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Abstract—The emerging Non-Volatile Memory (NVM) tech-
nology has given rise to an opportunity to accelerate big data
analysis. In this paper, we investigate the joint job and data
scheduling problem in private cloud data center with a hybrid
storage system, and we propose Labeling Scheduler, a flexible
labeling-based approach for jointly scheduling. The core idea of
the approach is to introduce the labeling system to characterize
the features of big data analysis jobs and data objects, and
conduct data replacement dynamically between NVM and disk.
To the best of our knowledge, this is the first work to introduce
the labeling methodology to the big data analysis problem in
the cloud data center with a hybrid storage system. We conduct
extensive simulations and the simulation results show that the
Labeling Scheduler has a significant improvement on system
utility compared to the method without labeling information.
In addition, the Labeling Scheduler guarantees a high NVM hit
rate, which is valuable for NVM endurance enhancement.

Index Terms—cloud data center, hybrid storage system, NVM,
joint scheduling, labeling method

I. INTRODUCTION

There is a strong need to conduct big data analysis to
gain valuable information for organizations. For these data-
intensive analysis jobs, timely output is critical for deci-
sion making and interactive services. This makes makes job
scheduling the primary issue for big data analysis in cloud data
centers, and has been studied in various aspects, including data
locality [1], makespan [2], energy [3], fairness [4], resource
sharing [5], and data placement [6].

Traditionally, the data analysis procedure reads data from
disk to memory. It is time consuming because the read
performance of disk is rather poor, compared to the memory. In
addition, the current DRAM is approaching scalability limits
[7], which makes it hard to extend the capacity to realize
in-memory computing [8]. The emergence of Non-Volatile
Memory (NVM) [9] makes it possible to realize storage-
class memory and in-memory computing. However, it is still
impractical to use the NVM independently due to its limited
write performance and endurance [9]. The hybrid storage
system consisting of NVM, DRAM, and disk is the practical
architecture for physical machines (PMs) [10] [11] [12]. NVM
is inappropriate for general usage as a memory device because
of its drawbacks. However, for big data analysis jobs, most
operations on datasets are readings and few writings are
required, which is perfect for using NVM. This motivates us
to utilize NVM to improve big data analysis.

Fig. 1. System Scenario

In this paper, we investigate the joint job and data schedul-
ing problem in private cloud data center with a hybrid storage
system, which includes DRAM, NVM, and disk. Generally,
for the job scheduling issue, the controller (cloud scheduler)
assigns the jobs to PMs, and local scheduler will determine
the final assignment for jobs, as shown in Fig. 1. The represen-
tative cloud scheduling methods include delay scheduling [1],
deadline-aware scheduling [13], and locality-aware scheduling
[14]. Here, we focus on the local scheduler and take the hybrid
storage devices into account. This means that data scheduling
is very important since the location of data object affects the
job execution time significantly. It is preferable to place data
in NVM. As a result, there must be some data replacement
between NVM and disk to achieve better performance.

To represent the efficiency of big data analysis, we introduce
utility to measure the timeliness for job completion, and we
take utility maximization as the major objective for the jointly
scheduling problem. According to the response time require-
ment, we classify the jobs into two categories, interactive job
and batch job. For the interactive jobs, we need to return the
analysis results in a real-time manner. On the other hand, the
batch jobs can be processed within longer duration. Hence,
we define various utility functions based on the job features.
Intuitively, shorter job execution time guarantees faster job
response, which brings more utility. Hence, the core issue
is to speed up job execution. As mentioned above, the job
completion time can be shortened if its input data is stored
in the NVM. However, it is challenging to guarantee that the



wanted data objects are always stored in NVM due to limited
storage slots. There must be efficient data replacement between
NVM and disk to achieve a greater NVM hit rate, where NVM
hit means the input data of the executing job is stored in NVM.

We introduce the labeling method [15] to characterize the
data features. Here, the features imply the comprehensive pri-
ority to occupy NVM resource. Based on the labeling system,
we propose labeling scheduler, a flexible labeling-
based approach for joint job and data scheduling. We conduct
extensive simulations, and the results show that the labeling
system has a significant improvement on utility. To the best of
our knowledge, this is the first paper to introduce the labeling
system for joint job and data scheduling in private cloud data
center with a hybrid storage system. The main contributions
of our work can be summarized as follows:
• We formulate the joint job and data scheduling problem

in private cloud data center with a hybrid storage system.
We introduce the emerging NVM to speed up the big data
analysis job execution, and establish the data replacement
model between disk and NVM.

