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ABSTRACT

Recommendation systems provide good guidance for users to find
their favorite movies from an overwhelming amount of options.
However, most systems excessively pursue the recommendation
accuracy and give rise to over-specialization, which triggers the
emergence of serendipity. Hence, serendipity recommendation has
received more attention in recent years, facing three key challenges:
subjectivity in the definition, the lack of data, and users’ floating
demands for serendipity. To address these challenges, we introduce
a new model called HAES, a Hybrid Approach for movie recom-
mendation with Elastic Serendipity, to recommend serendipitous
movies. Specifically, we (1) propose a more objective definition of
serendipity, content difference and genre accuracy, according to the
analysis on a real dataset, (2) propose a new algorithm named John-
sonMax to mitigate the data sparsity and build weak ties beneficial
to finding serendipitous movies, and (3) define a novel concept of
elasticity in the recommendation, to adjust the level of serendipity
flexibly and reach a trade-off between accuracy and serendipity.
Extensive experiments on real-world datasets show that HAES

enhances the serendipity of recommendations while preserving
recommendation quality, compared to several widely used methods.
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Figure 1: An example to illustrate the difference among

accuracy-oriented method (ACC), recommendation with

fixed serendipity (SER), and our method (HAES).

Table 1: Statistics of recommendations in Figure 1

# of subfigure ACC SER HAES

(a) m2,m5 m1,m3 m1,m3,m4

(b) m2,m5 m1,m3 m1,m2,m4

1 INTRODUCTION

With the development of the Internet, it becomes more and more
flexible for users to choose where, when and how to watch movies,
leading to the rapid growth in the number and genre of movies
available. However, the delightful variation also brings users a huge
trouble in finding movies they potentially like. Recommendation
systems play an indispensable role in mitigating this problem, by
providing interesting options in line with the users’ profile [26].
For catering to users’ preferences, the majority of methods analyze
their past behaviors and adopt collaborative filtering to generate
the corresponding recommendations [19, 32, 38]. As a result, over-
specialization and the long tail effect grow increasingly obvious,
calling for more researches on serendipity-oriented recommenda-
tion. Although some work has been done, they usually assume that
there is a fixed level of serendipity suitable for all users, which
results in unrelated recommendations. In this paper, we strive to de-
velop a deep study of elastic serendipity and its application in movie
recommendation. To be specific, we propose the concepts of user
elasticity and movie elasticity, and put forward a hybrid approach
for movie recommendation with elastic serendipity (HAES).
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We provide an example in Figure 1 to show the effect our ap-
proach tries to reach, where we compare our method with two
other commonly used approaches: ACC (accuracy-based method)
and SER (recommendation approach with fixed serendipity). In
the figure, the solid circles denote the elasticity (defined in Section
3.1) of users (e.g., ui , uj ) or movies (e.g.,m1, ... ,m5). The larger a
circle is, the stronger is the user’s ability to accept different movies
(the bigger is the possibility of movie being adopted). The dashed
circles represent the ranges of recommendation, e.g., lACC denotes
the recommendation range ofACC, lSER is that of SER, and lHAES

is that of HAES. We would recommend a movie if the edge closest
to the user (e.g., o1 form1 in Figure 1(a), o1’ form1 in (b)) is within
our recommendation range, while the other two methods generate
recommendations depending on whether the center of the movie is
within their recommendation ranges. The difference indicates the
sensitivity of HAES to movie elasticity. In addition, our approach
is also aware of user elasticity, which is reflected in the comparison
between (a) and (b) in Figure 1. The user in (a), ui , has the same
associations with five movies (m1, ... ,m5) as uj in (b), but the elas-
ticity of ui is larger than that of uj . Among three methods, only our
approach recommends different movies for ui and uj (see Table 1).
For example, we recommendm3 only to ui , since the elasticity of
uj is too small to accept it. Considering ui ’s elasticity is bigger, it’s
reasonable to recommend movies with weak relevance (m2 is not a
suitable option) to improve recommendation serendipity.

Existing approaches primarily aim at increasing the accuracy
of recommendations [4, 7, 37], achieving great success with the
powerful aid of deep learning [2, 27, 35]. However, user satisfac-
tion doesn’t continually increase with the improvement of rec-
ommendation accuracy. On the contrary, it shows a correlation
with the serendipity of recommendations [6, 20]. Consequently, it
draws increasing attention to researches on serendipity-oriented
recommendation. Researchers in the area generally split serendip-
ity into related attributes that are easy to measure [28], such as
the relevance, novelty and unexpectedness in [15]. Then, they rec-
ommend movies in accordance with these attributes, alleviating
over-specialization. However, most researchers define serendipity
based on some subjective views and generate recommendations
with a fixed degree of serendipity for different users, causing the
risk of irrelevant recommendations and decreasing user satisfaction
[6, 22]. It’s not an easy task to enhance serendipity without lowering
the quality of recommendations. There are three major challenges.
(1) The definitions of serendipity lack objective evidences. (2) There
is very limited labeled data available in serendipity-oriented rec-
ommendation. (3) It’s difficult to judge what level of serendipity is
the most suitable for different movies and users.

