
Location-leaking through Network Traffic in Mobile
Augmented Reality Applications

Gabriel Meyer-Lee‡, Jiacheng Shang† and Jie Wu†
†Center for Network Computing, Temple University, Philadelphia, PA, 19121
‡Engineering Department, Swarthmore College, Swarthmore, PA, 19081

gmeyerlee@gmail.com

Abstract—Mobile Augmented Reality (AR) applications allow
the user to interact with virtual objects positioned within the
real world via a smart phone, tablet or smart glasses. As the
popularity of these applications grows, recent researchers have
identified several security and privacy issues pertaining to the
collection and storage of sensitive data from device sensors.
Location-based AR applications typically not only collect user
location data, but transmit it to a remote server in order to
download nearby virtual content. In this paper we show that the
pattern of network traffic generated by this process alone can be
used to infer the user’s location. We demonstrate a side-channel
attack against a widely available Mobile AR application inspired
by Website Fingerprinting methods. Through the strategic place-
ment of virtual content and prerecording of the network traffic
produced by interacting with this content, we are able to identify
the location of a user within the target area with an accuracy of
94%.This finding reveals a previously unexplored vulnerability
in the implementation of Mobile AR applications and we offer
several recommendations to mitigate this threat.

Index Terms—Augmented Reality, mobile applications, data
privacy.

I. INTRODUCTION

Augmented Reality (AR) describes a technology which
convincingly positions virtual objects within the real world
and allows the user to interact with them. Currently, AR is
dominated by mobile AR, which encompasses all AR appli-
cations displayed through mobile devices, including specially
designed AR glasses as well as smart phones and other hand-
held devices[2].

The AR industry is expected to reach $85-$90 billion within
5 years, and already includes technologies built for education,
entertainment, tourism, and virtual modeling. Games are cur-
rently the most popular application for AR and will likely
remain so for some time[5]. The most popular of these games
is Niantic’s Pokemon Go.

Pokemon Go is not only an example of mobile AR, but
geolocation-based mobile AR. This particular form of AR
does not only attempt to position virtual objects within a
real environment, but also grants the virtual objects an actual
geographic location. In its most complete form, this type of
AR can be used to create a persistent, entirely virtual layer to
the world, which exists on top of the physical world.

Mobile AR, especially location-based mobile AR, is becom-
ing more powerful by the day. The rapid expansion of cloud-
computing capabilities, computer vision software, and the
steady improvement of network connections, both increases in

Figure 1. Diagram depicting the attack model for a network-traffic-analysis-
based attack on a location-based Mobile Augmented Reality application

public WiFi and the impending mobile 5G, continually support
greater and greater possibilities for these apps.

The AR industry is very young and so is the academic study
of AR. Much of the current body of literature is very theoreti-
cal or concerned with developing the necessary technology to
support AR or VR. Considerably less literature deals with the
ramifications of AR technology actually existing. In particular,
only recently has significant work been published addressing
the security of AR technology. The heavy use most current
AR apps make of device sensors means that AR applications
represent a significant concentration of sensitive data.

Early discussion of AR security/privacy did occur 2000’s
Designing Augmented Reality Environments (DARE) confer-
ence. Mackay [11] discusses security and privacy concerns,
but with regard to augmented paper, which is no longer
considered an AR technology. On the other hand, Friedman
and H. Kahn Jr [7] are remarkably prescient in their as-
sessment of the risks of AR. Although their paper is short,
they identify several key concerns, such as the increased
difficulty of maintaining privacy while using AR technology
and the possibility of deceiving or harming a user through
attacks on the output content, which would be more thoroughly
discussed by Roesner, Kohno, and Molnar [15] 14 years later.
This work, while very thorough and much more reflective of
the current AR paradigm than previous work, remains very
theoretical. On one hand, their discussion of the challenges of
interactions between independent AR systems is very forward-

978-1-5386-6808-5/18/$31.00 2018 IEEE

thinking and will hopefully influence the future development
of AR software. On the other hand, the very-real current risks
associated with the heavy sensor use and data-managing of
AR mobile apps are given equal weight to more speculative
concerns, like the need for a consistent shortcut to return to
reality.