• We take the data features into account for data re-
placement and build a labeling method to describe the
data features. Based on the labeling system, we propose
labeling scheduler, a flexible labeling-based ap-
proach for joint job and data scheduling.

• We conduct extensive simulations based on one Alibaba
cluster trace. The results show that our approach has
a significant performance improvement compared to the
typical scheduling algorithm without considering the data
features.

II. SCENARIO AND PROBLEM STATEMENT

A. Scenario and Preliminaries

We consider the jointly scheduling problem with the sce-
nario as shown in Fig. 1. Given a private cloud data center
with a hybrid storage system for big data analysis, we assume
that the big data analysis jobs will not rewrite the data object.
Hence, we let the DRAM be used to record the data-analysis
results and non-data-analysis data object as usual. The input
data objects for big data analysis jobs are stored in NVM or
disk. Compared to the limited space for NVM, the disk is
sufficient for storing data. The cloud scheduler assigns the
coming jobs to the physical machines (PMs) according to
the global job scheduling algorithm [1] [16]. It forms a job
queue in the PM. Then, the local scheduler is in charge of
jointly scheduling the jobs and data objects on the PM with
the hybrid storage system. Because of the privateness of the
cloud data center, it is feasible to obtain the business details by
summarizing the history information. Hence, we can assume
that the cloud scheduler knows the job profiles from the job
submitter, and the cloud scheduler will forward the job details
to the local scheduler when assigning jobs.

For each job, it may contain multiple tasks to accomplish
special works. To clearly describe the job, we use a tuple to
characterize it as J = 〈Γa, I, θ, χ, ω,S〉, where

(a) Interactive Job (b) Batch Job

Fig. 2. Utility Functions

• Γa is the job arrival time to the cloud system;
• θ is the required duration to return the analysis result;
• χ is the real duration between job arrival and completion;
• ω is the full utility for finishing the job in time;
• S is the set of tasks contained in the job. For the items

in S, we call them the job’s children tasks and the job
is known as their parent job. The job is completed only
when all children tasks are finished;

• I is used to identify the job is an interactive job or batch
job. For the job Jk, we have

I(Jk) =

{
1, Jk is an interactive job;
0, otherwise.

For each task, there is one data object as its input data,
i.e. the analysis object. Though there is one input data object
for each task, there may be many tasks that need the same
data object. This means there are diverse analysis or business
requirements on the same data set. We can also use a tuple to
represent the task as A = 〈Γe, D〉, where Γe is the expected
task execution time when the wanted data object is stored
in NVM, and D is the input data for the task. We also use
the function d(A) to represent the input data for task A, i.e.
d(A) = D. Furthermore, to express the relationship between
job and task, we define a new function as job(Ai) = Jk, which
means that task Ai belongs to job Jk, i.e. Ai ∈ S(Jk).

From the perspective of task execution, the physical com-
puting resource is split into m computing slots, or virtual
machines (VMs), and the NVM is also split into n storage
slots. It is a widely used resource usage model [16] [17]. For
each task execution, it will occupy one VM and read data from
one slot in NVM or disk.

B. Utility Functions

We aim to maximize the total utility for the system, so it
would be ideal to finish all the jobs before their deadlines.
However, the resource is limited, and we need to select some
jobs with high priority to occupy the computing resource slots.
Therefore, there may be some jobs that cannot be completed
before the deadline, leading a negative utility, i.e. penalty.

For the interactive jobs, the utility will drop to negative if
the completion time goes beyond the deadline. We define the
utility for interactive jobs as:

µ(Ji) =

{
ω0, χ < θ;
−α(χ− θ), otherwise.

This function is shown in Fig. 2(a).
For the batch jobs, most of them are periodic jobs. There

will be positive utility if they are completed within the decision



cycle. Let the attribute θ represent the decision cycle, then we
can define the utility for the batch job as:

µ(Ji) = ω1 − (ω1 − ω2)bχ
θ
c.

This function is also shown in Fig. 2(b). The utility function
means that the analysis result is useful for decision making
within each cycle.

