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Online Real-Time Trajectory Analysis Based on Adaptive
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Abstract: With the development of Chinese international trade, real-time processing systems based on ship

trajectory have been used to cluster trajectory in real-time, so that the hot zone information of a sea ship can

be discovered in real-time. This technology has great research value for the future planning of maritime traffic.

However, ship navigation characteristics cannot be found in real-time with a ship Automatic Identification System

(AIS) positioning system, and the clustering effect based on the density grid fixed-time-interval algorithm cannot

resolve the shortcomings of real-time clustering. This study proposes an adaptive time interval clustering algorithm

based on density grid (called DAC-Stream). This algorithm can perform adaptive time-interval clustering according to

the size of the real-time ship trajectory data stream, so that a ship’s hot zone information can be found efficiently and

in real-time. Experimental results show that the DAC-Stream algorithm improves the clustering effect and accelerates

data processing compared with the fixed-time-interval clustering algorithm based on density grid (called DC-Stream).
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1 Introduction

With the development of science and technology, we
have entered the era of big data[1, 2], and data is of
increasing significance to the development of the entire
society. With the explosive growth of data and the
increasing scale of data, it is important to extract useful
information in real time. Different application scenarios
have different algorithms to meet the high requirements
of real-time[3–5]. Among the various types of data, the
mining of massive trajectory data has become a research
hotspot. With the development of the real-time big data
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processing framework represented by Storm, and the
ability to take advantage of the combination of Storm
and urban transportation not only the Storm distributed
processing framework can discover the ship’s trajectory,
position, and speed in real-time, but the trajectory data
can also be processed according to the individual needs
of the maritime regulatory authorities. Further, the Storm
can be combined with maritime traffic to improve data
processing throughput and reduce trajectory processing
run time. Storm’s high fault tolerance, scalability, and
high availability provide good system performance.
Therefore, the combination of the big data real-time
processing framework Storm and the maritime regulatory
field is of great significance for planning maritime
traffic[6–9].

With the advent of maritime information and the
era of big data along with the establishment of shore-
based Automatic Identification System (AIS) networks
and trajectory databases, a large number of AIS
ship historical trajectories can provide data support
for exploring intelligent supervision algorithms, thus
enabling the identification of ship motion patterns,
including high-level situational awareness, such as ship
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behavior prediction and ship anomaly detection, and
improving the regulatory efficiency of the maritime
sector[10–12]. Reference [13] proposed an automated
method for the derivation and modeling of navigation
trajectory based on AIS data of fishing vessels, and
based on the mapping results of these trajectory models
on the nautical chart, the identification and discovery
of marine fishing areas were completed. Through the
establishment of an AIS real-time management system,
the high-flow and high-risk areas of ship navigation were
mined. Based on this, the importance identification
of the arrival area of the ship was realized, and then
the behavior of the ship was analyzed[14]. Reference
[15] proposed that based on model clustering, the whole
trajectory is used as the unit of clustering, and the cluster
is obtained by EM algorithm.

At present, there are numerous studies on ship
trajectory analysis methods. In a cloud computing
distributed environment, a parallel Density-Based
Spatial Clustering of Application with Noise (DBSCAN)
clustering algorithm has been designed and implemented.
The spatial data is divided by a K-Dimensional (KD)
tree space partitioning algorithm. The technical solution
and implementation framework of a massive AIS data
mining system based on Hadoop has been designed[16].
Reference [17] used an improved DBSCAN algorithm
to mine historical AIS track topology. Another study
proposed an adaptive kernel density-based method for
the motion pattern mining of AIS trajectory data. Based
on this, a particle filter is used to complete the anomaly
detection of a ship[13].

A ship AIS positioning system cannot find the
navigation characteristics of a ship in real-time, the
problem of using a fixed-time-interval clustering effect is
critical to trajectory data flow velocity fluctuation based
on the Storm[18, 19]. This paper mainly completes the
following work:

(1) An adaptive time interval clustering algorithm
based on density grid and a distributed clustering
framework flow are proposed on the basis of the real-
time processing framework of Storm big data to examine
the characteristics of streaming trajectory data.