Guzman, Thilakarathna, and Seneviratne [8] show that up
until 2014, less than 1% of papers on AR/VR discussed
security and privacy concerns. Many of the privacy/security
concerns addressed here were already brought up by Roesner,
Kohno, and Molnar [15], however this more recent survey
provides a comprehensive technical overview of the current
work in regards to these concerns. This includes work in
input sanitization, privacy-preserving data aggregation, and
physiological-based user authentication, among other fields.
The authors of this survey identify one particular area of
defensive AR/MR-related research which is underdeveloped:
data protection. In addition to noting that very little work had
been done on data protection systems which targeted AR, the
authors pointed out that a high-concentration of high-use AR
technologies could easily put a strain on current networking
infrastructure.

However, the heavy use of the network infrastructure itself
poses a risk for data protection. AR applications have a natural
vulnerability to side-channel attacks, given their particular
reliance on taking in sensory data and communicating with
a server to process that data. Specifically, AR apps display a
vulnerability to network traffic analysis, a widely researched
form of side-channel attack. This vulnerability has not yet been
experimentally explored and the extent of the threat posed by
side-channel attacks on AR applications is largely unknown.

In this paper we demonstrate conclusively that patterns
in the network traffic data of an Mobile AR application
can leak a user’s physical location. We illustrate this threat
through an example attack using data recorded from WallaMe,
a publicly available AR application. The available virtual
content observed creates a fixed set of distinct locations. Our
attack uses a Convolutional Neural Network to classify the
network traffic as belonging to one of these locations with an
accuracy of approximately 94% demonstrating, for the first
time, that physical location data is recoverable from Mobile
AR network traffic patterns.

II. RELATED WORK

a) Network Traffic Analysis: The literature on network
traffic analysis reveals the extent to which patterns in network
traffic can expose the information of unsuspecting users. Chen
et al. [3] display the potential risks of side-channel attacks
and point out that these vulnerabilities are the byproduct of
common web design practices. These three vulnerabilities the
authors identify, low entropy inputs, stateful communications,
and significant traffic distinction are all also vulnerabilities of
contemporary AR applications.

Website Fingerprinting (WF) [1] is an attack based on
network traffic analysis in which the attacker reveals the
identity of the web pages the victim is visiting, even if the

victim is using an anonymity network like Tor. This is typi-
cally accomplished by extracting features from the observable
network traffic and matching the user’s traffic to prerecorded
patterns corresponding to specific websites. Although there
are many sophisticated algorithms to defend against WF, they
typically increase either delay or bandwidth, which are already
issues for AR apps.

Fingerprinting holds an even greater danger for AR. While
WF can analyze web browser traffic to reveal the web sites
you’ve visited, AR Fingerprinting could analyze AR browser
traffic to reveal the actual physical locations you’ve visited.

b) Mobile AR Privacy/Security: As outlined above, most
of the existing literature on AR privacy/security focuses on is-
sues with the security or privacy of the displayed content itself.
These dangers can include injecting malicious content into the
display, comprising display privacy via shoulder surfing, or
compromising the privacy of oneself or others via the camera
feed. There is very little work addressing network attacks
in a Mobile AR domain. A notable blog post by Colceriu
[4] released shortly after Pokemon Go’s jump in popularity
demonstrated some network vulnerabilities of Pokemon Go.
Ren et al. [13] demonstrate a general network traffic analysis
attack against mobile apps. This is not particular to AR
applications but mobile AR applications are just as capable
of leaking personally identifiable information as any other AR
application. McPherson, Jana, and Shmatikov [12] investigate
several possible security concerns with Mobile AR browsers,
including a brief discussion of potential network based attacks.