If the workload is high, it is expected that the PM cannot
finish all the arrival jobs in time. Hence, we should allow the
PM to reject some jobs. In this case, the utility for the rejected
job is 0.

C. Job Execution Time

There are two cases for each task execution: NVM-case and
disk-case. NVM-case implies that the input data of the task
is stored in NVM, and the disk-case means the task needs to
migrate the data from disk to NVM first, after which the task
can be executed. Hence, we know that the task execution time
for the disk-case consists of two parts, the time to read data
from disk to NVM, and the task execution time under the
NVM-case. We use ΓN (Ai) to represent the task execution
time under the NVM-case, which could be given by the cloud
scheduler based on the history information. Hence, according
to the location of the input data of the task, we can define the
task execution time easily. We have

Γe(Ai) =

{
ΓN (Ai), loc(d(Ai)) = 0;
ΓN (Ai) + Γr, otherwise.

= ΓN (Ai) + loc(d(Ai)) · Γr.

Here, Γr is the data migration time, and the data location
loc(Di) is defined as:

loc(Di) =

{
0, Di is stored in the NVM;
1, otherwise.

For the job execution time, the value varies as the execution
mode of the tasks. Here, we define the job execution time as
the value when all the tasks are executed in serial. Hence, we
have

Γe(Jk) =
∑
Ai∈Jk

Γe(Ai). (1)

To gain a positive utility while job scheduling, we should
be aware that there must be some critical time point to assign
a computing slot to the job Jk. The point is known as Last
Scheduling Time (LST), which means that the utility will be
positive if the job can be executed before LST. According to
the job (Jk) profile, we can infer the LST as

LST (Jk) = Γa(Jk) + θ(Jk)− Γe(Jk). (2)

Here, the LST (Jk) is an absolute time as arrival time Γa(Jk),
not the relative time as deadline θ(Jk). In addition, we should
be aware that the LST may change if some input data of the
job is migrated from disk to NVM. Hence, we will update the
job LSTs online.

D. Problem Statement and Analysis

Jointly Scheduling Problem. For the given private cloud
data center with multiple PMs, let there are m computing
resource slots for task execution, and each task occupy one
slot once. We also split the NVM into n storage slots, and each
data object will occupy one slot, which is similar to the data
block in HDFS. The jobs arrive at the cloud system online, and
there is positive utility ω for timely job completion. The cloud
scheduler will forward the jobs to the PM and form a job queue
Q. For each PM, the local scheduler must schedule the jobs
and data objects according to the job profiles ∪Ji (1 ≤ i ≤ κ),
such that the system utility is maximized. The objective can
be represented as:

max.
κ∑
i=1

µ(Ji).

Theorem 1: The jointly scheduling problem is NP-hard.
Proof: We prove the theorem by showing a special case

is NP-hard. We assume that there are many offline jobs, each
of them contains one task and the NVM capacity is sufficient
to store all the input data. Hence, the job ∪Ji (1 ≤ i ≤ κ)
can be represented by a two-tuple 〈ωi,Γi〉, where ωi is the
utility to complete the job, and Γi is the job execution time.
The problem is to select part of the jobs such that the total
utility is maximized. The selection constraint is that the total
job execution time is no more than Θ. Then, we show that
this special case can be reduced from the Knapsack problem.

For the Knapsack problem, given a set of items ∪Bi (1 ≤
i ≤ κ), each with a weight wi and a value vi, the problem
is to select some of the items so that the total weight is
less than or equal to Φ and the total value is maximized.
We can construct the jointly scheduling problem by setting
ωi = wi (1 ≤ i ≤ κ), Γi = vi, and Θ = Φ. If there
exists a solution for the Knapsack problem, we can select the
associated jobs from the packed items. On the other hand, if
there is a selection solution for jobs to maximize the utility,
we can pick the associated items in Knapsack problem such
that the total value is maximized. Hence, the jointly scheduling
problem is NP-hard.

We analyze the problem and find that the features of data
are critical for data placement. This motivates us to explore
the labeling method and extract the data semantics, which will
help us to conduct data selection during data replacement.

III. LABELING SYSTEM

In this section, we will first build a labeling system for the
data objects, and propose the labeling scheduler, a labeling-
based scheduling approach.

