
TRANSACTIONS ON SERVICES COMPUTING 1

Congestion-Minimizing Network Update
in Data Centers

Jiaqi Zheng, Student Member, IEEE, Hong Xu, Member, IEEE, Guihai Chen, Member, IEEE,
Haipeng Dai, Member, IEEE, and Jie Wu, Fellow, IEEE,

Abstract—The SDN control plane needs to frequently update the data plane as the network conditions change. Since each switch
updates its flow table independently and asynchronously, the transition of data plane state—if done directly from the initial to the final
stage—may result in serious flash congestion. Prior work strives to find a congestion-free update plan with multiple stages, each with
the property that there will be no congestion independent of the update order. Yet congestion-free update may prevent the network
from being fully utilized. It also requires solving a series of LP which is time-consuming. In this paper, we propose
congestion-minimizing update and focus on two general problems: The first is to find routing at each intermediate stage that minimizes
transient congestion for a given number of intermediate stages. The second is to find the minimum number of intermediate stages and
an update plan for a given maximum level of transient congestion. We formulate them as two optimization programs and prove their
hardness. We propose a set of algorithms to find the update plan in a scalable manner. Extensive experiments with Mininet show that
our solution reduces update time by 50% and saves control overhead by 38% compared to prior work.

Index Terms—SDN, data center networks, network update, transient congestion.

F

1 INTRODUCTION

IN software defined networking (SDN), a logically central-
ized controller has a global view of the network state,

and is responsible for delivering the control decisions to
the data plane. The controller enforces policies by installing,
modifying, or deleting forwarding rules in switch flow ta-
bles through southbound APIs such as Openflow [37]. SDN
presents tremendous advantages for data center networks.
Google [21] and Microsoft [19] for example rely on SDN to
interconnect their data centers and achieve higher network
utilization, lower delay, and less packet drops. The link
utilization can approach 100% as reported from Google [21],
while traditional networks have only 30% to 40% average u-
tilization. Applications with deadlines [24] also benefit from
SDN and their performance can be improved significantly.

Despite the centralization of control plane, the data plane
remains a distributed system. When network conditions
change due to routing policy reconfiguration, switch up-
grade, device failures, or traffic variations, the controller
needs to update the data plane by modifying the flow
tables. This process is not atomic [46]: each switch is updated
independently and asynchronously. Thus network update

The work was supported in part by the Hong Kong RGC ECS-21201714, GRF-
11202315, CRF-C7036-15G, China 973 projects(2014CB340303), China NSF
grants(61472252,61133006,61321491,61502229), NSF grants CNS 1449860,
CNS 1461932, CNS 1460971, CNS 1439672, CNS 1301774, ECCS 1231461.
Jiaqi Zheng is with State Key Laboratory for Novel Software Technology,
Nanjing University, China, and Department of Computer Science, City
University of Hong Kong, Hong Kong. (e-mail: jiaqi369@gmail.com)
Hong Xu is with Department of Computer Science, City University of Hong
Kong, Hong Kong. (e-mail: henry.xu@cityu.edu.hk)
Guihai Chen and Haipeng Dai are with State Key Laboratory for Novel
Software Technology, Nanjing University, China. (email: gchen@nju.edu.cn,
haipengdai@nju.edu.cn)
Jie Wu is with Department of Computer and Information Sciences, Temple
University, USA. (e-mail: jiewu@temple.edu)
Part of the work was presented in IEEE ICNP 2015.

may result in serious congestion during the transient pe-
riod, even though the initial and final configurations are
uncongested. For example, congestion may happen when
new flows—those that are supposed to be carried by a
switch after the update—arrive before old ones that need
to be migrated have left. Updates in both intra-datacenter
and inter-datacenter networks, if not carefully planned, may
disrupt many applications [19], [30].

Previous work on network update, especially SWAN [19]
and zUpdate [30], proposes to find a congestion-free update
plan to solve this problem. The update plan consists of
discrete stages, each of which involves changing flow tables
on a set of switches, with the property that there will be no
congestion independent of the update order or timing. This
approach suffers from several drawbacks, however.

TABLE 1
Running time of LP for congestion-free update

1K 2K 3K 4K 5K
DCN 0.73 min 1.40 min 2.10 min 2.96 min 4.12 min
WAN 0.60 min 1.01 min 1.57 min 2.43 min 3.12 min

For DCN, the topology is an 8-pod fat-tree, with 16 long-lived flows in
the background. For WAN the topology is Microsoft’s production network
topology from [19]. The initial and final routing is generated randomly.
We use the algorithms in [30] and [19] to find a congestion-free update
plan for DCN and WAN, respectively, using LINGO as the solver, with
different number of flows in the network.

First, to guarantee that a congestion-free update plan
always exists, a portion (10%–50% [19]) of the network
capacity has to be left vacant before update. This leads
to reduced utilization of the expensive network infrastruc-
ture, especially the wide-area links. Second, calculating a
congestion-free update plan requires solving a series of LPs,
which is too slow for production scale networks. Table 1

TRANSACTIONS ON SERVICES COMPUTING 2

shows the running time of the algorithms in [19], [30] for
data center networks (DCN) and inter-data center wide
area networks (WAN) which connect geo-distributed data
centers of the same operator. Note that a production DCN
have much more than 5K flows [25]. However not all of
them need to be explicitly managed by the controller; only
elephant flows may be subject to explicit control of SDN
and require controller intervention. In Table 1, all flows in
DCN refer to elephant flows. When the number of flows
is larger than 2K, the running time in both scenarios is
well beyond one minute. Thus congestion-free update is
infeasible for operators like Google [21] and Microsoft [19]
who perform centralized traffic engineering (TE) every five
minutes to improve link utilization. In addition, slower
update speed limits the controller’s ability to react to failures
and degrades application performance.

Instead of congestion-free network update [22], in this
paper we propose congestion-minimizing network update,
i.e., the update procedure admits a small extent of tran-
sient congestion. We argue that since switches are deeply
buffered [18], [52], and many low-priority data transfers
tolerate packet loss especially in inter-data center WAN [24],
it is worthwhile to explore solutions with a small extent of
transient congestion. Our problems widen the scope and
allow the operator to navigate a broader design space,
where one may trade off update speed, represented by the
number of intermediate stages, for performance represent-
ed by the maximum level of transient congestion during
the update. In previous work, the number of intermediate
stages is unknown until a update plan is found and cannot
be adjusted [19], [30].

We make three novel contributions in this paper. First,
we propose a general optimization framework for two
problems of finding congestion-minimizing network update
plans: the minimum congestion update problem (MCUP)
and bounded congestion update problem (BCUP) both in
DCN and WAN. The MCUP optimization aims to determine
routing for all ρ intermediate stages, where ρ is given, such
that the transient congestion (i.e. maximum link utilization
during the transition) is minimized. The BCUP optimization
aims to find the minimum number of intermediate stages
and corresponding routing for each stage, given the maxi-
mum transient congestion threshold σ. For both problems,
we take into account single-path routing and multipath
routing as constraints to meet the different application re-
quirements, since applications such as video do not work
well when their flows are split.

Our second contribution is a set of efficient algorithms
to solve MCUP and BCUP. We prove that MCUP and BCUP
are NP-hard, and thus focus on designing approximation
algorithms and heuristics. For MCUP, we first propose a
randomized rounding algorithm and prove that it yields a
O(log k) upper bound of link congestion, where k is the
number of switches. This algorithm only requires solving
one LP and has faster run time than prior work. We further
propose a greedy improvement algorithm which improves
the rounding result by greedily rerouting each flow in each
stage. The greedy algorithm has the same approximation ra-
tioO(log k) as the rounding algorithm in general topologies,
and an approximation ratio of 4 for fat-tree in particular.
Based on these two algorithms, we finally design an iterative

insertion algorithm to solve BCUP.
Our third contribution is a comprehensive performance

evaluation of our algorithms in large-scale DCN and WAN
topologies. Simulation results show that our algorithms can
reduce average link congestion by 29.1% and 32.3%, respec-
tively, in both scenarios, and save 38% control overhead
compared to prior work. We also develop a prototype of
our algorithm on Mininet using the Floodlight controller.
Experimental results show that our solution is 50% faster
than prior work.