(2) A real-time processing system for ship navigation
is constructed by using the big data real-time processing
framework Storm, the distributed log collection system
Flume[20], and the distributed message queue Kafka[21].
Flume is used to collect the trajectory data of the ship
simulation. The data access is completed by Kafka, the
problem of inconsistent processing speed between the

data collection module and the data processing module
is alleviated, and data congestion is avoided. The pre-
processing, clustering, and storage of ship trajectory
data are completed by Storm. Finally, the hot zone
information is visualized using the service management
platform built by SpringMVC, Spring, and MyBatis
framework.

The actual test results show that the proposed
adaptive time interval clustering algorithm based on
density grid (called DAC-Stream) algorithm not only
improves the clustering effect, but also accelerates data
processing.

2 Adaptive Time Interval Clustering
Algorithm Based on Density Grid

At present, STREAM algorithm[22], Clustream
algorithm[23], HPStream algorithm[24], and D-Stream
algorithm[25] are the classical real-time data stream
clustering algorithms. Among them, D-Stream is based
on a density grid, does not need to retain a large
amount of historical data, and can recognize clusters of
arbitrary shapes. These characteristics are in line with
the real-time trajectory clustering analysis in this paper.
Therefore, some concepts from the D-Stream algorithm
have been used to optimize the trajectory clustering
analysis in this work to achieve better clustering results.

2.1 Total flow of the distributed clustering
framework based on Storm

Some achievements have been made in a vehicle hot
zone, traffic congestion prediction, and vehicle trajectory
prediction because of the good combination of Storm
and land transportation. With the increasing complexity
of maritime traffic and the individual requirements of
maritime regulatory authorities, certain requirements are
imposed on the real-time processing of ship trajectories.
To this end, this work chooses Storm as the processing
framework to develop an online real-time trajectory
system. The distributed processing framework of Storm
is mainly used to complete the real-time clustering of
ship trajectory data, and the hot zone in the navigation
of the ship is efficiently found while improving the
clustering speed.

The general flow of the distributed clustering
framework based on Storm is shown in Fig. 1. Data pre-
processing (PreBolt), local clustering (LocalBolt), global
clustering (GlobalBolt), and write database (WriteBolt)
are required in the Storm-based distributed clustering
framework. Its topology is shown in Fig. 2.
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Fig. 1 Total flow of the distributed clustering framework
based on Storm.

Fig. 2 DAC-Stream algorithm topology.

PreBolt completes the cleaning, de-duplication and de-
noising work of trajectory data. Complex pre-processing
work cannot be performed in PreBolt because the
system is based on Storm’s real-time processing system.
Therefore, the data cleaning work mainly focuses on (1)
removing duplicate data and deleting two identical ones;
(2) deleting the missing points of important information,
such as latitude and longitude or ship ID; and (3)
reducing the trajectory data of the ship, retaining only the
shipID (ship ID), mmsi (ship Maritime Mobile Service
Idfentify (MMSI)), name, ship type (shiptype), lon
(longitude), and lat (latitude), that can meet the business

needs.
LocalBolt performs local clustering on multiple local

nodes for pre-processed trajectory data and updates
microcluster information in real time. The algorithm
is described in detail in Section 2.3.

GlobalBolt globally clusters the results of local
clustering to generate the final clustering results. A
detailed description of the algorithm is provided in
Section 2.4.

The hierarchical structure of local and global
nodes in Storm is shown in Fig. 3. Among them,
S1.Ts/; S2.Ts/; : : : ; Sm.Ts/ are data streams that are
transmitted to different local nodes at time Ts.

2.2 Meshing, data point mapping, and grid
information statistic

Data are divided into data dimensions, and then mapped
to the corresponding mesh by a density grid-based
clustering algorithm. Density statistics is performed on
the basis of well-defined grid statistics (e.g., frequency,
effective time density, etc.) and clustered according to
mesh density. The density grid-based algorithm converts
the grid statistics into density but does not preserve
historical data. Consequently, the amount of stored data
can be greatly reduced.

The following definitions regarding data space and
meshing are provided.