A. Label: hotness

For the jointly scheduling problem, the key issue is to place
proper data in NVM. Intuitively, the data object that will be
frequently read should be placed in NVM. Hence, we define
a label hotness to represent the popularity degree. The basic
idea of hotness is to record the number of tasks that take the
data object as input data within a time duration; this implies



the frequency of reading the data, and also the importance to
guarantee timely job completion.

The value of hotness increases if some arrived jobs take the
data as input, which could be expressed as

hotness(Di) + = H ·K,

where H is a constant, and K is the number of jobs that take
Di as the input.

Furthermore, the increment for interactive job and batch job
should be different, because the deadline of interactive job
must be much shorter than batch job. Hence, we divide the
constant H into two parts, H1 and H2. H1 is the common
increment for both interactive job and batch job, and H2 is
the extra increment for interactive job. As a result, when a set
of jobs arrive at the system at some time-slot, and let U(Di)
be the subset whose element (job) takes Di as input data,we
have

hotness(Di) + =
∑

Jk∈U(Di)

H1 +H2 · I(Jk)

We should also be aware that it is unreasonable to accumu-
late the value infinitely, because the value should reflect the
case within some time duration. To express this requirement,
let the value decrease at each time-slot. Thus, at the beginning
of each time-slot, the value of hotness decreases by 1.

For data objects with the similar hotness, it can be different
for different cases. For example, one data is showing impor-
tance in the coming future, which means it will be read with
higher frequency in the following time-slots. Another data may
be read frequently in the past, and it needs some time let the
data be cold. Hence, we need anther label to distinguish the
cases, or the hotness trend. Hereby, we introduce another label
to indicate the hotness trend for the data.

First, we will record the hotness value periodically with
period equal to T , or, say, sample the hotness value. Then
we can get the difference between the current sampling value
and the last sampling value, and we use ∆H to represent the
difference. ∆H can be a positive or negative value. It is easy
to understand that the positive ∆H implies the data will be
important in the coming future.

So far, we will use the two labels, hotness and ∆H(Di),
to represent priority of whether some data should be s-
tored in NVM. Actually, we will combine the two label as
hotness(Di) + ∆H in the following analysis.

B. Label: class

The label hotness shows the important feature of data object
itself. However, the data is bound to the jobs. The label hotness
cannot reflect the host job state. For the data object with
similar hotness and ∆H , the one whose host job is waiting in
the job queue should be placed in NVM with higher priority,
obviously. Hence, it is necessary to define a new label to deal
with this case. Here, we will introduce the new class label
by classifying the data into 5 classes according to the host
jobs. We will discuss this for interactive job and batch job,
respectively.

For the interactive jobs in the job queue, they have similar
features expect LST . This is because there is only one task for
each interactive job. The job selection is equal to task selection
for the interactive jobs. However, it is different for batch jobs,
since there may be multiple tasks for each batch job. We need
to choose both job and task for batch jobs. Hence, there is
a problem about the task selection for batch jobs. Should we
always select the tasks from one single job or take no account
of the parent job of the tasks?

Statement I: We should always select the tasks for the same
parent job until the job completion.

Analysis: Say we have two batch jobs J1 and J2 in the job
queue, both of which have multiple children tasks. We assume
that the two job have the same utility function. We have one
computing slot to conduct the task execution, so we need to
decide the execution sequence of the tasks of both jobs. It
may be alternant, one from J1 and next from J2, like A1(J1),
A1(J2), A2(J1), A2(J2), .... Or, the tasks of J1 are executed
first, and the tasks from J2 will be executed after J1 is finished.
According to the previous knowledge, the expected execution
time for the two jobs is Γe(J1)+Γe(J2). This means whatever
the execution task sequence of J1 and J2. One of the two jobs,
say J2, accomplishes the work after Γe = Γe(J1) + Γe(J2)
time-slots, which is a fixed value. Hence, the utility of J2 is
fixed. We should maximize the utility for J1. The best method
to maximize µ(J1) is to minimize the job execution time of
J1. Obviously, we should schedule the tasks of J1 first. This
means we should pick one specific job if there are many batch
jobs in the queue to achieve maximized utility.

Based on the above analysis, we will pick only one batch job
with higher priority to occupy the computing slot, even if there
are multiple batch jobs. Hence, we can classify the batch jobs
into two categories. Here, we define the picked job as actress
batch job, while other batch jobs in the queue are audience
batch jobs. The audience batch jobs watch until the actress
batch job accomplishes the work, and the new actress batch
job will be selected. We will show the selection algorithm in
the next section.