The remainder of the paper is organized as follows. We
summarize related work in §2. We give formal definitions
of both MCUP and BCUP, and analyze their hardness in §3.
In §4, we present a rounding algorithm to solve MCUP and
prove its congestion upper bound. Based on the solution
of the rounding algorithm, in §5 we propose the greedy
improvement algorithm. Based on the solution of MCUP, we
propose a binary insertion algorithm to solve BCUP in §6.
Experimental evaluation and implementation are presented
in §7 and §8, and finally §9 concludes the paper.

2 RELATED WORK

We review prior art on network update in both traditional
networks and SDN.

In traditional networks with distributed routing pro-
tocols, most work focuses on avoiding transient misbe-
havior during network update. For example, consensus
routing [23] considers the problem of eliminating transient
state inconsistency. Francois et al. [17] and Kushman et
al. [27] present a series of solutions aimed at avoiding traffic
disruption during BGP update. Vanbever et al. [47] focus on
lossless migration and modification when moving from one
routing protocol to another. Raza et al. [45] propose graceful
network state migration, which strives to minimize the over-
all performance disruption by reassigning and maintaining
link weights in the network. Noyes et al. [42] propose a
tool for automatically synthesizing network updates and
avoiding errors caused by manual configurations, such as
forwarding loops and access control violations.

Recent work starts to study network updates in SDN.
Reitblatt et al. [46] introduce two novel concepts during
network updates: per-flow consistency and per-packet con-
sistency, and propose a two-phase commit protocol to pre-
serve consistency when transitioning between two different
routing configurations. FLIP [48] combines the advantage
of both two-phase commit and order-based rules replace-
ment, which significantly reduce the memory overhead
during network update as well as preserve routing policies.
FOUM [20] proposes a flow-ordered update mechanism that
can guarantee per-packet consistency in adversarial settings.
Ludwig et al. [32] aim to minimize the number of sequential
controller interactions when directly transitioning from the
initial to the final stage. They prove that it is NP-hard to
find such an update sequence that avoids all the forwarding
loops. They thus introduce relaxed loop-freedom, which
is not harmful and can be solved in polynomial time.
Saeed et al. [8] show that finding the maximum update set
in each round is NP-hard for both strong and relaxed loop-
freedom. Another work from Ludwig et al. is Waypoint [31],
[33], which considers network update for middleboxes [43].

TRANSACTIONS ON SERVICES COMPUTING 3

However, this transitioning procedure does not consider
transient congestion. McGeer [36] uses SDN controller as
a cache to forward packets during update procedure. This
method may bring the congestion on the communication
channel between controller and switches, when the number
of flows is large. ICU [26] incrementally updates forwarding
rules in the switch, which takes limited flow table space
into consideration. Jedidiah et al. [35] develop an automatic
synthesizing update program that is guaranteed to preserve
specified properties.

For data centers, SWAN [19] and zUpdate [30] try to find
congestion-free update plans in WAN and DCN, respective-
ly. SWAN shows that if each link has certain slack capacity,
there always exists a congestion-free update sequence. This
condition is too strong to always hold in practice. Brandt
et al. [11] propose that a congestion-free update sequence
still exists even if some links are full. They analyze the
cases of splittable and unsplittable flows, and propose a
polynomial time algorithm to find a congestion-free up-
date sequence for splittable flows. Dionysus [22] employs
dependency graphs to find a fast congestion-free update
plan according to different runtime conditions of switches.
Cupid [49] divides the global update dependencies among
switches into local restrictions to avoid high overhead when
generating a update plan. Mizrahi et al. [38], [39], [40] pro-
pose time synchronization protocols between controller and
data plane, which use accurate timing to trigger network
updates and reduce congestion. CCG [51] studies how to
safely perform customizable consistency polices in order
to minimize transition delay. CUP [34] calculates network
update plans based on a user requirements model. Brandt
et al. [10] study network update for anycast network flows,
i.e., the flow can be routed to any node in the destination set
during the update.

3 AN OPTIMIZATION FRAMEWORK

We introduce our optimization framework for MCUP and
BCUP in this section.

3.1 A Motivating Example

In a software defined data center network, whenever the
topology or traffic matrix changes, the controller needs
to recalculate routing in order to optimize performance.
Consider the example in Fig. 1, where there are six switches
R1, . . . , R6, and the link capacity is 1 unit. FA and FB are
two flows from R1 to R5, whose demands are 0.2 unit and
1 unit, respectively. FC is a flow from R3 to R5, whose
demand is 0.8 unit. The initial routing is illustrated in
Fig. 1(a). At this point, suppose a new flow appears from R3

to R4 with a demand of 1 unit. The controller then wants to
change routing to Fig. 1(b). Due to asynchronous update, the
three flows may be routed temporarily as in Fig. 1(c) during
the transition. In this case congestion occurs at the link from
R2 to R5, which is overloaded with twice its capacity, and
results in severe packet drops.

Introducing intermediate stages can reduce transient
congestion [19], [30]. For example, zUpdate [30] takes ad-
vantage of vacant link capacity to find a congestion-free
update plan. It first moves 80% of FB onto path 〈R1, R6, R5〉

and keeps the remaining 20%. Then FA is moved from
〈R1, R2, R5〉 to 〈R1, R6, R5〉. Finally the remaining 20% of
FB and all FC is moved to their final paths. The process has
four intermediate stages and involves solving four LPs, one
for each stage. Yet a congestion-free update plan may not
always exist especially when the number of flows is large.
Thus one has to set aside some capacity on each link to guar-
antee its existence, as proved in SWAN [19], and resource
utilization is reduced. In this case, FB with 1 unit demand
cannot be completely satisfied through path 〈R1, R2, R5〉. It
must be split onto different paths. Flow splitting may not
be feasible for certain applications that are sensitive to TCP
packet reordering, such as video applications.

TABLE 2
Congestion during different transition plan

Transition Plan Congestion
1 Fig. 1(a) → Fig. 1(b) 1.0
2 Fig. 1(a) → Fig. 1(g) → Fig. 1(h) → Fig. 1(b) 0
3 Fig. 1(a) → Fig. 1(d) → Fig. 1(b) 0.2

The first line represents the transition plan that updates from initial
stage to final stage directly, without intermediate stages involvement.
The second line represents congestion-free update plan. The third
line represents minimizing transient congestion update plan with
one intermediate stage.

In contrast, we intend to find an update plan that admits
a small extent of transient congestion. Assume FA, FB and
FC are three unsplittable flows. They should be routed only
through a single path during update. If we consider the
update plan where routing is first changed from Fig. 1(a)
to Fig. 1(d), and then to Fig. 1(b), transient congestion
can be reduced significantly. Specifically, transitioning from
Fig. 1(a) to Fig. 1(d) only causes the link capacity to exceed
by 0.2, with two possible transient states shown in Fig. 1(e)
and Fig. 1(f), and the transition from Fig. 1(d) to Fig. 1(b) is
congestion-free. So the overall transient congestion is 0.2.
This update plan may be acceptable in practice because
switches have buffers to accommodate traffic bursts, and
data center transports such as DCTCP can detect conges-
tion early on with ECN to adjust sending rate in a fine
granularity [7]. Further many applications, such as data
processing frameworks, are elastic to bandwidth and can
tolerate temporary rate reduction [29].

Moreover, the problem of finding an update plan that
minimizes transient congestion is more general than finding
a congestion-free plan. We expose the tradeoff between
update speed and congestion, reducing the number of LPs
that need to be solved and allowing the operator to speed
up the update process. In the motivating example, there is
only one intermediate stage which requires solving just one
LP. This is more important in large-scale networks which
makes the LP computationally expensive to solve.