Our Motivations. We have three motivations for addressing
the above challenges in this paper. (1) providing a more objective

definition on serendipity.We strive to define serendipity according
to the analysis on real-world datasets instead of subjective ideas.
(2) mitigating the lack of data.We try to dig out attributes related
to serendipity and build weak ties among users and movies for
alleviating the data sparsity. (3) recommending movies with elastic

serendipity.We manage to adjust the degree of recommendations’
serendipity flexibly for different users and movies.

We try to recommend movies with an adaptive level of serendip-
ity for different users, so as to mitigate the over-specialization,

reduce the risk of unrelated recommendations, and make a balance
between serendipity and accuracy. To be specific, our objective
mainly consists of two parts: digging out user-movie elastic as-
sociations and predicting genres with high accuracy. Combining
these two parts, we propose a new serendipity-based algorithm
named HAES and verify its effectiveness on real-world datasets.
Our contributions are fivefold, as follows:

• On the basis of a deep analysis on a real-world dataset,
Serendipity-20181 [14], we develop a more objective defi-
nition of serendipity by decomposing it into two attributes,
content difference and genre accuracy. (Section 3.1)

• We propose the concepts of user elasticity and movie elas-

ticity, dynamically balancing serendipity and accuracy of
recommended lists. (Sections 3.1 and 4.1)

• We propose JohnsonMax algorithm to optimize user-movie
associations, alleviating the data sparsity. (Section 4.2)

• We predict user preferences in movie genre with Recurrent
Neural Network (RNN) [21] and achieve significant perfor-
mance improvements. To the best of our knowledge, this is
the first work to apply RNNmodels into serendipity-oriented
recommendation methods. (Section 4.3)

• We conduct comprehensive experiments on MovieLens-1m2

[8] and MovieLens-latest-small3 [8], to compare our method
with widely usedmethods. Experimental results demonstrate
that HAES provides significantly better guide for users to
find serendipitous movies while preserving high genre accu-

racy. For example, HAES improves micro_F1 by 53.93% and
increases 2.3 times on difference compared with the accuracy-
oriented method on MovieLens-1m. (Section 5)

2 RELATEDWORK

There is a long history of accuracy recommendation systems [1,
3, 25], where the more accurate they are, the more obvious over-
specialization becomes, which accelerates the development of serendip-
ity recommendation. In this section, we would briefly review related
works on definitions, methods and metrics of serendipity.

Research on definitions of serendipity. The definition of
serendipity stems from some abstract descriptions in literature.
For example, Walpole describes it as the experience of discovering
interesting things by accident [29]. Some researchers crystallize it
with some related attributes, such as unexpectedness and usefulness
in [6], novelty, relevance and unexpectedness in [17].

Research onmethods of serendipity. Some proposed approaches
are based on accuracy recommendation methods, and the others are
novel , of which the most popular ones are reviewed here. Kotkov
et al. [16] apply a greedy strategy to improve recommendation
serendipity through resorting the recommended lists. Karpus et al.
[13] introduce ontology-based contextual pre-filtering to remove
movies particularly familiar to users. Zhang et al. [36] implement
three basic approaches to generate corresponding lists respectively.
Asides from those accuracy based recommendations, there are also
many novel approaches. Niu [23] sets up a framework with the
components of unexpectedness, value and learning to recommend

1https://grouplens.org/datasets/serendipity-2018/
2https://grouplens.org/datasets/movielens/1m/
3https://grouplens.org/datasets/movielens/

Session: Long - Recommendation System II CIKM ’19, November 3–7, 2019, Beijing, China

1504



serendipitous items. Serendipitous recommendations should meet
the requirements of low pre-interest and high post-satisfaction
in the views of Yang et al. [34]. Transfer learning is adopted by
Pandee et al. [24], and Nguyen et al. [22] pose that users are keen
on diversity, popularity and serendipity to different extent.

Among existing works, SIRUP [18] is the most similar one to
ours, taking into account users’ ability to accept serendipity. There
are two significant differences between SIRUP and ours: (1) the
possibility of movies being adopted is only considered by us; (2) we
propose elasticity to quantify the acceptance ability rather than di-
vide users into two groups, which is more flexible and fine-grained.

Research on metrics of serendipity. Here we divide evalua-
tion strategies into two types: online and offline. For online evalu-
ations, most researchers evaluate the performance of recommen-
dation systems with questionnaires [14, 16], while the others take
advantage of users’ implicit feedback. For example, Ge et al. [6] use
facial expression recognition for assessment on the serendipity of
recommendations. For offline evaluations, it’s a common choice to
measure serendipity with related attributes proposed in the defini-
tion [18, 36], and we employ this manner in our experiments.

3 PROBLEM STATEMENT AND MODEL
OVERVIEW

We illustrate the system settings and concepts, define the problem
we solve, and give a brief overview of our solution. Notations are
described in Table 2.

3.1 System Settings

We consider the scenario in a movie recommendation system (e.g.,
MovieLens), where there are users, movies, and ratings. These
entities constitute the input space, I (U ,M, S), of our work.

3.1.1 Data Analysis. Due to the subjectivity of serendipity and the
lack of large-scale datasets, it’s almost impossible to recommend
movies according to the value of serendipity directly. Motivated
by the great progress achieved by methods based on serendipity
decomposition, we employ a similar approach to define serendipity.
Our difference lies in that we exploit the objective analysis rather
than subjective ideas as the foundation for defining serendipity.