So far, we have classified the job into multiple classes.
Based on the status of the jobs, we give the definition of label
class as follows.

class(Di) =



0, ∃Ak, d(Ak) = Di, Ak is running;
1, ∃Jk ∈ Q, I(Jk) = 1 ∧Di ∈ d(Jk);
2, ∃Jk ∈ Q, Di ∈ d(Jk), and

Jk is the actress batch job;
3, Di is read by interactive job before;
4, ∃Jk ∈ Q, Di ∈ d(Jk), and

Jk is an audience batch job;
5, otherwise.

According to the class definition, we know that the data
read by the running tasks is labelled by class-0. For the data
that can be treated as the input data by the interactive jobs in
the queue Q, it will be labelled as class-1. For the batch jobs,



Fig. 3. Class State Transformation.

the data wanted by the actress batch job is marked as class-
2, while the data will be marked as class-4 for the audience
batch jobs. We should be aware that, once some new actress
batch job is selected, the related data will be labelled as class-
2 newly. For the data that are not read by the jobs in the
queue, class-3 implies that the data is the input data for some
interactive job before, while class-5 is used to represent other
cases. Actually, the data with label class-5 comes from the
class-0 data whose host job is a batch jobs. For the data with
label class-3, it will be updated to class-1 if some new coming
interactive job takes it as input. It means that the class label
of the data wanted by interactive jobs will transform between
class-1 and class-3.

For example, say we have data D1 with the default label
class-5. If some batch job J2 arrives at the PM, and one of
the children tasks A3 takes D1 as the input data, this event
will trigger the class label to be changed to class-4 since
J2 is regarded as one audience batch job first. When J2 is
picked as the new actress batch job, the class label of D1

changes to class-2. It will further becomes class-0 when the
host task is scheduled to occupy the computing slot. After the
task execution, the label returns to class-5. We show the class
state transformation in Fig. 3.

IV. LABELING SCHEDULER

A. Basis Ideas

The local scheduler is responsible for the local PM re-
sources, including computing resource slots, storage slots in
NVM and disk, bus between disk and NVM, and data. The
major task is to allocate the resources to the jobs, such that
the utility by finishing the jobs is maximized. To gain more
utility, it seems that the PM should execute as many jobs as
possible. However, because the given resource must be limited,
there is a maximal workload, and going beyond will result in
a negative utility. Hence, the local scheduler may reject some
jobs from the cloud scheduler. This procedure is known as job
admission, which determines whether the PM should accept
or reject the coming job. For the accepted jobs, they are added
into the job queue Q first.

For the computing resource, once some computing slot is
available, the local scheduler will pick one task of some job to
occupy the resource. It means job scheduling is in charge of
the allocation of computing resource. On the other hand, the
storage slots in NVM are always full regularly. But we can
conduct data placement between disk and NVM by the bus,
which means to migrate some data from disk to NVM. Hence,
data placement controls the bus and data for the system.

Algorithm 1 admission(Ji)

Input: Ji: the arrived job, Q: the set of jobs of the queue.
1: for each Ak ∈ S(Ji) do
2: hotness(d(Ak))+ = H1 +H2 · I(Ji);
3: load← 0;
4: LST (Ji)← Γa(Ji) + θ(Ji)− exe(Ji);
5: for each Jk ∈ Q do
6: if deadline(Jk) < LST (Ji) then
7: load+ = expLoad(Jk);
8: if d loadm e ≤ LST (Ji) then
9: accept Jk;

10: update data label class;

Based on the above analysis, we propose the labeling sched-
uler, which consists of 3 parts: job admission, job scheduling,
and data replacement. The basic ideas for the 3 components
are summarized as:
• Job Admission. For the new candidate job, compare the

workload and usable computing resource before the LST
of the job.

• Job Scheduling. Once some computing slot is available,
take LST of the jobs in queue Q as the major concern
for job/task selection.

• Data Replacement. Take both the hotness and class into
account comprehensively for data selection when the data
bus is free.