3.2 Network Model and Problem Definitions
Before presenting the problem definitions, we first dis-
cuss our network model. A network is a directed graph
G = (V,E), where V is the set of switches and E the
set of links with capacities Ce for each link e ∈ E. We
divided flows in the network into two categories, in ac-
cordance to application requirements. Fsp represents the

TRANSACTIONS ON SERVICES COMPUTING 4

R1 R2 R3

R4R5R6

FCFB

FA

FC

FA FB

FA 0.2 Unit FB 1.0 Unit FC 0.8 Unit 1.0 Unit

R1 R2 R3

R4R5R6

FA

FB

R1 R2 R3

R4R5R6

R1 R2 R3

R4R5R6

FC
FA

FB

FA FB FC

R1 R2 R3

R4R5R6

FC

R1 R2 R3

R4R5R6

FC

FA FB

0.8 FB

0.2 FB

0.8 FB

0.2 FB FA

R1 R2 R3

R4R5R6

FC

FA

R1 R2 R3

R4R5R6

FC

Fig. 1. An example of network update where transient congestion may happen.

TABLE 3
Key notations in this paper.

Fsp The set of flows routed with single path
Fmp The set of flows routed with multipath
F The set of flows F = Fsp ∪ Fmp
V The set of switches v
E The set of links e
G The directed network graph G = (V,E)
S The set of stages the routing update is performed
Ce The capacity of link e

P (f) The set of possible paths for flow f
df The demand of flow f
n The number of update stages. n = |S|
ρ The number of intermediate stages. ρ = |S| − 2
k The number of switches in the network. k = |V |
σ The maximum transient congestion.
µse The maximum link congestion relative to its capac-

ity during update from stage s to s+ 1.

set of unsplittable flows that must use single path routing
during update; Fmp represents the set of flows that can use
multipath routing. Each flow f is associated with a demand
df , routed through a possible path p ∈ P (f) between its
source and destination. For convenience, we summarize
important notations in Table 3.

Problem 1. Minimum Congestion Update Problem (M-
CUP)
The set of stages is S = {1, 2, . . . , n − 1, n}, in which
stage 1 and stage n are initial and final stage, respec-
tively. Routing in stage 1 and stage n are known while
routing in stages 2, 3, . . . , n− 1 needs to be determined.
The number of intermediate stages ρ is specified by the
network operator. The operator may obtain this based
on the history of update data and its global view of
the network state, which is beyond the scope of this
paper. We find routing for each intermediate stage that
minimizes the transient congestion.

Problem 2. Bounded Congestion Update Problem (BCUP)
The maximum level of transient congestion σ is given.
We need to determine the minimum number of interme-
diate stages ρ and corresponding routing at each stage
such that the transient congestion does not exceed σ.

The path set p ∈ P (f) is pre-computed such that
all paths are loop-free. It is true that P (f) would be of
exponential size if it contains all possible paths. For fat-
tree topologies used in our DCN scenarios, calculating all
possible paths can be done in polynomial time. As proved
in [6], there are

(
k
2

)2
paths between each source destination

switch pair in the edge level for a k-pod fat-tree. For WAN
topologies, we calculate edge-disjoint paths for each source
destination switch pair. To further lower the complexity, it
is common to use a subset of edge-disjoint paths as the
input of TE, such as SWAN [19] and Dionysus [22]. Note
that paths of different source destination pairs may use
common edges. The resulting path set P (f) are the input
of our algorithm. In addition, we assume the two-phase
commit protocol proposed in [46] is used to maintain packet
coherence, i.e., each packet is forwarded either by the old
routing prior to the update, or the new routing after the
update, but never a mixture of the two.

3.3 Problem Formulation
Based on the above model, we formulate MCUP, i.e. mini-
mum congestion update problem, as a mixed integer linear
program (1). We seek to find the optimal routing for all
intermediate stages that minimizes the transient congestion
from the initial stage to the final stage.

minimize max
e∈E,s∈{1,2,...,n−1}

µse (1)

subject to
∑

f∈Fsp∪Fmp

df
∑

p∈P (f):e∈p

max(xsf,p, x
s+1
f,p) ≤ µseCe,

∀e ∈ E,∀s ∈ S − {n}, (1a)∑
p∈P (f)

xsf,p = 1,

∀f ∈ Fsp ∪ Fmp,∀s ∈ S − {1, n}, (1b)
xsf,p ∈ {0, 1},
∀f ∈ Fsp,∀p ∈ P (f),∀s ∈ S − {1, n}, (1c)

xsf,p ≥ 0,

∀f ∈ Fmp,∀p ∈ P (f),∀s ∈ S − {1, n}, (1d)
µse > 0,∀e ∈ E,∀s ∈ S − {n}. (1e)

We define transient congestion as the maximum link
congestion relative to its capacity µse during the update

TRANSACTIONS ON SERVICES COMPUTING 5

across the network, as shown in the objective function
of (1). The optimization variable xsf,p indicates whether
flow f is routed through path p in stage s. Constraint
(1a) characterizes transient congestion for link e during
transition. For example, as illustrated in Fig. 1, during
the transition from Fig. 1(a) to Fig. 1(b), i.e., from stage
1 to stage 2, the maximum load of the link (R2, R5) is
0.2 × max(0, 1) + 1.0 × max(1, 0) + 0.8 × max(0, 1) = 2,
which describes the case shown in Fig. 1(c). Constraint (1b)
is the flow demand conservation constraint. Constraint (1c)
represents the single path routing constraint for unsplittable
flows, and (1d) represents the multipath routing constraint
for splittable flows.

Now we formulate the bounded congestion update
problem (BCUP) as an optimization program. The goal is
to find the minimum number of intermediate stages such
that maximum transient congestion is no larger than σ.

minimize |S| (2)

subject to
∑

f∈Fsp∪Fmp

df
∑

p∈P (f):e∈p

max(xsf,p, x
s+1
f,p) ≤ σCe,

∀e ∈ E,∀s ∈ S − {n}, (2a)
(1b), (1c), (1d), (1e).

The formulation of the bounded transient congestion
update problem is shown in (2). The objective aims to
minimize the number of elements in set S. The optimization
variables {xsf,p} are the same as MCUP (1). Constraint (2a)
characterizes that the load of link e cannot be larger than
σ · Ce during transition.

Because of the max function, constraints (1a) and (2a)
in program (1) and (2) are not linear. By introducing aux-
iliary variables {ysf,p} and {zsf,p}, we can transform the
constraints to the following linear constraints. The auxiliary
variable ysf,p (zsf,p) is equal to one when unsplittable (split-
table) flow f is routed through path p either in stage s or
s+ 1, and equals zero otherwise.

∑
f∈Fsp

df
∑

p∈P (f):e∈p

ysf,p +
∑

f∈Fmp

df
∑

p∈P (f):e∈p

zsf,p ≤ µseCe,

∀e ∈ E,∀s ∈ {1, 2, . . . , n− 1}, (3a)
ysf,p ≥ xsf,p, ∀f ∈ Fsp, (3b)

ysf,p ≥ xs+1
f,p , ∀f ∈ Fsp, (3c)

zsf,p ≥ xsf,p, ∀f ∈ Fmp, (3d)

zsf,p ≥ xs+1
f,p , ∀f ∈ Fmp, (3e)

(3f)

3.4 Hardness Analysis

We establish the hardness of MCUP and BCUP below.
Theorem 1. MCUP is NP-hard.

