

1
T

∑T−1
t=0 �{Q(t)} ≤ (1−e)V Gopt+D

eγ
+ �{L(Q(0))}

eγT
.

When T → ∞, the theorem is proved.

lim
T→∞

1
T

∑T−1
t=0 �{Q(t)} ≤ [(1− e)V Gopt +D]/(eγ).