III. OVERVIEW OF THE ATTACK

The demonstrative attack utilizes a Mobile AR app, Wal-
laMe, available through the Google Play store and iTunes App
store as an platform for recording network traffic data. This
app is essentially designed to be a digital graffiti platform,
allowing users to draw digital art on physical walls and share
their ”walls” with their friends. We chose this app as a platform
for the attack because it allows its users to place virtual content
of a size of their choice at any location. This allows an attacker
to deploy content in a specific pattern to facilitate localization
of the victim. Additionally, the content is visible within a
radius approximately equal to a single city block, allowing
us to create patterns of manageable sizes for the purposes of
our experiment.

A. Attacker Model

In this attack scenario, the attacker is able to passively
monitor the victim’s network traffic as they move through
an area of roughly eight city blocks. This area presents a
challenge not normally encountered in network traffic analysis:
the moving victim will likely not be continuously connected to
a single wireless access point. We have identified two possible
attack models that could support monitoring of a moving
victim, network sniffing at a university or urban center and
a spyware application installed on the victim’s device.

a) Network Sniffing: Network sniffing is the traditional
model for an attack based on network traffic analysis. In this
context, the mobile nature of the victim would require them to
be moving within a university campus or urban center which
was entirely blanketed by wireless networks. If the attacker
has compromised the security of a university campus’ wireless
network, monitoring network traffic would be straightforward,
but in order to utilize network sniffing to monitor the network
traffic the attacker would need to deploy sniffing devices
throughout the area to cover the many available access points
as demonstrated by Kotz and Essien [10]. The attacker would
also need to implement a highly efficient method to isolate
and aggregate the victim’s network traffic. This method would
allow the attacker to view a highly detailed record of the
victim’s traffic and also utilize information about the routing
of their network traffic to assist in localization.

b) Spyware on Device: Without WiFi coverage over the
area of the attack, this attack would require spyware installed
on the victim’s mobile phone, with the most practical form
being an over-permissioned application. This is a very practical
attack vector as Felt et al. [6] showed that a majority of
Android users do not pay attention to or comprehend Android
permissions. The necessary Android permission is innocuously
termed ”usage access,” which is less likely to raise suspicion in
users than directly requesting location access. In addition, the
Android permissions are not fine-grained enough to support
users limiting the access of an application to the data usage of
specific applications. This means that any application which is
granted usage access, for example, an application to monitor
cellular network data usage for users on a limited-data cellular
plan, is able to access the data necessary to perform this
attack. One advantage of this attack implementation is that it
will work effectively for both WiFi and cellular network data
usage. The main drawback of this method is that it does not
allow packet level analysis of the network traffic. The attacker
will only be able to monitor the quantity of data downloaded
and uploaded by the target AR application over time, unable
to distinguish individual packets or the source API of the
downloaded data.

Our attack is based on the latter of the two possible
described methods, as we believe it to represent a more real-
istic implementation of the attack. Over-permissioned mobile
applications are a widely recognized current security concern
and represent a more practical implementation of the attack
than network sniffing. The network sniffing method does
represent a more effective method of localizing a security-
aware victim, but we judge the overall threat of the spyware
method to be greater, as the setup costs of the network sniffing
method are prohibitive of mass implementation. The ”usage”
permission on Android allows our over-permissioned app to
track the cumulative data usage of WallaMe (or any other app
on the phone). We sample this cumulative data usage at 1 Hz
producing a signal over time of download and upload data.
We utilize the patterns found in this download data alone to
locate the user.

Figure 2. Diagram depicting Scenario 1 virtual object deployment

B. Victim Model

Additionally, in this attack scenario, our victim is actively
searching for virtual content. As soon as some virtual content
(a wall) on WallaMe becomes visible to them, they will select
each available wall once in any order. This is necessary as the
app does not download the full image until the wall has been
selected. This behavior is fully within normal user behavior
for the app, although real user behavior is unlikely to be as
consistent. This model of user behavior is chosen in order to
support a generalization to AR applications with automatically
download virtual content within a set radius.