Proof: Consider a special case of MCUP with only one
intermediate stage. We construct a polynomial reduction
from the set partition problem [13] to it. Consider a partition
instance A consisting of m items, each with a value ai,
ai ∈ R, i ∈ {1, 2, . . . ,m}. The objective is to partition A
into two subsets A1 and A2 (A1 ∪A2 = A and A1 ∩A2 = ∅)

s t

e2
e1

em

e0

Fm

F1

F2

F'm

F'1

F'2

Fig. 2. Reduction from Partition to MCUP.

such that |A1 − A2| is minimized, where A1 and A2 denote
the sums of the elements in each of the two subsets A1

and A2. Accordingly, for each item in set A we introduce
two flows Fi and F ′i with demands dFi = dF ′i = ai.
There are m items in total and thus we introduce 2m flows.
The instance of MCUP is constructed as shown in Fig. 2.
There are multiple edges between the source node s and
destination node t as shown in Fig. 2. Each edge represents
a path in the real network. We ignore the intermediate nodes
for simplicity. There are 2m flows from source s to destina-
tion t in the initial stage, in which flows F1, F2, ..., Fm are
routed through links e1, e2, . . . , em, respectively, and flows
F ′1, F

′
2, . . . , F

′
m are routed through a single link e0. The final

stage is that flows F ′1, F
′
2, . . . , F

′
m are routed through links

e1, e2, ..., em and flows F1, F2, ..., Fm are routed through
link e0. Note that the flow swap operation between Fi and
F ′i captures the definition of transient congestion described
in constraint (1a) and the transient congestion only happens
during the transition. . The link capacities are Cei = ai, and
Ce0 =

∑m
i=1 ai for all i ∈ {1, 2, . . . ,m}. None of the flows

can be split during update. Therefore, any partition with
minimum difference between set A1 and A2 corresponds
to MCUP with only one intermediate stage (the partition
results indicate that which flows should be swapped firstly
and which flows swapped secondly), and vice versa.

s1

u

v

t1

s2

t2

s4

t4t3

s3

u2 u4

v4v2v1v3

u3 u1

Fig. 3. Reduction from Bin Packing to BCUP.

Theorem 2. BCUP is NP-hard.

Proof: Given maximum transient congestion σ (1 <
σ < 2), we reduce from bin packing [50] to our problem.
Consider a set I = {1, 2, . . . ,m} of items, where item
i ∈ I has size ai, ai ∈ R and a set B = {1, 2, . . . ,m}
of bins with capacity b, where b = (σ − 1)Cu,v . For each
item we introduce two flows Fi and F ′i with demands
dFi = dF ′i = ai and the instance of BCUP is constructed
as shown in Fig. 3. In the initial stage, flows Fi and F ′i

TRANSACTIONS ON SERVICES COMPUTING 6

are routed through two disjoint paths: 〈si, ui, vi, ti〉 and
〈si, u, v, ti〉. All F ′i have the common link 〈u, v〉. The final
stage swaps Fi and F ′i for each i and all Fi have the common
link 〈u, v〉. All the flows cannot be split during update. We
need to take advantage of slack capacity (σ− 1)Cu,v , which
is equal to the bin’s capacity in the common link 〈u, v〉 to
perform swap operations for flows Fi and F ′i . Therefore,
the problem of finding an assignment I → B such that
the number of non-empty bins is minimal is equivalent to
the bounded congestion update problem. The number of
non-empty bins corresponds to the number of introduced
intermediate stages. The items in each non-empty bin are
equivalent to the swapped flows in each stage.

4 A ROUNDING ALGORITHM

We now design a rounding based approximation algorith-
m [50] to tackle the NP-hard MCUP (1).

Algorithm 1 Randomized Rounding
Input: The optimal fractional solution {x̃sf,p} to the relaxed LP

of (1).
Output: A solution {x̂sf,p} to (1).

1: for s = 2 to n− 1 do
2: for each f ∈ Fmp do
3: for each p ∈ P (f) do
4: x̂sf,p = x̃sf,p
5: end for
6: end for
7: for each f ∈ Fsp do
8: P ′(f) = ∅
9: for each p ∈ P (f) and p 6∈ P ′(f) do

10: x̂sf,p = 0
11: P ′(f) = P ′(f) ∪ p
12: lsf,p =

∑
p′∈P ′(f) x̃

s
f,p′

13: end for
14: Generate a number r in (0,1] uniformly at random
15: Find p̂ such that r ≤ lsf,p̂ and lsf,p̂ − r is minimum
16: x̂sf,p̂ = 1
17: end for
18: end for

The mixed integer program (1) can be relaxed to a linear
program by replacing the constraint (1c) xsf,p ∈ {0, 1} with
xsf,p ≥ 0. Since constraint (1b) holds, {xsf,p} are in fact real
numbers between 0 to 1. The optimal fractional solutions
{x̃sf,p} of the relaxed LP can be obtained in polynomial time
using standard solvers.

As shown in Algorithm 1, for f ∈ Fmp, {x̃sf,p} is already
the feasible solution (lines 2–6). For f ∈ Fsp, we apply ran-
domized rounding to obtain an integer solution {x̂sf,p} (lines
7–17). We do not show the process of rounding auxiliary
variables {ỹsf,p|f∈Fsp

}, which can be readily obtained from
the integer solutions {x̂sf,p|f∈Fsp

}. To ensure that only one
path is chosen for a flow f ∈ Fsp in stage s, the optimal
fractional solution can be viewed as partitioning the interval
[0, 1] to intervals of lengths {x̃sf,p|f∈Fsp

} (lines 9–13). A real
number is generated uniformly at random in (0, 1] and the
interval in which it lies determines the path (lines 14–16).

Before analyzing the performance of Algorithm 1, we
introduce the following definition.
Definition 1. Let µ̃ be the optimal fractional solution to (1).

Let µ∗ be the optimal solution to (1), which gives a lower
bound of transient congestion.

Theorem 3. If µ∗ > 1,∀e ∈ E, Algorithm 1 outputs a
feasible solution with transient congestion bounded by
O(log k)µ∗ from any stage s to s + 1 with probability
1− 1

k2 , where k is the number of switches in the network.

The proof can be found in Appendix A.

5 A GREEDY IMPROVEMENT ALGORITHM

In this section we develop a greedy algorithm to improve
the solution of the rounding algorithm. In spite of its
guaranteed approximation ratio, the randomized algorithm
is still not efficient as it may occasionally produce a bad
solution. The greedy algorithm improves upon the solution
by greedily rerouting each flow to a better path. It has
the same approximation ratio as the rounding algorithm in
general topologies, and has a constant approximation ratio
of 4 in fat-tree topology.

5.1 Algorithm Design
Let us introduce two notations first.
Definition 2. The ∨ operator: Let {αs1f,p} and {βs2f,p} be two

routing configurations in stages s1 and s2. The result of
{αs1f,p} ∨ {β

s2
f,p} is a flow distribution {Df,e} in network

G, where Df,e = max({αs1f,p}, {β
s2
f,p}). If flow f ∈ Fsp,

Df,e ∈ {0, 1}. If flow f ∈ Fmp, Df,e ∈ [0, 1].

FC
FAFB

FA 0.2 unit

FB 1.0 unit

FC 0.8 unit

1.0 unit
R1 R2 R3

R4R5R6

Fig. 4. The result of ∨ operator over routing configurations in Fig. 1(a)
and Fig. 1(b).

The ∨ operator maps routing configurations of different
stages onto the same network, which is convenient for
further optimization. Fig. 4 shows the ∨ operator applied
over routing configurations in Fig. 1(a) and Fig. 1(b).

Algorithm 2 Congestion Calculation Function φ
Input: Flow distribution {Df,e}.
Output: Maximal congestion λ.