B. Load-aware Job Admission

For each job arrival, say Ji, it triggers the job admission
procedure, as shown in Alg. 1. From the definition of hotness,
the value will be increased no matter which decision is made
for the arrived job Ji. Hence, we first update the hotness value
for the wanted data objects by Ji. Next, we can obtain the
LST (Ji) from the job profile (line 4), and we will measure
the necessary workload before LST (Ji) (line 5-7). The nec-
essary workload means the jobs must be completed before
LST (Ji), because their deadline is less than LST (Ji). Then,
we compare the necessary workload and usable computing
resource (line 8). The PM will accept the job if the expected
computing resources are sufficient for the coming job Ji (line
9). In addition, once Ji is accepted into the queue Q, the
class label of input data (d(Ji)) will change (line 10). For
example, the class label of the input data will move from
class-3 to class-1 if Ji is an interactive job. The details and
class transformation rule are given in Section III-B.

In this algorithm, one of the key points is to measure the
workload for each job. The workload of job Jk (jobLoad(Jk)
in Alg. 1) is similar to the job execution Γe(Jk), defined in
Eq. 1. The jobLoad(Jk)) is also defined by its tasks.

jobLoad(Jk) =
∑

Ai∈Jk
(ΓN (Ai) + loc(d(Ai)) · p · Γr),

where p is a probability value.
From the definition, we know that if the input data of all

Ai ∈ Jk are stored in the NVM, the value of jobLoad(Jk) and



Algorithm 2 LST: jobScheduling(VMi)

Input: Q: the set of jobs of the queue.
1: LST ←∞, γ ←∞;
2: J ← NULL, A← NULL;
3: for each Jk ∈ Q do
4: if LST < LST (Jk) then
5: LST ← LST (Jk);
6: J ← Jk;
7: for each Ai ∈ J do
8: if γ > Γe(Ai) then
9: γ ← Γe(Ai);

10: A← Ai;
11: assign VMi to task A;
12: class(d(A))← 0;

Γe(Jk) are exactly the same. Generally, jobLoad(Jk) is less
than Γe(Jk) due to the probability value p. This is because
we think some of the wanted data by Jk will be migrated to
NVM from disk during the scheduling. In detail, the data will
be migrated to NVM with probability equal to p. This provides
an opportunity for the PM to accept more jobs.

C. LST-based Job Scheduling

Once there is any free computing slot, say VMi, job
scheduling needs to pick one task from the jobs in the queue
Q, as shown in Alg. 2. The basic idea is to select the job
with the least LST (line 3-6). Then, we pick the task with
minimal execution time of the job (line 7-10). Next, assign
the available computing slot VMi to the selected task A (line
11). Lastly, update the data label class, and set the new value
of the class(d(A)) to 0 (line 12).

For the task execution, if the input data of task A is not
stored in the NVM, it is necessary to migrate data d(A) from
disk to NVM. Actually, this is guaranteed by the proposed
class label and the operation class(d(A)) ← 0, and the
migration will occur at the next free time for the data bus.
We will show the details in the next subsection. Furthermore,
most of the selected tasks have their input data stored in NVM.
If some task needs to read from disk first, the execution must
be longer, and this task can be excluded with high probability
during the task selection within the selected job (line 7-10).

D. Labeling-based Data Replacement

The data bus is used to migrate data from disk to NVM, and
each migration occupies multiple time-slots to accomplish the
data transmission. When the bus is free to migrate new data,
the data replacement need to answer the following questions.
• Q1: Is it necessary to migrate a new data to NVM?
• Q2: Which data should be migrated to NVM?
• Q3: Which data in NVM have to be replaced?
To answer the above questions and solve the problems,

we propose a labeling-based data replacement algorithm, as
shown in Alg. 3. The basic idea is to take NVM and disk
as the first division and second division of the league, and
there is one chance for the teams (data) to promote from

Algorithm 3 Label: dataReplacment()
Input: Mi and Kj: the data subsets,

δ: threshold (constant number)
1: M ← merge(M0,M1,M2,M3,M4,M5);
2: K ← merge(K0,K1,K2,K3,K4,K5);
3: if M 6= ∅ then
4: DC ← lastData(M);
5: if K 6= ∅ then
6: DH ← firstData(K);
7: if class(DH) = 2&&|M2| ≤ δ then
8: if K3 6= ∅ then
9: DH ← firstData(K3);

10: if class(DH) < class(DC) then
11: migrate(DH , DC);
12: else if class(DH) = 3 && class(DC) = 3 then
13: if hotness(DH) + ∆H(DH) > hotness(DC) +

∆H(DC) then
14: migrate(DH , DC);

second division (disk) to first division (NVM). The promotion
rule is to compete between the best one from second division
(disk), say DH , and the worst one from first division (NVM),
represented by DC . The answer of Q1 is yes if DH wins,
else no. Obviously, DH is the answer for Q2, and DC is the
answer for Q3.