C. Scenario 1: Non Overlapping, Identical content

The layout of the attack consists of 7 identical images, each
placed on its own wall, one placed two blocks to the west of
the victim’s starting location, two placed two blocks north,
and four placed two blocks east. This pattern will allow the
attacker to know once the victim has traveled one block in
any of these three directions. This layout supports an attack
in which the attacker is intending to track a moving victim
through an urban environment. Assuming that the victim is
traveling forward only, by deploying the virtual content in the
three available directions for the victim, the attacker is able
to infer the direction the victim has moved and redeploy the
virtual content to continue tracking. The locations representing
these three possible directions are labeled in Figure 2.

For the purposes of collecting data, our tests involved
walking one block in each of these three directions and then
returning. This is depicted in Figure 3 which depicts a single
data collection trial, with the locations within the visibility
radii of the three image groups labeled. The location of the
network traffic data was labeled manually. GPS locations
coinciding with the network traffic data were recorded during
the experiment for the purposes of confirming the validity of
the labels.

Figure 3. Data collection path with detectable locations labeled

Figure 4. Diagram depicting Scenario 2 virtual object deployment

D. Scenario 2: Overlapping, distinct content

In the second attack scenario the attacker deploys 3 separate
images instead of 7 duplicates of the same image. These
images are specially chosen to have distinct download sizes
within the WallaMe app. These images are deployed at an
approximately one block distance from each other to create
overlap between the visible areas of the individual images.
This creates a total of 7 different distinguishable areas within
a roughly two block radius of the epicenter. These 7 areas are
shown labeled in Figure 4.

This attack is focused solely on localizing the victim within
an urban area, although it also has the capability to track the
victim’s location. This scenario is not as heavily dependent
on the prescribed victim behavior model. Because the distinct
areas are each defined by a single uniquely-sized wall within
WallaMe, whenever the victim opens a wall, there location can
be tied to the visibility radius of that wall. We will, however,
still assume for the purposes of our analysis that the victim

Figure 5. Data download over time of sample trial

is following the behavior model, as this allows us to utilize
the victim’s opening of multiple walls within the overlap of
the visibility radii to establish a finer location for the victim,
as well as supporting the generalization of this method to
AR application which automatically download nearby virtual
content.

As with Scenario 1, we manually recorded experimental
data by visiting each of these possible locations in turn,
although unlike Scenario 1, multiple different traversals of the
7 locations were performed and recorded.

IV. ANALYSIS AND RESULTS

Due to networks conditions varying through time and lo-
cation, the downloads of the visible images did not form
perfectly regular patterns. Each image requires a consistent
amount of data to be downloaded, but this data is not down-
loaded within a consistent period creating significant variation
in the network patterns. Our experiment utilizes only the
quantity of data downloaded over time by the user’s WallaMe
application as the user’s interactions with virtual content are
characterized most explicitly by spikes in download data.

Figure 5 shows how the download events are split into
separate components of unpredictable size. The data describing
the downloads of the single, double, and quadruple images are
labeled as Events 1, 2, and 3. In order to verify the download
sizes followed the expected pattern, we use a a windowing
technique to aggregate the download samples.

Figure 6 depicts the resulting signal after convolution with
a Hamming Window. This operation consistently reveals three
discrete downloads of increasing size, although the local
maxima visible as a result of this convolution operation are
not at consistent heights. As a result, this windowing operation
is not enough on its own to support the extraction of location
from the recorded network traffic data. The variation present
suggests that a machine learning algorithm would be an
effective method for inferring the user’s location.

A. Machine Learning Algorithm Requirements

In order to design an algorithm to identify the user’s location
based on the recorded network traffic data, several constraints

Figure 6. Windowed data download over time of sample trial

are imposed to assure the viability of this method in a real
world attack.
• The algorithm should be designed so that it could provide

near real time location updates in an online attack. This
meant that a fixed size amount of network data had to be
specified as the input to the algorithm.

• The algorithm must not rely on a sequential pattern
of input information to localize the user. While this
contextual information could certainly be used to improve
localization accuracy in an attack, the use of a single,
preset sequence of locations in Scenario 1 meant that the
user’s location could be much easier to infer from its
position in the sequence than from the network traffic
as intended. This meant that structures with some sort
of memory of their input, like recurrent neural networks,
would be unsuitable for this task.