1: for each e ∈ E do
2: ηe, δe = 0
3: for each f ∈ F do
4: if Df,e > 0 then
5: ηe = ηe + df ·Df,e
6: end if
7: end for
8: δe =

ηe
Ce

9: end for
10: λ = argmaxe∈E δe

The congestion calculation function φ is rigorously de-
scribed in Algorithm 2. It takes the result of ∨ operator
{Df,e} as input and calculates the maximal link congestion
λ. ηe denotes the load and δe the load relative to its capacity
in link e (lines 3-8). When Algorithm 2 stops, λ represents
the maximal link congestion. Take flow distribution in Fig. 4

TRANSACTIONS ON SERVICES COMPUTING 7

as the input of function φ, the result is 2.0, which repre-
sents the transient congestion transitioning from Fig. 1(a) to
Fig. 1(b).
Property 1. For any routing configuration {af,p} in the

network, φ({af,p} ∨ {af,p}) = φ({af,p}).
Property 2. Let {af,p}, {bf,p} and {cf,p} be three routing

configurations in the same network. If φ({af,p}) ≥
φ({bf,p}) and φ({af,p}) ≥ φ({cf,p}), then 2·φ({af,p}) ≥
φ({bf,p} ∨ {cf,p}).

Theorem 4. Let {α1
f,p} and {γnf,p} be the initial and final

routing configurations. If intermediate routing configu-
rations {β2

f,p}, {β3
f,p}, . . . , {β

n−1
f,p } are not optimal, then

the maximum transient congestion is greater than or
equal to 1

n−1 · φ({α
1
f,p} ∨ {γnf,p}).

The proof can be found in Appendix B.

Algorithm 3 Greedy Improvement
Input: The optimal fractional solution {x̃sf,p} to the relaxed LP

of (1).
Output: An optimized solution {x̂sf,p} to (1).

1: Run Algorithm 1 and obtain a solution {x̂sf,p}
2: λ = +∞
3: for s∗ = n− 1 to 2 do
4: {βs

∗
f,p} = {x̂s

∗
f,p}

5: for each f∗ ∈ Fsp do
6: {D∗f,e} = {x̂s

∗+1
f,p } ∨ {β

s∗

F−{f∗},p}
7: for each p ∈ P (f∗) do
8: βs

∗
f∗,p = 1

9: λ∗ =
∣∣∣φ({D∗f,e} ∨ βs∗f∗,p)− φ({x̃s∗f,p} ∨ {x̃s∗+1

f,p }
)∣∣∣

10: if λ∗ < λ then
11: {βs

∗
f,p} = {βs

∗

F−{f∗},p} ∨ βs
∗
f∗,p

12: λ = λ∗

13: end if
14: if λ∗ = λ and βs

∗
f∗,p = x̂s

∗+1
f∗,p then

15: {βs
∗
f,p} = {βs

∗

F−{f∗},p} ∨ βs
∗
f∗,p

16: end if
17: end for
18: end for
19: {x̂s

∗
f,p} = {βs

∗
f,p}

20: end for

We are now ready to describe our greedy algorithm
shown in Algorithm 3. We first run Algorithm 1 and obtain
an initial solution {x̂sf,p} (line 1), λ represent the transi-
tioning congestion and initiated as positive infinity (line 2).
We consider intermediate stages n − 1 to 2 and greedily
change the routing configuration {βs∗f,p} flow by flow to
improve transient congestion from the initial stage {x̂1f,p}
to the final stage {x̂nf,p} (lines 4-19). {βs∗f,p} represent the
routing of intermediate stage s∗ (line 4). For each flow f∗,
we first calculate {D∗f,e}, which is the result of ∨ operator
over routing in all stages except f∗ in stage s∗ (line 6). Then
we move f∗ onto a different potential path p in order to
find a better routing (line 8). If the new routing βs

∗

f∗,p for f∗

results in less congestion, we update {βs∗f,p} and λ (lines 10-
13). Further, if f∗ is routed through the final path p in stage
s∗ + 1 and does not increase congestion, we update {βs∗f,p}
as well (lines 14-16). When all flows are rerouted in stage s∗,
we update {x̂s∗f,p} and enter the next stage (line 19).

Note that the congestion upper bound of the rounding
algorithm is O(log k). The greedy algorithm improves upon

it whenever possible. Thus its performance is at least as
good as that of rounding. We have the following theorem:
Theorem 5. Algorithm 3 achieves an approximation ratio no

more than that of Algorithm 1 in a general topology.

5.2 Approximation Ratio for Fat-tree
We now consider a particular DCN topology, fat-tree [6],
an example of which is shown in Fig. 9(a). Fat-tree is
commonly used in production data centers [5]. We analyze
the approximation ratio of Algorithm 3 in a fat-tree.
Definition 3. Let {α1

f,p} and {γnf,p} be the initial and final
routing.

µ̃ = max
(
φ({α1

f,p} ∨ {β̃2
f,p}), . . . , φ({β̃n−1f,p } ∨ {γ

n
f,p})

)
µ∗ = max

(
φ({α1

f,p} ∨ {β̂2
f,p}), . . . , φ({β̂n−1f,p } ∨ {γ

n
f,p})

)
where {β̃2

f,p}, {β̃3
f,p}, . . . , {β̃

n−1
f,p } are the

optimal fractional intermediate stages and
{β̂2

f,p}, {β̂3
f,p}, . . . , {β̂

n−1
f,p } are optimal intermediate

stages, respectively for a fat-tree. From the definition,
we have µ̃ ≤ µ∗.

Lemma 1. Independent of the rerouting order, when
rerouting any flow f∗ in stage s∗ in Algorithm 3, if
φ({D∗f,e|e∈p} ∨ βs

∗

f∗,p) ≥ 4µ̃, there must exist another
path p′ such that φ({D∗f,e|e∈p′} ∨ βs

∗

f∗,p′) < 4µ̃, where
p, p′ ∈ P (f∗) and p 6= p′.

Lemma 1 focuses on fat-tree topology. It implies that if
transient congestion is greater than 4 times the optimal solu-
tion, there must exist another path for a certain flow whose
corresponding transient congestion is less than 4 times the
optimal solution. The proof can be found in Appendix C.
Now we can show that the greedy algorithm has a constant
approximation ratio in fat-tree networks.
Theorem 6. Algorithm 3 approximates MCUP in fat-tree

networks with a factor of 4.

Proof: By Lemma 1, for any flow f∗, if φ({D∗f,e|e∈p}∨
βs
∗

f∗,p) ≥ 4µ̃, there must exist another path p′ ∈ P (f∗)

such that φ({D∗f,e|e∈p′} ∨ βs
∗

f∗,p′) < 4µ̃. When all flows have
been rerouted in all stages, there must exist intermediate
routing configurations {β2

f,p}, {β3
f,p}, . . . , {β

n−1
f,p } such that

max(φ({α1
f,p}∨{β2

f,p}), φ({β2
f,p}∨{β3

f,p}), . . . , φ({β
n−1
f,p }∨

{γnf,p})) ≤ 4 · max(φ({α1
f,p} ∨ {β̃2

f,p}), φ({β̃2
f,p} ∨

{β̃3
f,p}), . . . , φ({β̃

n−1
f,p } ∨ {γnf,p})) = 4 · µ̃. From Definition 3,

we have 4 · µ̃ ≤ 4 · max(φ({α1
f,p} ∨ {β̂2

f,p}), φ({β̂2
f,p} ∨

{β̂3
f,p}), . . . , φ({β̂

n−1
f,p } ∨ {γnf,p})) = 4µ∗. Hence, when Al-

gorithm 3 stops, the maximal transient congestion is less
than or equal to 4µ∗.

6 A HEURISTIC ALGORITHM FOR BCUP
In this section we develop a heuristic algorithm to solve
BCUP.

We now explain the high level working of Algorithm 4.
At first, the number of intermediate stages ρ is zero (line
1) and the transient congestion is calculated assuming the

TRANSACTIONS ON SERVICES COMPUTING 8

Algorithm 4 Iterative insertion
Input: Network topology G = (V,E); congestion parameter σ;

initial routing {x1f,p} and final routing {xsf,p}.
Output: A solution {x̂sf,p}.

1: ρ = 0
2: repeat
3: λ = 0
4: count = ρ+ 1
5: for s = 1 to count do
6: if φ({xsf,p}, {xs+1

f,p }) > σ then
7: Apply Algorithm 5 to obtain one intermediate rout-

ing {βf,p} between {xsf,p} and {xs+1
f,p }.