Definition 1. For the data space S , if the data
dimension of the cluster analysis is set as d , then

S D S1 � S2 � � � � � Sd (1)

Definition 2. For any dimension in Si , i D 1, 2, : : : ,
d , which can be divided into ni shares, then

Si D Si;1 [ Si;2 [ � � � [ Si;j [ � � � [ Si;ni
(2)

S1(Ts) S2(Ts) Sm(Ts)

Fig. 3 Hierarchical structure of local and global nodes.
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where Si;j is the j -th partition of the data space S
divided by the dimension Si . Then, the data space S is
divided into N D

Qd
iD1 ni grids, where N is the total

number of grids in the data space. In actual data space
partitioning, the number of grids needs to be divided
according to specific scenarios,

g D .k1; k2; : : : ; kd / (3)

Assume that grid g D .k1; k2; : : : ; kd / and data x D
.x1; x2; : : : ; xd /. When x is mapped to the space where
g is located, it is recorded as

g.x/ D .k1; k2; : : : ; kd / (4)

This work clusters ship trajectories. As such, the
more important information in the data flow includes
ship coordinates (including the longitude and latitude),
time, and so on. To facilitate understanding, this work
divides the data space into a two-dimensional space
containing coordinate information and divides the mesh
in the two-dimensional space. Time is represented as an
“attenuation factor” (introduced in Section 2.3.1), not as
a single dimension.

The latitude and longitude coordinates of the lower
left corner of the grid are used to represent the grid to
describe the spatial extent of grid representation. For
convenience in calculation, the latitude and longitude
coordinates are converted, and finally the Cartesian
system coordinates are obtained.

For each point mapped to the grid, its weight in the
grid can be defined. The more commonly used statistic
is frequency, at which the data points are mapped to the
grid. That is, for the trajectory data points in the current
time stream, the initial weight of each point is set to 1,
and the grid density of the map is increased by 1.

The data point mapping frequency taken as its weight
is easily implementable and better reflects the trajectory
of a target object in a real environment. After receiving
the data points, Storm assigns them to the corresponding
remote nodes according to various dimensional data of
the data points. Storm then converts the latitude and
longitude coordinates into rectangular coordinates and
maps them to the corresponding grid.

2.3 Local clustering

The meshing and mapping of data points to grids
are the basis for local clustering. Their corresponding
principles are introduced in the preceding section. This
section focuses on the method of performing local
clustering. Figure 4 shows the basic flow of local
clustering.
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Fig. 4 Local clustering flow chart.

2.3.1 Basic concepts of data flow clustering
The following definitions are first made to clearly
describe the algorithm in the local clustering process.

Definition 4. Dense mesh refers to a mesh with a
density greater than the threshold Dh.

Definition 5. Sparse mesh refers to a mesh with a
density less than the threshold Dl .

Definition 6. Transition grid refers to a grid with a
density between Dh and Dl .

Definition 7. Microclusters constitute a grid set,
which is a dense mesh with another adjacent dense mesh.

Definition 8. Connectivity: If the dense mesh is
adjacent to any of the microclusters, the dense mesh is
defined to be in communication with the microclusters.

Definition 9. Feature vector is a vector that holds
information, such as data point coordinates, weights, and
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initial mapping time.
According to Definitions 4, 5, and 6, this paper further

divides the partitioned mesh into a dense mesh, transition
mesh, and sparse mesh. The state of these grids is not
static because they change state over time, and new data
point mappings may change state. That is, a dense mesh
may degenerate into a transition mesh or a sparse mesh,
and a sparse mesh may evolve into a transition mesh or
a dense mesh. Thresholds Dh and Dl will be manually
entered on the basis of the relevant professional domain
knowledge.

According to Definitions 7 and 8, grid clustering can
be performed; that is, a dense grid connected to the
microcluster in the current node is continuously merged
into the microcluster. A cluster of any shape that can
theoretically be formed is created.

Unlike static clustering, data stream clustering should
consider the influence of time factors on clustering
effects because real-time clustering generally involves
data from a most recent period of time, but disregards
data older than that from the current time. This article
refers to these disregarded data as “expired data” or
“historical data”. Therefore, the concept of attenuation
factor can be introduced to describe the change in data
weight over time, i.e., the data weight decays over time.

For each data point xi , a commonly used exponential
decay factor is used to describe its decay process. The
frequency is used as the statistical method of grid
information, so the initial weight of each data point is
1. Then, the weight of the data point xi after changing
with time is

w.xi ; tn/ D ˇ
�˛�.tn�ts/ (5)

where ˇ > 1 and 0 < ˛ < 1, they are the parameters of
the attenuation factor and are constant; ˇ�˛.tn�ts/ is the
attenuation factor; tn is the current time; ts is the time at
which the data point is initially mapped to the grid; and
w.xi ; tn/ is the weight of the data point at time tn.