B. Neural Network

Machine learning algorithms are widely used in the field of
network traffic analysis for Website Fingerprinting tasks. Past
state-of-the-art WF algorithms have utilized Support Vector
Machines (SVMs), k-Nearest Neighbors (k-NN), and random
forests. Only recently has the use of neural networks been
demonstrated for WF [14]. The traditional methods are largely
unsuitable for the data we have collected as they rely on
manually engineered feature vectors extracted from traces. Our
lack of proper traces prevents us from implementing these
methods, as the continuous nature of our data complicates
feature extraction. Features are typically based on incoming
and outgoing packet lengths and quantities, information which
cannot be recovered from our data.

1) Convolutional Neural Network: With the above con-
straints in mind, we choose to use a convolutional neural
network (CNN) as our classifier. The design of this neural
network is inspired by the use of CNNs for image classification
tasks. CNNs have been shown to be capable of learning
translation-invariant representations of images [9]. This prop-
erty is desirable for our task as the download event for the
virtual content can occur anywhere within our fixed length

Figure 7. CNN structure

frame. The input to the CNN is a one minute long frame of
WallaMe download data. An appropriate dataset is synthesized
by using a moving 60 sample frame with a stride of 1 on the
input data, labeling the frame with the appropriate location
if the frame included a manually labeled download event. In
addition to the translation-invariance property, we decided to
use a CNN because of the success of the above windowing
process in creating clear groupings in the recorded data. The
1D convolution operation, with the appropriate weights, is
capable of creating a very similar output to the windowing
process. Another advantage of CNNs is that they have less-
trainable parameters than fully-connected networks and so can
preform better with less training data.

2) Network Design: The neural network structure utilizes
two parallel networks which are ultimately joined to before the
final layer to perform a single classification task. This structure
is partially inspired by the Inception module [16], which
features multiple parallel convolutional layers with different
filter sizes to allow the network to optimize the filter size
itself. The first layer features independent 1D convolutions,
one with a window size of 30 samples and 10 channels and
one with a window size of 10 samples and 5 channels. We
use a large filter size to allow the reproduction of the output
shown in Figure 6 while the smaller size allows the network
to observe dense spikes in download traffic. These layers are
each followed by their own additional convolutional layer with
a window size of 5 and 5 channels to allow the observation of
patterns larger than either of the previous window sizes. These
secondary convolutional layers are then each followed by their
own fully-connected layer, with 10 output units each. These
layers are concatenated and followed by a final fully-connected
layer, whose output reflects the either 4 or 8 possible location
classes. This structure is shown in Figure 7.

3) Training the CNN: Each of the recorded traversals of the
possible detectable locations are split into numerous 60-sample
frames as described above. For each traversal, this produces
approximately 1000 null samples (reflecting the user not

entering any of the locations) and 50 samples corresponding to
each location. This uneven representation in the training data,
if uncorrected, would lead to a majority of the error in our
network’s predictions coinciding with the download events.
To remedy this, we perform data augmentation [17], copying
the current data for each location and applying Gaussian
noise until there are roughly equivalent amounts of samples
corresponding to each location and the null location.

10 traversals are initially used as training data and 3
traversals as a validation dataset in order to experimentally
determine the validity of the presented network architecture.
Following this, these 13 traversals are combined as training
data and 4 yet-unseen traversals are used as test data to mea-
sure the accuracy of the network. The training data is shuffled
and split into mini-batches of 32 samples. The classifier is
trained on this dataset for 200 epochs. During the validation
phase, the accuracy on the validation data set is recorded after
each epoch. During the testing phase, the overall accuracy is
only recorded once for the all of the test traversals together.
The CNN’s weights are adjusted using the Adam optimizer
with a learning rate of .001 for Scenario 1 and a learning rate
of .0002 for Scenario 2, which is lower to account for the
greater quantity of data and output classes.