8: if {βf,p} = ∅ then
9: return

10: else
11: Insert one intermediate stage {βf,p} between

{xsf,p} and {xs+1
f,p }.

12: λs = max{φ({xsf,p} ∨ {βf,p}), φ({βf,p} ∨ {xs+1
f,p }

13: if λ < λs then
14: λ = λs

15: end if
16: ρ = ρ+ 1
17: end if
18: end if
19: end for
20: until λ ≤ σ

network is transitioned directly from the initial to the final
stage. If transient congestion is larger than σ, an addi-
tional stage is inserted between them. The corresponding
routing configurations are obtained by Algorithm 5, which
is discussed below. Next we sequentially examine every
two adjacent stages and try to insert an intermediate stage
between them, to further reduce transient congestion (line
7). If the intermediate routing obtained by Algorithm 5 is
an empty set, Algorithm 4 stops, which is the case that
transient congestion cannot be further reduced to the given
congestion threshold σ (lines 8-9). Otherwise, we insert an
intermediate stage and recalculate the maximum transient
congestion λs (lines 11-12). λ records the new maximum
transient congestion corresponding to current update se-
quence (line 14). We iteratively insert intermediate stages
until transient congestion is less than or equal to σ (line 20)
or the result of Algorithm 5 is an empty set (line 9).

Algorithm 5 Obtain one intermediate stage
Input: Initial routing {αf,p}; final routing {γf,p}
Output: The intermediate routing {βf,p}

1: λ = φ({αf,p} ∨ {γf,p})
2: Insert one intermediate stage {βf,p} between {αf,p} and
{γf,p}

3: Apply Algorithm 3 to obtain the solution of {βf,p}.
4: if max (φ({αf,p} ∨ {βf,p}), φ({βf,p} ∨ {γf,p})) < λ then
5: return {βf,p}
6: else
7: return ∅
8: end if

Algorithm 5 describes how to determine the routing of
an intermediate stage, which is the special case of Algorith-
m 3 with only one intermediate stage. In Algorithm 5, we
first calculate λ, the congestion when transitioning directly
from the initial to the final stage (line 1). If the transient
congestion is reduced after we insert one intermediate stage,

this intermediate routing is returned (line 5); otherwise, an
empty set is returned (line 7). It is important to note that if
σ is selected small enough such that the demand of certain
unsplittable flow is greater than σ × Ce, the algorithm may
stop in a certain iteration and the final transient congestion
may not be reduced to σ.

7 LARGE-SCALE SIMULATIONS

We conduct extensive simulations and experiments to eval-
uate our algorithms. In this section we report our perfor-
mance evaluation using large-scale simulations. In the next
section we present our Mininet implementation results.

7.1 Setup
We consider two large-scale topologies.

• A 8-pod fat-tree [6] for the DCN scenario. The edge
and aggregation layers have 64 switches each in all
pods. The network has 8 core switches each with 8
10GbE ports, resulting in a non-blocking network.

• A synthetic scale-free topology randomly produced
by the scale_free_graph function in [3], which is
referred to as WAN scenario. There are 100 switches
and 586 10 Gbps links in total. This topology is also
used in [41].

We consider both single path and multipath routing [9],
[16] in the DCN and WAN scenarios. For DCN, we use
64 long-lived flows in the background similar to [30]. For
the WAN scenario, we consider tunnel based multipath
routing [19]. The concept of flow defined by Openflow is
a 10-tuple [37]; thus for each source-destination switch pair,
the number of flows can be more than one. In both settings,
we leave 5%–10% link capacity vacant on each link for
SWAN. Flows in the network are generated randomly [2],
and we change the flow demand to simulate traffic varia-
tions. We calculate the initial and final routing to maximize
link utilization given the demand [14].

7.2 Benchmark Schemes
We evaluate the following schemes:

One Shot: Transition directly from the initial to the final
stage.

RR: Our randomized routing algorithm as in Algorith-
m 1.

GI: Our greedy improvement algorithm as in Algorith-
m 3.

I2: Our heuristic iterative insertion algorithm as in Algo-
rithm 4.

OPT: The optimal solution of the MCUP integer pro-
gram (1) obtained using branch and bound.

SWAN: State-of-the-art congestion-free update algorith-
m [19]. As discussed in §1, this heuristic works by iteratively
solving a series of LPs until a congestion-free update plan is
found, and does not take the number of intermediate stages
as input. Thus it cannot be used to solve (1), and we only
include it for comparing the maximum number of rules and
update time.

Note that in our simulation, the results of One Shot and
SWAN are deterministic. The algorithms of RR, GI and I2

are based on randomization, whose results are the average
of at least 10 runs.

TRANSACTIONS ON SERVICES COMPUTING 9

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Link utilization (%)

C
D

F

OPT
GI
RR
One Shot

(a) DCN scenario

100 120 140 160 180 200
0

0.2

0.4

0.6

0.8

1

Link utilization (%)

C
D

F

OPT
GI
RR
One Shot

(b) WAN scenario

Fig. 5. Maximum link congestion comparison.

1K 2K 3K 4K 5K 6K
0

2000

4000

6000

The number of flows

T
h

e
n

u
m

b
er

 o
f

co
n

g
es

te
d

 f
lo

w
s

OneShot
GI
RR
SWAN

(a) DCN scenario

1K 2K 3K 4K 5K 6K
0

2000

4000

6000

The number of flows

T
h

e
n

u
m

b
er

 o
f

co
n

g
es

te
d

 f
lo

w
s

OneShot
GI
RR
SWAN

(b) WAN scenario

Fig. 6. The number of congested flows.

1K 2K 3K 4K 5K 6K
0

4

8

12

x 10
4

The number of flows

C
o

n
tr

o
l o

ve
rh

ea
d

One Shot
GI
SWAN

(a) DCN scenario

1K 2K 3K 4K 5K 6K
0

2

4

6x 10
5

The number of flows

C
o

n
tr

o
l o

ve
rh

ea
d

One Shot
GI
SWAN

(b) WAN scenario

Fig. 7. Control overhead during update.

1K 2K 3K 4K 5K 6K
0

1

2

3

4

5

6

The number of flows

T
h

e
n

u
m

b
er

 o
f

st
ag

es

SWAN

I2

(a) DCN scenario

1K 2K 3K 4K 5K 6K
0

1

2

3

4

5

6

The number of flows

T
h

e
n

u
m

b
er

 o
f

st
ag

es

SWAN

I2

(b) WAN scenario

Fig. 8. The number of intermediate stages.

7.3 Basic Performance

We first look at algorithms for MCUP. We study the maxi-
mum link utilization during update generated by One Shot
and the performance of our algorithms—RR and GI—in
minimizing congestion comparing to OPT. Fig. 5(a) and
Fig. 5(b) show the measured maximum link utilization.
Congestion happens when the value of x-axis is larger
than 100%, and a larger value indicates severer congestion.
For this simulation, we fix the number of flows at 2K for
DCN and 4K for WAN. The results of RR, GI and OPT are
produced with 3 and 4 intermediate stages for DCN and
WAN. Both GI and RR can effectively decrease congestion,
particularly between 0.7 and 1.0: GI and RR decrease link
congestion by 32.3% and 29.1% respectively compared to
One Shot. Furthermore, GI consistently outperforms RR by
up to 5%, and provides near-optimal performance compared
to OPT.

Fig. 6 shows the number of congested flows during the
entire update process. We can see that, as the number of
flows increases, One Shot yields significantly more congest-
ed flows compared to GI and RR. Specifically, in Fig. 6(a),
the number of congested flows for One Shot, RR and GI
is 3710, 1670 and 1100, respectively, in the DCN scenario
when the number of flows is 4K. Looking more closely into
Fig. 6(a) and Fig. 6(b), the improvement for GI is significant:
it decreases the number of congested flows by 23% from RR
on average. This demonstrates that GI takes full advantage
of the richly connected network topology and significantly
mitigates congestion by rerouting flows onto less congested
paths.