Without loss of generality, the weight of the known
data point xi at time ti is wti ; then its weight at time tn
is

w.tn/ D ˇ
�˛.tn�ti / � wti (6)

Equations (5) and (6) show that the weight of the data
gradually decreases with time, which is consistent with
the characteristics of data stream clustering.

For grid g, the density D.g; tn/, which is the sum of
the weights of all the data points mapped to it, is easily
derived,

D.g; tn/ D

NX
iD0

w.tn/ (7)

where N is the number of all data points in g at this
time.

The density of g at the current time can be calculated
not only from Eq. (7), but also from the density of the
last update plus the weight of the new data mapped to
the grid at current time tn. The old data points in the
grid are attenuated at the same rate after the most recent
update; so the following equation can be obtained:

D.g; tn/ D D.g; ti /�ˇ
�˛�.tn�ti /C

kX
iD0

w.xi ; tn/ (8)

where k is the number of new data mapped to the grid at
time tn.

When no new data are mapped to the grid, the current
grid density is expressed as follows:

D.g; tn/ D D.g; ti / � ˇ
�˛.tn�ti / (9)

2.3.2 Adaptive clustering interval
During the clustering interval, the system maps the data
in the data stream to the grid because this stream is real-
time and uninterrupted.

If the clustering interval is too short (i.e., clustering
whenever new data flows in), then the change in the
state of each grid may not be very large. Therefore,
this clustering is more similar to the previous clustering,
thereby wasting calculation. The resource and the total
clustering time are expensive. If the clustering interval
is too long, some moments that need to be clustered may
be missed, and the meaning of real-time clustering is lost.
Therefore, a suitable clustering interval is particularly
important.

In another study, Ref. [26] considers that the effect of
local clustering may change when the grid degenerates
from a dense grid to a sparse grid or vice versa.
Therefore, the smaller value of the time between the
dense grid degenerating to the sparse grid or the sparse
grid evolving to the dense grid can be taken as the
clustering interval. However, Ref. [27] does not consider
the change in the speed of the data stream in the
two clustering time intervals, that is, the data speed
transmitted to the trajectory analysis system in the data
stream is assumed to be uniform.

However, in the actual trajectory analysis, the
speed of the real-time data stream may fluctuate
considerably because of the need for sensors, network
communications, and a series of intermediate links in
data acquisition, data transmission, and data processing.
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The average speed of the data stream in the two
clustering intervals is set to v. When v is faster, the
amount of data to be processed in the clustering interval
is larger, and the time required for the grid to evolve
from a sparse grid to a dense grid is shorter. Therefore,
the clustering time interval should be reduced; otherwise,
if v is slow, the amount of data to be processed in the
clustering interval is low, and the data mapped to the grid
are reduced. Therefore, the time interval of clustering
should be appropriately increased.

This work proposes an adaptive clustering time
interval strategy based on the average speed of the data
stream. That is, considering the change in the speed of
the data stream, the grid state conversion time fluctuates,
and the clustering time interval is adaptively selected
according to its speed.

When a dense mesh decays to a sparse mesh over time,
the following formula is obtained:

Dh � ˇ
�˛.td�tp/ 6 Dl (10)

where td is the current clustering time and tp is the
previous clustering time.

In Eq. (10), the process of mapping new data points
to the current grid is not considered in grid attenuation.
When new data points are mapped to the current mesh,
mesh attenuation is greatly affected, that is, the time
when the dense mesh degenerates into a sparse mesh is
extended, which may miss some moments that need to
be clustered. Therefore, the case with newly added data
points is not considered.

From Eq. (11), at least time T1 is needed to solve the
degradation of a dense grid into a sparse grid,

T1 D td � tp >
1

˛
logˇ

�
Dh

Dl

�
(11)

For the evolution from a sparse grid to a dense grid,
this paper assumes a certain law in mapping new data
points to the grid; that is, new data points most likely
fall into the edge of the dense mesh obtained from the
previous clustering. The area enclosed by the sparse
grid of “corner-connected” is shown in Fig. 5, where
the dark grid represents a dense grid, and the light grid
corresponds to a sparse grid. When the time interval of
real-time clustering is short (usually tens of seconds), the
data points of the previous cluster falling into the dense
grid likely move to the grid around it in this cluster, i.e.,
the sparse net within the area of the grid. In this paper,
a grid composed of a dense mesh and a sparse mesh is
called a data mapping mesh.