C. Results

Across the 4676 frames in the Scenario 1 test dataset, our
CNN classifies 93.8% accurately and of the 4268 frames in the
Scenario 2 test dataset our model classifies 87.6% correctly.
These errors, however, are notably not evenly distributed
throughout the predicted labels. By examining the distribution
of error, we can show that our classifier was, in fact, more
accurate than these figures suggest.

1) Scenario 1 Error Analysis: As shown in the Figure 8,
the most accurately predicted classes are the null location and
location 1. This is as expected, as the the null location is
generally represented by very little network traffic and the first
location is indicated by a single isolated download. Locations
2 and 3 are trickier as they each represent several sequential
downloads. The mutual confusion is likely due to the limi-
tations of the network, which cause the spikes in download
data to be similar in size regardless of the total amount being
downloaded. The confusion between both locations 2 and 3
and the null location is likely due to the gaps present in the
training data for those locations. As locations 2 and 3 are
characterized by individuals downloads separated by varying
amounts of time, there are occasional gaps where the data is
labeled as belonging to location 2 or location 3 but consists of
very little network traffic. Copying the data corresponding to
these locations has increased the representation of these gaps
in the training data.

2) Scenario 2 Error Analysis: Unfortunately, in the Sce-
nario 2 test predictions one class is not most likely to be
predicted correctly. Location 5 download data is most likely
to be predicted as belonging to location 3, as shown in Figure
9. This confusion is understandable, as location 5 and location
3 are similarly composed combinations of two downloads,

Figure 8. Normalized confusion matrix showing predictions on Scenario 1

Figure 9. Normalized confusion Matrix showing predictions on Scenario 2

Figure 10. Scenario 1 test error plotted against true values

including the image at location 1 along with the image at
location 4 or 2 respectively. The patterns representing these
downloads are likely to be similar, as the confusion shown
between locations 2 and 4 suggests that the download size
of the location 4 image is not as distinctly larger than that
of location 2 as would be ideal. Similarly, location 6 is
occasionally confused with the larger of its two components
images, the one found at location 4, and location 7 was
occasionally confused with location 6, with which it shares
its two largest components (the images at locations 4 and 2).

3) Moving Frame Error: There is a specific pattern in the
observed error of the predictions on the test set which holds
across both experimental scenarios and can actually ascribed
to valid, robust performance by the CNN. That pattern consists
of false positives, which within the context of this experiment
we define as null location frames incorrectly classified as
belonging to one of the detectable locations. Specifically,
these false positives surround correctly predicted locations.
The predicted value of the false positive generally increases
towards the value of the nearby true positive the closer the
frame is to the location in time of the true positive. This
pattern can be viewed in the Scenario 1 test data in Figure
10, where it can be clearly seen that every occurrence in the
test dataset of download data corresponding to locations 2 or
3 is surrounded by several instances of a null location frame
being incorrectly predicted as location 1.

We call this error ”moving frame error” as it is the nat-
ural result of trying to detect a combination of sequential
downloads using a moving frame. Our labeling method only
attaches a nonzero location label to a frame if it fully covers
or is fully covered by the hand labeled region of the download
event. A frame which partially covers a download event may
include only a part of the sequence of downloads. In the case
of Scenario 1, a frame near the location 2 labeled area may
include one of the two sequential downloads which is actually
exactly equivalent to the download data representing location
1. In this case, the CNN correctly identifies the presence of a
single download and assigns the frame a label of 1, although
the label for this frame will be 0, as the frame has not yet
reached the double download which characterizes location
2. It is also possible that the frame may include enough of
the double download to correctly identify that the user is in
location 2, but may not cover the manually labeled region of
location 2 download event sufficiently enough to be labeled
as location 2.

This moving frame error, therefore does not necessarily
constitute an actual error of the neural network, rather an error
enforced by the arbitrary strictness of the labeling scheme. The
moving frame error actually contains useful information itself.
Figure 10 shows multiple instances of a null location being
falsely identified as location 3. Unlike the actual instances of
location 3, none of these false identifications show moving
frame error, and so can easily be filtered out on this basis.