Hence, the key issue is to choose DH and DC . According
to the data location and data class, we can divide the data set
into 12 subsets: M0, M1, M2, M3, M4, M5, K0, K1, K2,
K3, K4, K5. For the subset Mi or Kj, we have

∀Dr ∈Mi, loc(Dr) = 0 && class(Dr) = i,

∀Dt ∈ Kj, loc(Dt) = 1 && class(Dt) = j.

The symbol “M” means the data item is stored in NVM, while
“K” refers to the data item stored in the disk. “i” or “j” is the
value of class label.

For the data items in each subset, we further sort the items in
decreasing order by hotness(Dr) + ∆(Dr). Here, we assume
Mi and Kj are all sorted subsets. Furthermore, we merge
the subsets Mi together, and sort the items by class value
(primary key) and hotness value (secondary key) (line 1). It
means that any item from subset M1 is prior to the items from
M2, M3, M4, and M5. Similarly, we merge the subsets Kj
together, and sort the items by the same method (line 2).

Next, we select the last item by lastData(M) as the coldest
data DC in NVM (line 3–4). We can also select the first
item from disk by firstData(K) (line 6), but we take more
consideration. Recall the definition of class− 2, it is the data
wanted by the actress batch job, which has a longer deadline
than the interactive jobs. Hence, the tasks in the actress batch
job have less chance to be scheduled, and it is not a good
idea to occupy too many storage slots. The storage slot may
be useful for the data with label class − 3, the coming job
may take it as input data. This is the reason why we make the
decision in line 7 and line 8.



For the chosen DH and DC , the one with the smaller
class value win the competition. This is shown in line 10.
If DH win the competition, the bus will be occupied by
migrating data DH from disk to NVM (line 11). The function
migration(DH , DC) will change the location of the two data
objects. The new locations should be: loc(DH) = 0, and
loc(DC) = 1. If DH and DC have the same class value
(except class = 3), no migration is needed, which means
it is unnecessary to replace the data with the same class.
However, if the data objects are input data for interactive jobs,
we prefer to place the data with a larger hotness value to
NVM. This is the core idea for hotness comparison (line 12-
13). No migration occurs if DH loses the competition.

V. EVALUATION

A. Simulation Settings

There are two main algorithms for our approach: LST
jobScheduling(VMi) and Label dataReplacement(). In ad-
dition, we also implement two other algorithms FCFS and
FIFO. FCFS (first come first service) works for the job
admission and job scheduling, as it will select the earliest job
in the queue when computing resource is available. The basic
idea for FIFO is to actively migrate the input data of jobs
in queue, and replace the data that enters the NVM earliest
and is not the input data for jobs in queue. This is a feasible
replacement solution without any data features. Hence, we
will implement three approaches: LST+Label, LST+FIFO, and
FCFS+FIFO.

For the physical resource, the computing slot number m and
the NVM slot number n are defined based on the typical PM
configuration. Let m = 64, n = 60 be the typical setting, and
change n from 30 to 100. For the utility settings, it should be
a value about the job execution, and interactive jobs provide
more unit utility than batch jobs. We set ω0 = 5, ω1 = 3, and
ω2 = −2. We conduct the simulations in 3 cycles. For each
cycle, there are 1000 time-slots. The jobs arrive at the PM at
some specific time-slot, and there may be multiple job arrivals
at one time-slot. There are more than 20000 jobs during the
3 cycles. For the hotness value, we set H1 = H2 = 2. The
data migration time from disk to NVM is set as 1 time-slot.