When a sparse mesh evolves into a dense mesh, it
is necessary to consider not only the change of the old
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Fig. 5 Schematic of the data mapping grid.

data points in the grid with time but also the weight of
the new data points in the data stream. To this end, we
obtain formula (12),

Dl � ˇ
�˛�.td�tp/ C

v � .td � tp/

n
> Dh (12)

where v is the average speed of the data stream during
the clustering time interval and n is the number of data
mapping grids.

Dl � ˇ
�˛�.td�tp/ C

pd

n
> Dh (13)

ThenDl�ˇ�˛�.td�tp/ represents the sum of the weights
of the old data points assigned to the sparse grid before
the tp time. The latter pd=n represents the sum of the
weights added after the new data points are mapped to
the grid after time tp. The attenuation of the new data
points is ignored here because according to the previous
clustering time interval, the new data points have only
a small weight attenuation between the two clustering
moments.

The time required for a sparse grid to evolve into a
dense grid is T2. Because the adaptive clustering time
interval takes the time when the dense mesh degenerates
into a sparse mesh or the sparse mesh evolves into a
dense mesh. Then the adaptive clustering time interval
Gclu is obtained as

Gclu D min fT1; T2g (14)

As pd in Eq. (13) is actually a function that changes
with time, directly solving T2 is impossible.

At this point, if we assume that td � tp in Eq. (13)
takes the minimum value of T1 in Eq. (11) and substitute
it into Eq. (13), it can be solved as follows:
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pd >

�
D2
h
�D2

l

�
� n

Dh
(15)

Let pd have a minimum value of pmin, which can be
obtained using Eq. (15). If the sparse grid is to be evolved
into a dense grid at T1, the amount of data to be inputted
in this clustering interval is at least pmin. If pd D pmin at
this time, Eq. (13) can be established by decreasing T1.
When pd is greater than pmin, T1 can be further reduced.

Let the time when the data stream input data reaches
pmin be tp , then the solution of Eq. (14) is

Gclu D

(
T1; T1 6 TpI

Tp; T1 > Tp
(16)

The meaning of Eq. (16) is that the clustering operation
is performed immediately if the amount of data in the
data stream reaches pmin in time interval T1; otherwise,
the clustering operation is performed in time interval T1.

2.3.3 Local clustering algorithm
Algorithm 1 is a local clustering algorithm, and its

Algorithm 1 Local clustering algorithm
Input:
grid collection grid list, current time curtime, last clustering time
preclutime, adaptive clustering time interval clu interval, whether
the grid has been accessed by a certain flag cluster is visit.
Output:
micro cluster collection microclu list.

1: Initialize the is visit collection element to false;
2: while (Data still flows into Storm in the data stream)
3: Read data point xi information;
4: Map xi to the corresponding grid;
5: Save the feature vector of xi ;
6: if(curtime – preclutime == clu interval)
7: for (each grid i in grid list)
8: Updating mesh density using Eqs. (8) and (9);
9: if(.grid i is a dense grid && is visitŒgridi �== false))

10: is visitŒgridi � true;
11: Access its neighboring grid grid adj k;
12: if(Grid adj k is a dense grid && is visit[grid adj k] ==

false)
13: is visit[grid adj k] true;
14: Iteratively accessing the adjacency mesh of

grid adj k;
15: end if
16: end if
17: Store all the meshes accessed by the above process as a

micro cluster into the microclu list;
18: end for
19: end if
20: preclutime curtime;
21: Update the is visit collection element to false;
22: end while

process is described as follows.
Line 1: Initialize the flag is visit that has been

accessed by the grid to a false value, i.e., all meshes
are accessed.

Lines 2–5: If the data stream is not finished, the data
point information is continuously read. Each dimension’s
information is sent to the corresponding local node based
on the spatial cell where the data point read at this time
belongs. On the local node, this data point is mapped
to the already divided grid, and the feature vector of the
data point is saved.

Lines 6–8: If the clustering time interval condition is
met, then each grid in the grid set grid list is traversed,
and its grid density is updated using Eqs. (8) and (9).