The moving frame error is actually responsible for a major-
ity of the observed error. This is not reflected in the confusion
matrices simply because the vast majority of the frames in

the test dataset represent correctly identified null samples, so
the influence of false positives appears to be relatively low.
By accepting that the moving frame error actually represents
correct operation of the neural network and is useful in the
localization task, the effective accuracy of our predictive CNN
is actually much higher than the raw accuracy, as shown in
Table 1.

Scenario 1 Scenario 2

Raw accuracy 93.8% 87.6%
Error due to moving frame 56.3% 58.2%

Accuracy excl moving frame 97.3% 94.8%

Table 1: Adjusting accuracy to exclude moving frame error.

V. MITIGATION

Defenses against this attack could be implemented by the
developer of the application, the AR technology itself, or even
by the user.

The only real option for the user to mitigate such an attack
would require the user to have knowledge of the mechanics
of the attack and avoid the behavior targeted by the attack,
which, in our case, is opening all of the available walls. Mobile
AR apps typically have several features which are not location
based and produce network traffic, such as interfaces that allow
sharing with social media. Frequent use of these features may
diminish the viability of recovering the location from network
traffic.

The developers of the AR application have more and more
powerful options for mitigating this form of attack than the
users. Packet-padding is a classic defense against network
traffic analysis attacks. If the app developer is able to pad the
location-based downloads to a fixed size, this could prevent
the inference of location from network traffic. This method
may create too much overhead for use in an AR application
so an alternative defense is asynchronous downloads of nearby
digital objects. Most digital content tied to a specific location
should be downloaded prior to when it must actually be served
up to the user. Mobile AR apps typically have a set radius of
in which content is visible to the user. The suggested method
is to define a much larger area in which virtual content is
downloaded probabilistically not en masse. The probability
of a piece of content being downloaded should be dependent
on its distance from the user, the user’s heading, its size,
and current network conditions. This method will allow AR
apps comparable or improved performance, while obscuring
the users location through the random downloads.

The developer of the AR technology has the ability to
specify the access to data for applications running on the
device. Well designed access rules, or user permissions, could
prevent this attack being implemented via spyware installed
on the device.

VI. FUTURE WORK

This paper merely establishes the possibility of this attack as
a proof-of-concept. The level of threat posed by such an attack
is not thoroughly assessed. This assessment would require

larger scale experimentation to determine the scalability of this
attack model. Additionally, the potential for location-leaking
in a more coarse sense must be considered. The potential of
Mobile AR application network traffic to reveal which city
or neighborhood the victim could be considered through this
large scale experimentation.

A passive form of this attack could be developed for AR
apps that do not allow users to place their own geolocated
virtual content of arbitrary sizes. This attack could record
data downloaded while traveling to different physical locations
within the app to learn a fingerprinting algorithm which could
tie the network traffic produced by existing location-based
digital content to the location of that content. This could be
used to attack a wider range of AR applications, including
Pokemon Go.

VII. CONCLUSION

While our localization method for WallaMe comes with
several qualifications, the 93.8% raw localization accuracy
and 97.3% adjusted location accuracy achieved for Scenario
1 clearly that network traffic analysis techniques can be
used to tie network traffic patterns to physical locations. The
94.8% adjusted accuracy found for Scenario 2 shows that
this method can absolutely be used to establish automated
localization of a WallaMe user within a fixed area. As AR
technology spreads and increases in popularity, this threat
that this attack poses will only increase. This threat can be
mitigated, however, through responsible design by developers
of location-based AR applications. These developer should
build in measures to decorrelate the network traffic from the
physical location of their users, such as download padding
or probabilistic downloads of nearby AR content. Developers
of AR technology must consider the network traffic of the
device to be sensitive data, in addition to the personally
identifiable information communicated via that network, and
provide reasonable restrictions to the access of this data.

ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1757533, CNS 1629746, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, and IIP 1439672.

REFERENCES

[1] Xiang Cai et al. “Touching from a Distance: Website
Fingerprinting Attacks and Defenses”. In: Proc. of the
2012 ACM Conference on Computer and Communica-
tions Security. CCS. 2012, pp. 605–616.