We analyze a real-world dataset, Serendipity-2018 [14] with 2150
records, where 481 users rate 1678 movies on eight statements (see
Table 3). In these statements, the objectives of serendipity recom-
mendation are s7 and s8, and the others are attributes related to the
serendipity. We adopt linear regression to acquire the associations
w between the objective and other attributes as follows:

s7 + θ ∗ s8 = w ∗ [s1, s2, s3, s4, s5, s6] + b, (1)

where θ indicates the contribution of s8 (broadening user horizons),
we use θ = 1 in this paper, b is the random error. We learn the value
ofw using the dataset Serendipity-2018 and display the weights of
related attributes in Figure 2. It indicates that there are stronger
associations between the serendipity and s3, s4, s5 (interesting to
users, beyond their ability to discover, and different from history).

3.1.2 The Key Concepts. Based on the above observation, we con-
clude that serendipitous movies should meet the requirements of
being different from users’ past behaviors and relevant to their

Table 2: Notations

Symbol Description

U users {u0, u1, ... , un }
M movies {m0,m1, ... ,mk }
G movie genres {G0, G1, ... , Gk }
V nodes in relevance network, V = U ∪M

S rating matrix
I the input space, I = (U ,M, S)

R(i, j) the relevance factor from node i to j
E(ui ,mj ) the elasticity factor between ui andmj

N the relevance network, N = (V ,R)

Table 3: Serendipity-2018 Statements

No. Description Abbreviation

s1
The first time I heard of this movie was
when MovieLens suggested it to me.

unknown

s2 MovieLens influenced my decision. influence

s3
I expected to enjoy this movie before
watching it for the first time.

interest

s4
This is the type of movie I would not
normally discover on my own; I need a
recommender system like MovieLens.

beyond users’
ability to dis-
covery

s5
This movie is different from the movies
I usually watch.

different

s6
I was surprised that MovieLens picked
this movie to recommend to me.

surprise

s7 I am glad I watched this movie. satisfaction

s8
Watching this movie broadened my pref-
erences. Now I am interested in a wider
selection of movies.

broaden
users’ prefer-
ences

Figure 2: Weights of each related features.

interests. Here, we embody the difference as content difference and
the relevance as genre accuracy, and we would verify its justifiabil-
ity in the experiments (Section 5.1). Consequently, we propose the
definitions of content difference, genre accuracy, and serendipity.

Definition 1: Content Difference. A movie with content dif-

ference is different from the history of the target user ut (i.e., a
movie with weak similarity to the movies ut has rated).

Definition 2: Genre Accuracy. A movie with genre accuracy

is the one that meets ut ’s short-term preferences in movie genre.
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Figure 3: The framework of HAES.

Definition 3: Serendipity. Serendipity represents both attrac-
tiveness and surprise [9]. Based on the the results of Data Analysis
(Section 3.1.1), we define it as content difference and genre accuracy.

In the serendipity-oriented recommendation, it’s essential to
be aware of individual characteristics (e.g., user elasticity, movie

elasticity), and the associations among different users and movies.
Definition 4: User Elasticity. The user elasticity, E(ut ), is the

ability of ut to accept movies different from the past behaviors,
measured by the genre diversity of movies that are relevant to ut .

Definition 5: Movie Elasticity. The movie elasticity of mt ,
E(mt ), is the possibility of mt being adopted by different users,
measured by the diversity of the corresponding user groupU (mt ).

Definition 6: Relevance Network. A relevance network is a
directed graph, N = (V ,R), where V = U ∪ M is a set of nodes,
standing for movies and users, and R ⊆ V 2 is a set of directed edges
indicating the asymmetric associations between different nodes.

3.2 Problem Definition

In this subsection, we formally define the problem of Movie Rec-
ommendation with Elastic Serendipity (MRES).

Input. The input of MRES are an initial user-movie network,
I (U ,M, S), and a target user ut (ut ∈ U ), where U is a user set, M is
a movie set, S is a user-movie rating matrix.

Output.The algorithm is to generate a list of potential movies,Mt ,
that may increase the satisfaction of ut and broaden ut horizons.

Objective. Based on our definition of serendipity, content differ-
ence (difference) and genre accuracy (accuracy), we try to make
serendipity recommendations by solving the following problem:

Maximize di f f erence(Mt ,ut ) + accuracy(Mt ,ut ), (2)

whereMt ⊂ M , and each movie ofMt is within ut ’ elasticity range.

3.3 Solution Overview

We give a brief overview of the proposed HAES (see Figure 3):
(1) Elasticity. This component measures the elasticity of users
and movies to provide adaptive serendipity. (2) Relevance. For
acquiring latent associations among users and movies, we introduce
an asymmetric metric to build the relevance network at first, and
then propose the JohnsonMax algorithm to update it. (3)Genres. In
order to preserve recommendation quality, we apply GRU to predict
users’ short-term preferences in genre. (4) Recommendation.We
filter the candidates with genres predicted by genre component and
then recommend movies with elasticity and relevance, expecting
to create a balance between serendipity and accuracy.

4 HAES: ALGORITHM DETAILS

In this section, we present the technical details of components in
HAES: quantifying elasticity, building relevance network, predict-
ing genres, and recommendation with elastic serendipity.

4.1 Quantifying Elasticity

We make a quantification of the elasticity to generate recommenda-
tions with elastic serendipity for users, so as to dynamically meet
their varying demands for serendipity and accuracy [22].