Lines 9–11: During the traversal process, if the current
grid grid i is a dense grid and has not yet been accessed,
its access state is set to accessed, and its adjacent mesh
is accessed in all directions.

Lines 12–15: If one of the adjacency grids grid adj k
is a dense grid and has not yet been accessed, the access
state is set to be accessed, and the adjacency grid of
grid adj k is iterated through the steps in Lines 9–16
until all the adjacency grids have been accessed.

Lines 17–19: All grids accessed from grid i are stored
as microclusters in a microclu list for the subsequent
transmission to the global node for global clustering.
This local clustering is over.

Lines 20–22: The last clustering time is updated, and
the grid access flag is reset to a false value by using the
following clustering approach.

2.4 Global clustering

In the previous section, the adaptive clustering time
interval strategy was used for local clustering on local
nodes. The data stream speeds of local nodes may
vary, so the resulting adaptive time intervals differ. To
obtain a better clustering effect, this work selects the
minimum value of the adaptive clustering time interval
of each remote node as the time interval of all clustering
nodes, and sends the result to the global node for global
clustering after local clustering is completed.

However, the microclusters obtained by local
clustering may contain more information about the
grid, resulting in a larger amount of data transmission
between the local node and the global node. For a global
node, its bandwidth is constant. When many local nodes
simultaneously transmit data to it, a large amount of
bandwidth is consumed.

For the data transmitted from the local node to the
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global node, the following conditions should be met:
(1) The information transmitted to the global node

needs to be much smaller than the original data stream
size processed by the local node.

(2) The result of the global cluster can be the result of
the combination of the divided local clusters.

The data transmitted by the local node are referred to
as “summary information”. The above two conditions
not only utilize the generality of the clustering data and
reduce the amount of transmission but also ensure the
reducibility of the clustering data in the global node.

Through the microcluster formed by many meshes,
the boundary mesh can be determined so that the
microcluster can be represented as a space surrounded by
the boundary mesh, which saves the mesh information
transmission inside the microcluster. At the same time,
the global cluster can restore the microcluster through
the boundary grid. The amount of summary information
can be further reduced under the condition of ensuring
reducibility.

In this work, the feature mesh of the microcluster
is defined as follows: starting from the coordinates
at any inflection point of the microcluster, a direction
(clockwise or counterclockwise) is selected, and the
inflection point along the mesh boundary is continuously
searched until it returns to the original position. In the
search process, the grid containing the inflection point is
called the “feature grid”. The inflection point can only
belong to the feature mesh where it initially occurs in
the selected direction.

The feature mesh is a subset of the boundary
mesh that meets the first condition described above.
The boundary information of the microcluster can be
preserved because it contains all the inflection points of
the microcluster boundary, thereby further restoring the
entire microcluster information, which also meets the
second condition described above.

For convenience of explanation, the coordinates in
the figure represent the grid with the coordinates in the
lower left corner. In Fig. 6, local clustering produces
two microclusters. The microclusters on the left in Fig. 6
consists of 8 grids, and its characteristic grid is shown by
the red box in Fig. 6, comprising five grids: (2,7), (2,5),
(3,4), (4,5), and (3,7). The right microclusters comprise
12 grids, and their feature grids are also marked with red
boxes, which are four grids: (7,8), (7,5), (9,8), and (9,5).
The feature mesh reduces the amount of information
transmitted by the microcluster.

Therefore, this work selects the feature mesh as the
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Fig. 6 Schematic of the feature cluster of the microcluster.

summary information of the microcluster and passes it
to the global node.

After receiving the feature mesh sent by the local
node, the global node restores the summary information
represented by the feature mesh to the microcluster by
using the restore function getReduction(). For the union
of all local node clustering results, the formation of a
larger cluster depends on the connection of the clusters.

Algorithm 2 is a global clustering algorithm.

Algorithm 2 Global clustering algorithm
Input:

summary information profileinfo list of each local node,
microclu list before the merge, microclu temp for temporarily
storing the micro cluster, whether the two micro clusters can be
merged is merge.
Output:

The merged microcluster collection microclu list.
1: for (each profileinfo in profileinfo list)
2: microclu getReduction(profile info);
3: Save microclu to microclu list;
4: end for
5: for (microclui in microclu list)
6: for (microcluk in microclu list)
7: is mergecanMerge(microclui ,microcluk) // i < k;
8: if (is merge)
9: Store microclui and microcluk in microclu temp;

10: end if
11: end for
12: if (is merge)
13: Remove the micro clusters that appear in

microclu temp from the microclu list;
14: Merge microclusters that appear in

microclu temp;
15: The merged micro-cluster is stored in the last

position of the microclu list;
16: end if
17: end for
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Lines 1–4: Using the restore function getReduction(),
the summary information of each local node transmitted
to the global node is restored to the microcluster, and
stored in the microcluster set before the merge.