[2] D. Chatzopoulos et al. “Mobile Augmented Reality
Survey: From Where We Are to Where We Go”. In:
IEEE Access 5 (2017), pp. 6917–6950.

[3] S. Chen et al. “Side-Channel Leaks in Web Applica-
tions: A Reality Today, a Challenge Tomorrow”. In:
2010 IEEE Symposium on Security and Privacy. May
2010, pp. 191–206.

[4] Alina Colceriu. Catching Pokemon GO in Your Network.
2016. URL: https://www.ixiacom.com/company/blog/
catching-pokemon-go-your-network.

[5] Digi-Capital. Ubiquitous $90 billion AR to dominate
focused $15 billion VR by 2022. 2018. URL: https : / /
www.digi- capital.com/news/2018/01/ubiquitous- 90-
billion-ar-to-dominate-focused-15-billion-vr-by-2022/
(visited on 07/27/2018).

[6] Adrienne Porter Felt et al. Android Permissions: User
Attention, Comprehension, and Behavior. Tech. rep.
UCB/EECS-2012-26. EECS Department, University of
California, Berkeley, Feb. 2012. URL: http://www2.eecs.
berkeley.edu/Pubs/TechRpts/2012/EECS-2012-26.html.

[7] Batya Friedman and Peter H. Kahn Jr. “New directions:
a value-sensitive design approach to augmented reality.”
In: Proceedings of DARE 2000 on Designing augmented
reality environments. Elsinore, Denmark: ACM, Jan.
2000, pp. 163–164.

[8] Jaybie A. de Guzman, Kanchana Thilakarathna, and
Aruna Seneviratne. “Security and Privacy Approaches
in Mixed Reality: A Literature Survey”. In: CoRR
abs/1802.05797 (2018). arXiv: 1802.05797. URL: http:
//arxiv.org/abs/1802.05797.

[9] E. Kauderer-Abrams. “Quantifying Translation-
Invariance in Convolutional Neural Networks”. In:
ArXiv e-prints (Dec. 2018). arXiv: 1801.01450.

[10] David Kotz and Kobby Essien. Characterizing usage of
a campus-wide wireless network. Tech. rep. Dartmouth,
2002.

[11] Wendy E. Mackay. “Augmented Reality: Dangerous
Liaisons or the Best of Both Worlds?” In: Proceedings
of DARE 2000 on Designing Augmented Reality Envi-
ronments. DARE ’00. 2000, pp. 170–171.

[12] Richard McPherson, Suman Jana, and Vitaly
Shmatikov. “No Escape From Reality: Security
and Privacy of Augmented Reality Browsers”. In:
Proc. of the 24th Intl. Conference on World Wide Web.
WWW ’15. 2015, pp. 743–753.

[13] Jingjing Ren et al. “ReCon: Revealing and Controlling
PII Leaks in Mobile Network Traffic”. In: Proc. of the
14th Annual Intl. Conference on Mobile Systems, Appli-
cations, and Services. MobiSys ’16. 2016, pp. 361–374.

[14] Vera Rimmer et al. “Automated Feature Extraction for
Website Fingerprinting through Deep Learning”. In:
Proc. of 25th Annual Network and Distributed System
Security Symposium. NDSS. 2018.

[15] Franziska Roesner, Tadayoshi Kohno, and David Mol-
nar. “Security and Privacy for Augmented Reality Sys-
tems”. In: Commun. ACM 57.4 (Apr. 2014), pp. 88–96.
ISSN: 0001-0782.

[16] Christian Szegedy et al. “Going Deeper with Convolu-
tions”. In: CoRR (2014). arXiv: 1409.4842. URL: http:
//arxiv.org/abs/1409.4842.

[17] Sebastien C. Wong et al. “Understanding data aug-
mentation for classification: when to warp?” In: CoRR
abs/1609.08764 (2016). URL: http://arxiv.org/abs/1609.
08764.