User Elasticity. We measure the user elasticity of ui with the
diversity in movie genres related to ui . As stated in [18], the more
movie genres ui has, the stronger is his ability to accept differ-
ent movies. Suppose G(ui ) is a genre set related to ui , G(U ) =

{G(u0),G(u1), ...,G(un )}, andGmax (U ) is the element ofG(U ) con-
taining the most genres, the elasticity of ui , E(ui ), is calculated as
follows:

E(ui ) =
|G(ui )|

|Gmax (U )|
. (3)

Movie Elasticity.We regard the diversity of corresponding user
(who has rated the movie) groups as a reference to measure the
movie elasticity, considering users’ age, occupation, and the group
size. To be specific, we suppose A(mi ) denotes the age set of users
associated tomi and O(mi ) is about occupation; α and β indicate
the contributions of age and occupation, respectively; U (mi ) is a
set of users related tomi . We calculate the diversity factor ofmi ,
D(mi ), as follows:

D(mi ) =
α ∗ |A(mi )| + β ∗ |O(mi )| + |U (mi )|

α + β + 1
. (4)

Suppose Dmax (M) is the maximum D(mj ), where mj ∈ M , the
elasticity ofmi , E(mi ), is calculated as in the following:

E(mi ) =
D(mi )

Dmax (M)
. (5)

User-Movie Elasticity. We propose the user-movie elasticity
E(ui ,mj ), to indicate the possibility that ui acceptsmj considering
only the elasticity of ui and mj (not considering the relevance
between them). It is calculated with E(ui ) and E(mj ), as follows:

E(ui ,mj ) =
E(ui ) + δ ∗ E(mj )

1 + δ
, (6)

where δ denotes the contribution of E(mj ).

4.2 Building Relevance Network

In order to make personalized recommendations, it is essential to
obtain relatively accurate relationships among users and movies.
We adopt two steps, building and updating the relevance network,
to capture relevance among nodes (i.e., users and movies).

Building the Relevance Network.We propose new asymmet-
rical metrics on the basis of Jaccard index [10] instead of symmetri-
cal ones common in prior works, so as to reveal relationships among
users and movies in a more proper manner. We illustrate our idea
with 4(a), whereuj is related to movies in genres of action, romance,
and comedy, and ui is related to all genres in the figure. Then, it’s
reasonable to recommend uj ’s relevant movies to ui , but the oppo-
site may generate unrelated recommendations for uj . It indicates
the necessity of asymmetric measures. For associations between
movies, let U (mi ) denote users related tomi , researchers usually
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utilize
U (mi )∩U (mj )

U (mi )∪U (mj )
to measure both R(mi ,mj ) and R(mj ,mi ), ne-

glecting the difference on sizes ofU (mi ) andU (mj ).
In our work, we take asymmetrical metrics to measure the rele-

vance between users and movies. We regard R(ui ,uj ) as the influ-
ence fromui touj , and R(mi ,mj ) is the possibility ofmj being liked
by users who are fond ofmi . We regard R(ui ,mj ) as the degree of
preference ofui formj (centered onui ), which is bound up with the
ui ’s average rating,Avд(ui ); we view R(mi ,uj ) as the importance of
uj tomi (centered onmi ), related to the average of ratings received
bymi , Avд(mi ). Suppose M(ui ) is a movie set rated by ui , U (mi )

represents a user set related tomi , S(ui ,mj ) is the score ui rates on
mj , we calculate the relevance factor from node vi to vj as follows:

R(ui ,uj ) =
M(ui ) ∩M(uj )

M(ui )
, (7)

R(mi ,mj ) =
U (mi ) ∩U (mj )

U (mi )
, (8)

R(ui ,mj ) =
S(ui ,mj )

Avд(ui )
, (9)

R(mi ,uj ) =
S(uj ,mi )

Avд(mi )
. (10)

Updating the Relevance Network.We build the original rel-
evance network with users and movies as nodes (e.g., vi , vj ), and
relevance factors as the weights of edges, w(vi ,vj ) = R(vi ,vj ).
Next, we propose the JohnsonMax algorithm (see Algorithm 1) to
update the relevance network. The basic idea is to capture relevance
more accurately and identify weak ties. In the following, we will
describe the necessity of updating the relevance network, and the
details of the proposed JohnsonMax algorithm.

We provide an example to illustrate the necessity of updating
using Figure 4(b). There are only two associations in the figure:
w(va1,vb1) from node va1 to vb1, andw(vb1,vc1) from vb1 to vc1.
It would build an indirect association from va1 to vc1, based on
the theory of influence propagation [11, 30]. But there is neither
direct nor indirect relevance from va2 to vc2. Therefore, the rele-
vance from va1 to vc1 is stronger than that from va2 to vc2, which
is not reflected in the original network (as shown in Figure 4(b),
w(va1,vc1) = w(va2,vc2) = 0). To overcome this limitation, we

Algorithm 1 JohnsonMax to update the relevance network

Input: N, the original relevance network
Output: N’, the updated relevance network with more weak ties
1: letmat be the adjacency matrix of N
2: //update the weights of the i-th row
3: function DijkstraMax(mat, i)
4: stack ← [1, 2, 3...|V |] //the stack of index
5: stack .pop(i)
6: while stack is not empty do