Lines 5–11: According to the order of the element
position in the microcluster set, starting from the
first element representing the microcluster, the cycle
determines whether it can merge with the latter one.
After the cycle ends, it continues to determine whether
the second element representing the microcluster can
merge with the latter one until the last element
representing the microcluster can merge with the latter
one. For microclui , if the microcluster microcluk that
can be merged with it can be found, the return value of
the canMerge() function (in this case is true) is assigned
to the merge flag is merge, and the two microclusters
are stored in the set of temporarily saved microclusters.

Lines 12–17: For microclui in the microcluster set,
if the merge flag is merge is true, all microcluster
(including microclui ) that can be merged with microclui
in the microclu list are deleted, and the deleted elements
are merged into one large cluster. It is placed in the last
position in the collection.

3 System Implementation, Testing, and
Algorithm Evaluation

3.1 Experimental environment

This experiment uses three servers in terms of hardware
configuration. A distributed node is deployed on
the virtual machine VMware by using the operating
system CentOS6.5. The three servers include a Nimbus
node and two Supervisor nodes. The server hardware
configuration is given in Table 1. The required main
software and version number are given in Table 2.

3.2 Test data

In this work, four different data volumes of AIS data[25]

are selected as test data sets (Table 3). The data
format and its meaning are given in Table 4. After pre-
processing is completed, the test only needs information
of five dimensions: ShipID, mmsi, name, lon, and lat.
During the test, the relevant parameters in the specified
cluster are Dh = 12, Dl = 6, ˇ D 2, and ˛ D 0:5:

3.3 Actual test and result analysis

The adaptive time interval clustering algorithm based

Table 1 Hardware configuration.
CPU Memory (GB) Hard disk (GB)

Single core 4 50

Table 2 Software environment.
Name of software Version number

VMware 12.5.2 build-4 638 234
CentOS 6.5
Python 2.7

Java 1.8.0 144
Zookeeper 3.4.10

Storm 1.1.1
Flume 1.8.0
Kafka 2.12–1.0.0

MySQL 5.6.16
Eclipse 4.7.0

Table 3 Test data set.
Amount of data

Target 1 3000
Target 2 5000
Target 3 10 000
Target 4 15 000

Table 4 AIS partial data format and its meaning.
Field Type Length Remark

shipID uint64 8 -
mmsi uint32 4 -

shiptype uint16 2 -
name string - -
lon int32 4 Longitude [�1:8 � 108,1:8 � 108]
lat int32 4 Latitude [�0:9 � 108,0:9 � 108]

on density grid (called DAC-Stream) proposed and
implemented in this work is compared with the fixed-
time-interval clustering algorithm based on the density
grid (DC-Stream). Figures 7–10 show the clustering
results of the first, second, third, and fourth clusters at
different times by using two clustering algorithms.

Here, Target 4 trajectory data in Table 3 are selected,
and the fixed clustering time interval is estimated to
be about 4 s. The comparison of Subgraphs (a) and (b)
in Figs. 7–10 reveals that more clusters are produced
by Subgraph (b) than by Subgraph (a) in the second
and fourth clusters. Clustering with the DAC-Stream
algorithm can more accurately discover the hot zone in
ship navigation and improve the accuracy of the real-

(a) DC-Stream (clustering moment t D

4 s)
(b) DAC-Stream (clustering moment t D

4 s)

Fig. 7 First clustering results.
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(a) DC-Stream (clustering moment t D

8 s)
(b) DAC-Stream (clustering moment t D

6 s)

Fig. 8 Second clustering results.

(a) DC-Stream (clustering moment t D

8 s)
(b) DAC-Stream (clustering moment t D

6 s)

Fig. 9 Third clustering results.