Fig. 7 shows the comparison of control overhead dur-
ing update. We define control overhead as the number of
rules that need to be accessed (added/removed/modified)
during the update. Essentially this measures the number
of operations, as well as the number of flow table en-
tries required to perform the update. One Shot does not

introduce intermediate stages and needs the least update
operations. We observe that SWAN induces more control
overhead than GI. In Fig. 7(b), when the number of flows
is 6K, the control overhead of SWAN is almost twice as
that of GI. The reason is that SWAN usually takes more
stages to transition the state without any congestion. In
contrast, GI uses less intermediate stages with a small extent
of congestion and saves a lot of update operations. Note
that these results become inaccurate for switches that apply
longest prefix matching or wild-card rules. However, such
rules are increasingly being replaced with exact match rules
in SDN [12], [22], [44].

We now focus on the heuristic algorithm I2 for BCUP.
Fig. 8 shows the number of introduced intermediate stages
for I2 and SWAN with different numbers of flows. We set the
congestion threshold σ at 1.15. We observe that I2 can save
the number of intermediate stages compared with SWAN.
In Fig. 8(b), the number of introduced intermediate stages
for I2 is only 50% of SWAN with 4K flows. In addition, the
algorithm of finding the update plan for I2 and SWAN is
different: For I2, if the final update plan has ρ intermediate
stages, I2 only needs to solve ρ intermediate stages using
Algorithm 3; for SWAN, it needs to solve ρ(ρ+1)

2 intermedi-
ate stages as described in [19] which significantly aggregates
the update time overhead.

8 IMPLEMENTATION

Besides simulation, we develop a prototype of our algo-
rithms using Mininet 2.0 [28]. We use Floodlight 1.0 con-
troller [1] running on a PC with an Intel i5-2400 quad-core
processor. Switches run Openflow v1.3, and the forwarding
rules are installed and updated via Floodlight’s REST API.

We now describe how to perform network update in our
implementation. The procedure is shown in Algorithm 6.
We first obtain a solution using Algorithm 3 or Algorithm 4

TRANSACTIONS ON SERVICES COMPUTING 10

Algorithm 6 Performing Network Update

Input: Network topologyG = (V,E); initial routing {x1f,p} and
final routing {xnf,p}.

Output: Update sequence of switch rules.
1: Apply Algorithm 3 or Algorithm 4 and obtain solutions
{x̂sf,p}

2: for s = 1 to n− 1 do
3: V ′ = ∅
4: for each f ∈ F do
5: for each p ∈ P (f) do
6: if x̂s+1

f,p 6= x̂sf,p and f ∈ Fsp then
7: for each switch v in path p do
8: Add new rules to flow table corresponding to

flow f in switch v. The new rules use new
VLAN tag corresponding to stage s+1 to match
packets.

9: V ′ = V ′ ∪ v
10: end for
11: end if
12: if x̂s+1

f,p 6= x̂sf,p and f ∈ Fmp then
13: For source switch v in path p, change splitting

weight to
x̂s+1

f,p′∑
p′∈P (f) x̂

s+1

f,p′

14: end if
15: end for
16: end for
17: if switch v ∈ V ′ is connected by source host then
18: Modify the rules in switch v such that it can stamp

every incoming packet with a new VLAN tag corre-
sponding to stage s+ 1.

19: end if
20: end for

(line 1). Next we sequentially examine every stage s of
the solution and determine what forwarding rules should
be added to which switches by comparing the routing in
stage s to stage s + 1. For a splittable flow, we also need
to modify its splitting ratios at its ingress switch (lines 12–
14). To ensure consistency, we adopt the two-phase commit
protocol proposed in [46], which uses VLAN ID to index
stages. In the first phase of transition from s to s + 1,
new rules whose matching fields use the new VLAN ID
corresponding to stage s+ 1 (lines 7–10) are added. During
this phase, flows are still forwarded according to existing
rules as packets are still stamped with the VLAN ID of stage
s. Once the update is done for all switches, the protocol
enters the second phase when we stamp every incoming
packet with the new VLAN ID (lines 17–19). At this point
the new rules become functional, and old rules are removed
by the controller.

Mininet Setup. We consider two realistic topologies in
Mininet shown in Fig. 9. Specifically,

• A 4-pod fat-tree is used for the DCN scenario. The
network has 4 core switches and the edge and aggre-
gation layer has 4 switches in each pod. For simplic-
ity, we only use 2 pods in our experiments, which is
shown in Fig. 9(a). Each switch has 4 80Mbps ports.

• A realistic WAN topology for interconnecting Mi-
crosoft’s data centers [22], which is illustrated in
Fig. 9(b). There are 8 switches and 14 80Mbps links.

Table 4 shows how multipath routing is done in our im-
plementation using the ingress switch R8 and egress switch
R3 for the WAN shown in Fig. 9(b) as an example. The

1 2 3 4

5 6

7 8

9 10

11 12

(a) A 4-pod fat-tree DCN topology.

5
67

8
4

1
32

(b) Microsoft’s inter-data center WAN topology.

Fig. 9. Realistic network topologies and flows used in our experiments.
Each flow is depicted in a different color. Black solid nodes represent
switches, while white hollow nodes represent the source and destination
hosts that generate test flows.

TABLE 4
Flow table and group table at ingress switch R8 and egress switch R3

for splittable flows in Fig. 9(b).

Flow table at R8

Match Field ActionInPort SrcPfx DstPfx Tag
host 1 — — — Gr 1.1

Group table at R8

Identifier Type Action Buckets

Gr 1.1 Select
Weight: 1; Push vlan(0x200); Output: link 〈R8, R1〉
Weight: 1; Push vlan(0x201); Output: link 〈R8, R7〉
Weight: 1; Push vlan(0x202); Output: link 〈R8, R4〉

Flow table at R3

Match Field ActionInPort SrcPfx DstPfx Tag
— — 10.0.0.5 0x200 Pop vlan; Output: host 5
— — 10.0.0.6 0x200 Pop vlan; Output: host 6
— — 10.0.0.7 0x201 Pop vlan; Output: host 7
— — 10.0.0.8 0x201 Pop vlan; Output: host 8
— — 10.0.0.9 0x202 Pop vlan; Output: host 9
— — 10.0.0.10 0x202 Pop vlan; Output: host 10

action ofR8 points to the group table Gr 1.1 of type select.
Gr 1.1 performs multipath routing over three tunnels, and
stamps packets with three VLAN IDs. Egress switch R3

first pops the VLAN header and then forwards the packet
according to its destination IP. For simplicity, we do not
show the forwarding rules for ARP packets in Table 4. ARP
packets are flooded to all output ports.

In Fig. 10, we measure packets drop ratio during updates
from iperf. All the measurements are repeated for at least
30 times. We generate 120 1Mbps flows for a duration of
60 seconds. We leave 25% link capacity vacant for SWAN
and the congestion threshold of I2 is 1.125. The introduced
intermediate stages for GI is 3. When all the flows start, we
run Floodlight’s REST API to modify rules using different
update schemes. The x-axis in Fig. 10 represents minimum,
maximum and average packet drops among 120 flows. The
average packet drop ratio is the result that the total packet

TRANSACTIONS ON SERVICES COMPUTING 11

Min Average Max
0

0.02

0.04

0.06

0.08
L

o
st

 p
ac

ke
ts

 p
er

ce
n

ta
g

e
(%

)

GI

I2

SWAN

(a) DCN scenario

Min Average Max
0

0.01

0.02

0.03

0.04

0.05

L
o

st
 p

ac
ke

ts
 p

er
ce

n
ta

g
e

(%
)

GI

I2

SWAN

(b) WAN scenario

Fig. 10. Percentage of lost packets comparison.

drops divide the number of flows with packet drops during
update. We observe that SWAN, the congestion-free update,
still has a small extent of packet drops. The reason is that the
hash based flow splitting in OpenvSwitch is imperfect due
to the probabilistic nature. The packets drops in Fig. 10(a) is
slightly larger than the that of Fig. 10(b). This is because the
number of congested links in Fig. 9(a) is larger than that in
Fig. 9(b) during update. We also notice that the performance
of GI and I2 are very close to SWAN, because it defines
transient congestion for the worst-case scenario during the
update, which may not always occur in reality. As shown in
Fig. 10(b) for the WAN scenario, the introduced number of
intermediate stages is 4 for SWAN, and only 2 for I2, 3 for GI.
Thus our algorithm is able to offer equivalent performance
to SWAN without any vacant capacity reserved at links
using fewer intermediate stages. Finally we note that One
Shot is orders of magnitude longer than I2, GI and SWAN,
and we do not include it here.