7: //get the max weight from i to each node in stack
8: maxw ,maxw_index ←max(mat(i,V (stack))])
9: if maxw == 0 then
10: break
11: stack .pop(maxw_index)
12: for j in stack do

13: wnew ← (1 − Γ) ∗maxw ∗mat(maxw_index, j)
14: if wnew > mat(i, j) then
15: mat(i, j) ← wnew

16: for i in |V | do //V, the node set of user-movie graph
17: mat(i) ← DijkstraMax(mat, i)

propose to update the relevance from node vi to vj ,w(vi ,vj ), us-
ing the potential relevance w ′(vi ,vj ) generated by the influence
propagation theory:

w ′(vi ,vj ) = (1 − Γ) ∗w(vi ,vp ) ∗w(vp ,vj ), (11)

where Γ is a loss factor, Γ ∈ [0, 1], and vp ∈ {V − vi − vj }, an
intermediate node from vi to vj .

w(vi ,vj ) =

{
w ′(vi ,vj ) w ′(vi ,vj ) > w(vi ,vj )

w(vi ,vj ) otherwise
. (12)

To more accurately capture the potential relevance and iden-
tify all possible weak ties, we need to find all the pairs with the
strongest relevance by means of Equation 11 and 12. To be specific,
in order to find the maximumw(vi ,vj ), we calculatew ′(vi ,vj ) for
each intermediate node in the relevance network. It is similar to
finding the shortest path among all paths existing in the graph. We
exploit Johnson [12] algorithm, which consists of multiple Dijk-
stra algorithms. It’s particularly efficient for sparse graphs, and is
easy to parallelize. Based on Johnson algorithm, we put forward
the JohnsonMax algorithm to update the relevance network, and
the details are shown in Algorithm 1. Lines 3 to 15 (Function Dijk-
straMax) update each row of adjacency matrixmat , which can be
executed by multiple parallel processes. Note that lines 14 and 15
capture the potential associations between nodes, mitigating the
data sparsity and discovering weak ties. Lines 16 and 17 update the
whole relevance network.

The time complexity of the proposed JohnsonMax algorithm is
O(|V | |R | + |V |2loд |R |), which is efficient in sparse graphs such as
the relevance network in our work.
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Figure 5: The pre-process for the inputs of GRU.

4.3 Predicting Genres

In serendipity-oriented recommendation systems, there is usually
a risk of recommending unrelated movies accompanied with broad-
ening user horizons. To address this issue, we propose to predict
genres in line with users’ short-term preferences with RNN.

It’s necessary to make a pre-process for transforming data from
original ratings to the input of RNN. First of all, we group movies
by users, sort them within group according to rating timestamps,
and convert each item of sequences into a genre vector (see Figure
5). Then, we adopt sliding windows to split these Boolean vectors
for generating inputs of RNN, where we selectw neighbors as an
input sequence (in Figure 5,w = 3), and the next vector as a label.

Here we introduce a RNN with Gated Recurrent Units (GRU) [5]
to predict user preferences in genre:

zt = σ (Wzxt +Uzht−1), (13)

rt = σ (Wrxt +Urht−1), (14)

ĥt = tanh(Wxt +U (rtht−1)), (15)

ht = (1 − zt )ht−1 + zt ĥt , (16)

where GRU leverage the update gate zt and the reset gate rt to
capture long-term dependencies on user behaviors; the inputs are
genre vectors, the output (the last hidden state, hend ) is a genre
vector representing users’ short-term preferences. We apply GRU
instead of LSTM into genre prediction, because GRU reach the same
performance with LSTM at a smaller time cost.

We train GRU on L samples, each of which is a д-dimension
genre vector. Our goal is to predict higher scores for the true genres
and lower scores for the false ones. Hence, we adopt binary cross
entropy [31] as the loss function:

Loss(Ŷ ,Y ) =
L∑
1

д∑
1

−y ∗ log ŷ + (y − 1) ∗ log (1 − ŷ), (17)

where ŷ, a д-dimension vector, is the output of GRU, each element
of ŷ denotes the possibility score of the corresponding genre. We

Table 4: Statistics of datasets.

Item
Statistic

ml-1m ml-latest-small

# users 6040 610
# movies 3900 9742
# ratings 100209 100836

movie release time (year) 1919-2000 1902-2018
rating time (year) 2000-2003 1996-2018

implement two filters, topK method and threshold filtering, to trans-
form the possibility scores to the predicted genre sets.

4.4 Recommendation with Elastic Serendipity

In the above subsections we gain the elasticity of users and movies,
build the relevance network, and predict potential movie genres.
Based on them, we will generate final recommendations.

We first filter options, keeping only those movies in the genres
that GRU predict. Then, we calculate user-movie elasticity through
Equation 6 and the relevance by Equation 9. Next, we combine
elasticity and relevance to gain the elastic relevance between ui
andmj , RE(ui ,mj ), as follows:

RE(ui ,mj ) =
R(ui ,mj ) + λ ∗ E(ui ,mj )

1 + λ
, (18)

where λ denotes the contribution of the elasticity E(ui ,mj ).
For broadening user horizons, we try to recommend movies rel-

atively different from their history. In addition, we also expect to
decrease unacceptable recommendations, so as to increase user sat-
isfaction. Hence, movies with median elastic relevance factors are
suitable ones for recommendation, while the smaller are unaccept-
able for users and the bigger may cause over-specialization. We pro-
pose a new concept of the recommendation factor,R_f actor (ui ,mj ),

R_f actor (ui ,mj ) = |RE(ui ,mj ) −Avд(RE(U ,M))|, (19)

where Avд(RE(U ,M)) is the average value of elastic relevance be-
tween all users and movies. Finally we recommend movies in the
ascending order of the recommendation factor.