(a) DC-Stream (clustering moment t D

8 s)
(b) DAC-Stream (clustering moment t D

6 s)

Fig. 10 Fourth clustering results.

time clustering algorithm over that of the DC-Stream
algorithm. Therefore, the DAC-Stream algorithm for
trajectory clustering can more timely detect the hot zone,
and avoid traffic congestion and dangerous situations as
much as possible.

Figures 7–10 present the visual comparison of the
clustering effects of the DC-Stream algorithm and DAC-
Stream algorithm. However, the merits and demerits of
the clustering results can be determined by using special
clustering evaluation indicators. In this work, the contour
coefficients in the internal evaluation method are used as
indicators.

The value of the contour coefficient is within [�1, 1].
The closer the value of the total contour coefficient to
1 is, the better the effect of clustering will be. K is the

number of clusters and gj is the point in the hot zone
of Li D .g1; g2; : : : ; gj ; : : : ; gn/. The point in the hot
zone is calculated using Eqs. (17) and (18). The contour
coefficients of each point in the hot zone are calculated
using Eq. (19). The average contour coefficient is used
in this work. The clustering effects of the DC-Stream
algorithm and the DAC-Stream algorithm proposed and
implemented in this work are compared.

h.gi / D

nP
kD1;k¤j

dist.gk; gj /

n
(17)

p.j /Dmin

( P
16k6n

dist.gij ; g
l
k
/

n

)
; 16 l6m; l¤ i

(18)

h.gi / D
p.j / � h.j /

max .p.j /; h.j //
(19)

Figure 11 shows a comparison of the contour
coefficients of the DAC-Stream clustering algorithm
and DC-Stream clustering algorithm. The contour
coefficients of the DAC-Stream algorithm are much
larger than those of the DC-Stream; that is, the clustering
effect of the DAC-Stream clustering algorithm is better
than that of the DAC-Stream algorithm.

The DAC-Stream algorithm can adaptively adjust the
interval time of clustering. Therefore, when the speed of
the data stream is faster, the amount of data that needs
to be processed in a certain period is larger, and the
grid changes from a sparse grid to a dense grid. When
the time is shorter, the time interval of clustering also
shortens. Conversely, if the speed of the data stream
is slow, the amount of data to be processed is reduced
in a certain period, and the data mapped to the grid are
also reduced. The time interval of clustering should be
increased. System overhead and latency can be reduced
by adaptively adjusting the interval of clustering. The
introduction of the feature grid in the global clustering

C
on
to
ur
 c
oe
ff
ic
ie
nt

Target 1 Target 2 Target 3 Target 4

Fig. 11 Contour coefficient comparison between DAC-
Stream and DC-Stream.
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process reduces the amount of data transmission, thereby
reducing the use of bandwidth, I/O, and the time of
trajectory clustering. As the amount of data increases,
the advantages of the DAC-Stream clustering algorithm
become more apparent. Figure 12 presents a running
time comparison diagram of clustering the test data in
Table 3 by using the DAC-Stream clustering algorithm
and DC-Stream clustering algorithm.

This section compares DAC-Stream with DC-Stream
in terms of two aspects: the accuracy of the clustering
algorithm and clustering time. The experimental
results reveal that the precision of the proposed and
implemented DAC-Stream clustering algorithm is higher
than that of the DC-Stream, and the total clustering time
of the former is shorter than that of the latter. In general,
the DAC-Stream algorithm has a good effect on the
online real-time clustering of streaming trajectory data.

4 Conclusion

With the development of the big data real-time
processing framework represented by Storm and in
comparison with urban transportation, the maritime
traffic business has become more complicated, and
the real-time requirements of the system are higher.
A ship’s navigation characteristics cannot be found
in real-time with its AIS positioning system, and the
clustering effect based on the density grid fixed-time-
interval algorithm cannot meet the shortcomings of
real-time clustering. The clustering effect based on
the density grid fixed-time-interval algorithm cannot
meet the real-time requirements. Clustering has some
shortcomings, such as inability to find the hot zone
in time. This work proposes DAC-Stream, which can
adapt the time according to the size of the real-time
ship trajectory data stream. Interval clustering can be
achieved according to the size of the real-time ship
trajectory data stream for efficient and timely acquisition
of the hot zone information of the ship. Experimental

Fig. 12 Comparison of the clustering time of DAC-Stream
and DC-Stream.

results show that DAC-Stream improves the clustering
effect and accelerates data processing compared with
DC-Stream.
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