B. Result Analysis

Fig. 4 shows the results on utility with various n values.
The x-axis is the value of n, while y-axis is the final utility.
From the results we know that our approach (LST+Label)
achieves the maximum when there are more than 30 NVM
slots. In fact, the job acceptance rate is about 99.1%, which
means the job workload is greater than the PM resource, and
the job admission algorithm works to reject some jobs. The
result implies that our approach can utilize the limited NVM
resource efficiently even though there are not too many NVM
slots. The utilities for LST+FIFO and FCFS+FIFO grow as n
increases. This is because the data migration leads to longer
job execution time, which produces negative utility or zero
utility (reject job). The difference between LST+Label and

Fig. 4. Utility: m = 64

(a) Utility Value (b) Ratio

Fig. 5. Details of utilities: m = 64, n = 60

(a) NVM hit rate when m = 64 (b) NVM hit rate when m = 56

Fig. 6. NVM Hit Rates Analysis

LST+FIFO is whether to label the data, so this proves that
data labeling system actually improves the performance.

We show the utility details as time when n = 60 in Fig. 5.
The accumulated utility is shown in Fig. 5(a), where x-axis is
the time-slot. The three approaches have nearly the same utility
in the first half of duration. This is because the computing
resource and NVM are sufficient to accomplish the jobs. How-
ever, when more jobs, especially the batch jobs, arrive at the
PM, the data replacement policies show distinguished effects.
The frequent data migrations cause longer job execution time,
and lead to negative utility. This is the reason for utility
decrement around the 2400 time-slot.

For each given time-slot t, we can calculate the maximized
utility max(t), which is the theoretical upper bound. It should
be max(t) = m ·ω0 · t, when all computer resources are used
to execute the interactive job. Let the accumulated utility at tth

time-slot be au(t). We show the ratio au(t)
max(t) in Fig. 5(b). We

can see the similar result mentioned above. At the beginning
stage, most of the jobs are still running, which is the reason
why the ratio is low.

NVM Hit Rate Analysis. One of the key issues for NVM
is endurance enhancement. NVM hit rate affects the number



(a) Normal Job Workload (b) Double Job Workload

Fig. 7. Analysis on Interactive Jobs

of write operations significantly. Hence, we take NVM hit rate
as another concern. Its value is equal to the rate that the task
execution has the wanted input data in NVM. For the same
job workload, we analyze the NVM hit rate when m = 64
and m = 56 in Fig. 6. The NVM hit rate increases as more
NVM slots are available for all approaches. Though the utility
of FCFS+FIFO is lower than LST+FIFO (Fig. 4), its NVM hit
rate is larger. This is because the FCFS+FIFO approach rejects
more jobs, and fewer data is needed, which brings both lower
utility and greater NVM hit rate.

The core of our approach to gain more utility is to conduct
data replacement actively. This brings greater utility and extra
data migrations. The extra data migrations are more likely to
lead to NVM hit, especially when there are more computing
slots and fewer NVM slots. Hence, our approach gains larger
utilities (Fig. 4 and Fig. 6(b)) and greater NVM hit rate
(Fig. 6(a)). This is also the reason why the NVM hit rate
of our approach is still high, but a bit less than other two
approaches when m = 56, n = 50. The results imply that our
approach could have significant performance improvement for
large-scale jobs and data scheduling scenario.

Analysis on Interactive Jobs. For the big data analysis
jobs, one of the most important objectives is to support the
realtime interactive services. Hence, we also evaluate our
approach for pure interactive jobs. Fig. 7 shows the result on
VNM hit rate, which mainly affects the job response time. Our
LST+Label approach has stable performance improvement as
n increases. In Fig. 7(a), the weakness when n = 50 suffers
from the same reason mentioned above, and the rate will be
1.0 when n ≥ 60 because it is sufficient to store all input
data. From the figure, we know that our approach still has
the largest utility. There is more future work on the tradeoff
between utility and NVM hit rate for interactive jobs.

The results in Fig. 7(b) show the case when we double the
job workload within the same time duration. There are more
than 100 different jobs with various input data. From the result,
we know that the LST+Label approach shows significant
improvement on NVM hit rate. This also demonstrates that
our approach has stable and good performance for large-scale
jobs and data scheduling problem.

VI. CONCLUSION

In this paper, we investigate the joint job and data schedul-
ing problem for utility maximization in cloud data center
with a hybrid storage system. We model the jobs, utilities

and job execution time, and formulate the joint scheduling
problem. We first introduce the labeling system to the schedul-
ing problem, and propose a flexible labeling-based approach
for joint job and data scheduling. We conduct extensive
simulations, and the results show that the labeling method
actually works. The proposed labeling scheduler has
significant performance improvement by labeling method.
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