The intuition of Equation 19 is that when there is a strong elas-
ticity between ui and movies, it’s desirable to recommend ones
with weak relevance to ui . There is a complementary relationship
between the relevance and the elasticity in the serendipity-oriented
recommendation [18]. Taking Figure 1(b) for instance,m1 is fur-
ther away from uj (indicating weaker relevance), than the other
two recommendations,m2 andm4. However, the elasticity ofm1
is bigger, indicating m1 is easier to accept for users (even m1 is
somewhat unfamiliar to them). Thus, m1 also is a serendipitous
recommendation for uj .

5 EXPERIMENTS

Weevaluate ourmethod based on two large-scale real-world datasets,
MovieLens-1m (ml-1m) [8] and MovieLens-latest-small (ml-latest-
small) [8], where we take the top 80% ratings as the training set
and the rest as the testing set in chronological order. The statistics
of datasets are shown in Table 4. Our experiments focus on the
following issues:
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(a) (b) (c) (d)

Figure 6: The preference distributions in movie genres of user samples.

• Problem 1. In this paper, we measure the serendipity with
content difference and genre accuracy. Then, is it necessary
to keep accuracy in genre, and how can we achieve it?

• Problem 2. We propose the JohnsonMax algorithm to up-
date the relevance network based on the influence propaga-
tion theory. Then, what effect has been achieved by John-
sonMax in mitigating data sparsity and building weak ties?

• Problem 3. How does the proposed approach perform com-
pared with other methods?

5.1 Verification on Problem 1

For Problem 1: whether it is necessary to keep accuracy in genre,
and how to achieve it, we conduct the following experiments to
demonstrate the necessity of genre accuracy, and adopt GRU to
accurately predict user short-term preferences in movie genres.

5.1.1 Checking the necessity of genre accuracy. We visualize the
distribution of movie genres for several individuals in chronological
order. In order to make the results of visualization more reliable, we
select four representative types of users to analyze: (1) users with
a large number of related movies and wide interests in genre; (2)
users who rate lots of movies in relatively single genres; (3) users
related to a limited number of movies but with wide interests in
genre and (4) users with few related movies in limited genre. We
choose a representative user for each type, as shown in Figure 6 (a)
(b) (c) (d) respectively.

We gain two main findings: (1) local consistency. Although it’s
almost impossible to capture overall preferences of users, we find
it easy to predict genres of users’ interest in the given context (at
a fixed value of the X axis). (2) global dynamics. The dynamics of
genre preferences widely exist in all users, not depending on the
number of relevant movies and the scope of users’ interest. Due
to local consistency in users’ preference, it’s essential to guarantee
the accuracy in genre to minimize unrelated recommendations.
Considering global dynamics, the sequence model (e.g. GRU, LSTM)
is a good choice to identify the movie genre that users may prefer.

5.1.2 Checking the effects of parameters. To improve the perfor-
mance of genre prediction with GRU, we vary the length of inputs
and the type of filters to check their effects. We adoptmicro_F1
[33],micro_precision [33], and hamming distance [33] as evaluation
metrics. The results are shown in Figure 7 and Figure 8, respectively.

For the length of sequences, we find that it’s hardly possible
to train a good model for predicting genres based on very short

sequences (e.g., the length is within 10). This is because user prefer-
ences have a long-term dependence on the past behaviors. However,
the performance wouldn’t continue to be enhanced as the length
of the sequence increases, due to the local consistency of user
preferences. To make a trade-off, we use 20 as the length of input
sequences, which is optimal with a comprehensive consideration of
all metrics (i.e.,micro_F1,micro_precision, and hamming distance).

We check the effects of filters, topK method and threshold filter-
ing, in Figure 8. It indicates that the performance of genre prediction
with threshold filtering fluctuates greatly, while topK is relatively
stable. Possible reason for the fluctuation may be that the amount
of positive predictions varies greatly in the prediction data; how-
ever, it is relatively stable in the label data. The fluctuation degree
of threshold filtering performance is much stronger than that of
topK, although the threshold filtering (t=0.3) has a slightly better
performance than topK (k=2). Thus, we adopt topK method as the
filter and use k=2 in the following experiments.

5.2 Verification on Problem 2

In this section, we verify Problem 2: what effect has been achieved
by JohnsonMax in mitigating data sparsity and building weak ties.

We visualize the distribution of weights originally existing in
relevance network and updated by JohnsonMax in Figure 9. We
have two main findings: (1) the JohnsonMax algorithm increases
graph density4 from 0.47 to 0.74, indicating its effectiveness in
mitigating data sparsity; (2) the weights updated by JohnsonMax
are distributed in (0, 0.3) and concentrated on (0, 0.1), indicating that
it captures weak ties in the relevance network. Therefore, it meets
the requirements of digging out movies related but not limited to
users’ histories in serendipity-oriented recommendation. Moreover,
it is simple to implement, without the aid of auxiliary information.

5.3 Verification on Problem 3

We compare HAES model with some other methods on content

difference and genre accuracy to verify Problem 3.

5.3.1 Baselines. Since there is no agreement on the definition of
serendipity, researchers propose different algorithms for various
purposes in line their definitions, which restricts the comparison
among different serendipity-oriented methods. In this subsection,
we adopt some widely used methods as benchmarks:

4дraph density =
|R |

|V |∗(|V |−1)

Session: Long - Recommendation System II CIKM ’19, November 3–7, 2019, Beijing, China

1509



(a) micro_F1 (b) micro_precision (c) hamming distance

Figure 7: Performance on genres prediction of sequences with different lengths.

(a) micro_F1 (b) micro_precision (c) hamming distance

Figure 8: Performance on genres prediction of different filters (topK and threshold). (a) and (b) use the same legend as (c),

where "k" denotes the k-value of topK and "t" is the threshold.

Figure 9: The effectiveness of updating the relevance net-

work with JohnsonMax.

ACC. Accuracy-based approach is one of the most widely used
personalized recommendation algorithms. It recommends movies
consistent with users past behaviors to improve the accuracy.

NOV.Novelty-based method recommends movies based on their
release time, aiming at recommending users the latest movies.

POP. Popularity-based recommendation systems generate re-
sults according to the prevalence of movies, where we adopt the
number of ratings movies have received to measure their popularity.

RAND.Random-based algorithm randomly selectsmovies among
the candidates that the target user hasn’t rated.

HAES-NE. HAES-No-Elasticity, HAES without regard to elas-
ticity, recommends movies with a fixed level of serendipity, whose
recommendation factor only depends on the relevance as follows:

R_f actor (ui ,mj ) = |R(ui .mj ) −Avд(R)|. (20)

HAES-NG. HAES-No-Genre is HAES without the component
for genre prediction, generating recommendations in all genres.

5.3.2 Evaluation Metrics. From the definition of serendipity above,
genre accuracy and content difference, we select four metrics: mi-

cro_F1 and average hamming distance (denoted as avg_hamming)
as metrics for the genre accuracy; difference from histories(denoted
as difference) and diversity in recommendation lists(denoted as
diversity) as metrics for the content difference.

micro_F1. We adoptmicro_F1, a metric in multi-label prediction
[33], to measure the recall, micro_r , and precision, micro_p, of
recommendations comprehensively. Suppose Gi is a genre vector,
sum(Gi ) is the sum of all elements in Gi , G is a label set of genre
vectors, Ĝ is the predicted one, we calculatemicro_F1 on a samples:

micro_r (Ĝ,G) =
1

a

a∑
i=1

sum(Ĝi ∗Gi )

sum(Gi )
, (21)

micro_p(Ĝ,G) =
1

a

a∑
i=1

sum(Ĝi ∗Gi )

sum(Ĝi )
, (22)

micro_F1(Ĝ,G) =
2 ∗micro_r (Ĝ,G) ∗micro_p(Ĝ,G)

micro_r (Ĝ,G) +micro_p(Ĝ,G)
. (23)

avg_hamming. avд_hamminд considers not only positive sam-
ples but also negative ones. Suppose Gi is a д-dimension genre
vector, we calculate avд_hamminд on a samples as follows [33]:

avд_hamminд(Ĝ,G) =
1

a ∗ д

a∑
i=1

sum(Ĝi ⊕ Gi ). (24)

difference. Based on the associations between users and movies,
we calculate the difference, di f f erence(ut ,Mt ), between the target
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Table 5: Experimental results of different methods on con-

tent difference (MovieLens-1m). "HAES-NE" refers to our ap-

proach without the elasticity component, and "HAES-NG" is

the one without genres prediction.

method dif@5 dif@10 dif@15 div@5 div@10 div@15
ACC 0.2255 0.2511 0.2681 0.7037 0.714 0.71
NOV 0.7078 0.7289 0.7035 0.5995 0.6872 0.649
POP 0.5571 0.5571 0.5562 0.2118 0.2472 0. 2736
RAND 0.7428 0.7435 0.7438 0.7229 0.7227 0.7229

HAES-NE 0.5108 0.5186 0.5243 0.5209 0.5294 0.535
HAES-NG 0.7973 0.8062 0.8098 0.7624 0.7479 0.7408

HAES 0.8134 0.82 0.8242 0.683 0.6701 0.6606

Table 6: Results on genre accuracy (MovieLens-1m).

method F1@5 F1@10 F1@15 h@5 h@10 h@15
ACC 0.2059 0.2036 0.2006 0.1577 0.1601 0.162
NOV 0.1964 0.1913 0.2127 0.1757 0.1684 0.1677
POP 0.2065 0.2034 0.2011 0.2351 0.2221 0.2179
RAND 0.2016 0.2008 0.2 0.1663 0.1667 0.1668

HAES-NE 0.3072 0.3035 0.3019 0.1604 0.1609 0.1614
HAES-NG 0.1867 0.1884 0.1881 0.1628 0.1644 0.1656
HAES 0.3149 0.3119 0.3122 0.1482 0.1506 0.1514

Table 7: Results on content difference (MovieLens-latest-

small).

method dif@5 dif@10 dif@15 div@5 div@10 div@15
ACC 0.2917 0.3036 0.3131 0.2346 0.2414 0.2464
NOV 0.5803 0.7353 0.5916 0.722 0.4531 0.7307

POP 0.1951 0.3131 0.2079 0.3045 0.1781 0.31
RAND 0.6836 0.7028 0.6826 0.7005 0.6839 0.7035

HAES-NE 0.4831 0.5163 0.4917 0.5064 0.4644 0.512
HAES-NG 0.6706 0.6652 0.6665 0.6654 0.6774 0.6653
HAES 0.642 0.6651 0.6537 0.6653 0.6375 0.6652

user, ut , and recommendations,Mt (|Mt | = a), as follows [6]:

di f f erence(ut ,Mt ) = 1 −
1

a

a∑
j=1

R(ut ,mj ). (25)

diversity.We calculate the diversity of recommendations,diversity(Mt )

(|Mt | = a), based on the relevance between movies ofMt [6]:

diversity(Mt ) = 1 −
2

a(a − 1)

a∑
i=1

i−1∑
j=1

R(mi ,mj ). (26)

5.3.3 Results. We compareHAES with baselines onmicro_F1(F1),
avд_hamminд(h), di f f erence(dif), and diversity(div). The results
on Movielens-1m are shown in Table 5 and Table 6, and those on
MovieLens-latest-small are shown in Table 7 and Table 8.

Comparison on content difference. HAES achieves the best per-
formance on Movielens-1m (see Table 5), e.g., it even increases 2.3
times on difference compared with ACC. However, random-based
(i.e., RAND) and novelty-based (i.e., NOV) method perform better
on MovieLens-latest-small (see Table 7). The reason may be that
the timespan of ratings on it is twenty-two years, which is too long

Table 8: Results on genre accuracy (MovieLens-latest-small).

method F1@5 F1@10 F1@15 h@5 h@10 h@15
ACC 0.2198 0.223 0.2218 0.229 0.23 0.2316
NOV 0.2125 0.2134 0.2161 0.2578 0.2375 0.2328
POP 0.2343 0.2245 0.2199 0.2406 0.2404 0.2383
RAND 0.2223 0.2244 0.2255 0.2071 0.2072 0.2071

HAES-NE 0.2931 0.2899 0.2913 0.203 0.2046 0.2038
HAES-NG 0.2346 0.2356 0.2312 0.2058 0.2055 0.2063
HAES 0.2963 0.2987 0.2967 0.1987 0.1971 0.1986

Figure 10: The visualization of rating timestamps (we choose

the earliest and the latest rating time for each user in

MovieLens-latest-small), to show the impact on the interac-

tion among users of the long rating timespan.

to build weak ties for HAES. But the long span makes it easy to
generate recommendations without relevance. To verify the above
impact of the long timespan, we analyze all rating timestamps on
MovieLens-latest-small in Figure 10. It indicates that most users
provide ratings only within a limit timespan (the average span is
0.64 year), i.e., the longer the span is, the less the interaction of users
is. Another finding is thatHAES-NE, HAES without the elasticity
component, performs poorer than HAES on both datasets, indicat-
ing the importance of the elasticity in broadening user horizons.

Comparison on genre accuracy. HAES and HAES-NE, our ap-
proaches with the genre prediction component, achieve significant
improvements on genre accuracy (see Table 6 and Table 8). Particu-
larly,HAES improves themicro_F1 by 53.93% compared with ACC

on MovieLens-1m. It has a close association with the fact that we
capture user short-term preferences with GRU, while the others
either acquire user preferences as a whole or neglect user inter-
ests. In addition, we find that methods with consideration of global
preferences (e.g., ACC) even are inferior to the random recommen-
dation (RAND) on Movielens-latest-small (see Table 8). The reason
may be that user global preferences can’t represent their short-term
demands, while they also limit the range of recommendations.

5.4 Summary of Experiments

In summary, we have the following findings in the experiments.
(1) The threshold filtering method would cause the fluctuation
of prediction performance, because the amount of the positive
predictions varies greatly. (2) On MovieLens-latest-small, random-
based (RAND) and novelty-based (NOV) approaches have a better
performance on genre accuracy, than the one based on accuracy
(ACC). One possible reason is that global preferences of users can’t
represent their short-term demands, while they also limit the range
of potential recommendations.(3) Overall, our approach (HAES)
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achieves significant improvements, e.g., it improves the micro_F1

by 53.93% and increases 2.3 times on difference compared with the
accuracy-oriented method (ACC) on MovieLens-1m.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we propose a hybrid approach for recommending
movies with elastic serendipity, based on a more objective defi-
nition of serendipity. We propose and quantify the elasticity in
recommendation system, for meeting users’ varying demands for
serendipity and accuracy. We put forward asymmetric measures
to more accurately capture associations among users and movies,
and then present JohnsonMax to mitigate the data sparsity and
build weak ties. We introduce GRU to acquire users’ short-term
preferences in movie genres, which reduces unrelated movies and
preserves the quality of recommendation. In addition, we believe
HAES is not limited to movie recommendation but suitable for
all systems with high aggregation and low coupling, and we will
apply HAES to a wider range of scenarios (e.g., recommendation
on book, music ) in the future. We also would like to build an in-
teractive serendipity-oriented recommendation system, capturing
users’ real-time implicit feedback with reinforcement learning.
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