In the second experiment, we perform network update
to handle device failures in both DCN and WAN. The
topologies used here are the same as illustrated in Fig. 9(a)
and Fig. 9(b). We generate 200 flows with an average size
of 5Mb. We use the link down command in Mininet to
simulate link failures. We run our algorithms and SWAN,
respectively, in the controller to update routing, and mea-
sure the total update time T . It includes two parts: time for
generating an update plan Tgen and time for updating for-
warding rules Tupdate. We measure Tupdate using OpenFlow
barrier messages [4], which are implemented by floodlight’s
OFBarrierRequest and OFBarrierReply class. Specif-
ically, from stages s to s + 1, we first record the starting
time Ts, then send the update messages, and finally send
the barrier request message. Upon receiving the barrier re-
sponse message, we obtain the finish time Ts+1. In addition,
we measure the average delay between the controller and
the switch Tdelay using the hello messages [4], which is
subtracted from the calculation.

T = Tgen + Tupdate = Tgen +
n−1∑
s=1

(Ts+1 − Ts − Tdelay)

Fig. 11 shows the update time results in response to
failures. In DCN, 80th percentile updates using GI and I2

finish within three seconds and five seconds, respectively,
while SWAN takes eight seconds. In WAN, GI and I2 use
three seconds and four seconds for 80th percentile updates,
while SWAN takes seven. One Shot, as the lower bound of
update time, is also implemented in our experiments. Tgen is
equal to zero for One Shot since it does not require solving

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Update time (second)

C
D

F

One Shot
GI

I2

SWAN

(a) DCN scenario

0 4 8 12 16 20
0

0.2

0.4

0.6

0.8

1

Update time (second)

C
D

F

One Shot
GI

I2

SWAN

(b) WAN scenario

Fig. 11. Update time comparison.

LP. We observe that the update time of GI is close to One
Shot especially in WAN scenario.

9 CONCLUSION

In this paper, we studied congestion-minimizing network
update. We proposed two problems of finding an update
plan with minimum transient congestion, and finding an
update plan with minimum intermediate stages given the
transient congestion threshold. We formulated them as opti-
mization programs, and proposed three algorithms to solve
the NP-hard problems. Experimental and simulation results
show that our algorithms mitigate transient congestion, save
control overhead, and reduce update time significantly.

ACKNOWLEDGMENTS

REFERENCES

[1] Floodlight. http://floodlight.openflowhub.org/.
[2] Fnss. http://fnss.github.io/.
[3] Networkx. https://networkx.github.io/.
[4] Openflow switch specification. https://www.opennetworking.

org/images/stories/downloads/sdn-resources/onf-
specifications/openflow/openflow-spec-v1.4.0.pdf.

[5] A. Agache, R. Deaconescu, and C. Raiciu. Increasing Datacenter
Network Utilisation with GRIN. In Proc. USENIX NSDI, 2015.

[6] M. Al-Fares, A. Loukissas, and A. Vahdat. A scalable, commodity
data center network architecture. In SIGCOMM, pages 63–74, 2008.

[7] M. Alizadeh, A. Greenberg, D. A. Maltz, J. Padhye, P. Patel,
B. Prabhakar, S. Sengupta, and M. Sridharan. Data center TCP
(DCTCP). In SIGCOMM, 2010.

[8] S. Amiri, A. Ludwig, J. Marcinkowski, and S. Schmid. Transiently
consistent sdn updates: Being greedy is hard. In SIROCCO, 2016.

[9] T. Benson, A. Anand, A. Akella, and M. Zhang. Microte: fine
grained traffic engineering for data centers. In CoNEXT, page 8,
2011.

[10] S. Brandt, K. Förster, and R. Wattenhofer. Augmenting anycast
network flows. In ICDCN, pages 24:1–24:10, 2016.

[11] S. Brandt, K.-T. Forster, and R. Wattenhofer. On consistent migra-
tion of flows in sdns. In INFOCOM, 2016.

[12] M. Casado, T. Koponen, S. Shenker, and A. Tootoonchian. Fabric:
A retrospective on evolving sdn. In HotSDN, pages 85–90, 2012.

[13] S. Chopra and M. R. Rao. The partition problem. Math. Program.,
59:87–115, 1993.

[14] R. Cohen, L. Lewin-Eytan, J. Naor, and D. Raz. On the effect of
forwarding table size on sdn network utilization. In INFOCOM,
2014.

[15] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein. Introduc-
tion to Algorithms (3. ed.). MIT Press, 2009.

[16] A. R. Curtis, J. C. Mogul, J. Tourrilhes, P. Yalagandula, P. Sharma,
and S. Banerjee. Devoflow: scaling flow management for high-
performance networks. In SIGCOMM, pages 254–265, 2011.

[17] P. Francois, O. Bonaventure, B. Decraene, and P.-A. Coste. Avoid-
ing disruptions during maintenance operations on bgp sessions.
IEEE Transactions on Network and Service Management, pages 1–11,
2007.

http://floodlight.openflowhub.org/
http://fnss.github.io/
https://networkx.github.io/
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf
https://www.opennetworking.org/images/stories/ downloads/sdn-resources/onf-specifications/openflow/openflow-spec-v1.4.0.pdf

TRANSACTIONS ON SERVICES COMPUTING 12

[18] J. Gettys and K. M. Nichols. Bufferbloat: dark buffers in the
internet. Communication of the ACM, 55(1):57–65, 2012.

[19] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang, V. Gill, M. Nan-
duri, and R. Wattenhofer. Achieving high utilization with
software-driven wan. In SIGCOMM, pages 15–26, 2013.

[20] J. Hua, X. Ge, and S. Zhong. Foum: A flow-ordered consistent
update mechanism for software-defined networking in adversarial
settings. In INFOCOM, 2016.

[21] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh,
S. Venkata, J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle,
S. Stuart, and A. Vahdat. B4: experience with a globally-deployed
software defined wan. In SIGCOMM, pages 3–14, 2013.

[22] X. Jin, H. H. Liu, X. Wu, R. Gandhi, S. Kandula, R. Mahajan,
M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic scheduling
of network updates. In SIGCOMM, pages 539–550, 2014.

[23] J. P. John, E. Katz-Bassett, A. Krishnamurthy, T. E. Anderson,
and A. Venkataramani. Consensus routing: The internet as a
distributed system. (best paper). In NSDI, pages 351–364, 2008.

[24] S. Kandula, I. Menache, R. Schwartz, and S. R. Babbula. Calendar-
ing for wide area networks. In SIGCOMM, pages 515–526, 2014.

[25] S. Kandula, S. Sengupta, A. G. Greenberg, P. Patel, and R. Chaiken.
The nature of data center traffic: measurements & analysis. In IMC,
pages 202–208, 2009.

[26] N. P. Katta, J. Rexford, and D. Walker. Incremental consistent
updates. In HotSDN, pages 49–54, 2013.

[27] N. Kushman, S. Kandula, D. Katabi, and B. Maggs. R-bgp: Staying
connected in a connected world. In 4th USENIX Symposium on
Networked Systems Design and Implementation, Cambridge, MA,
April 2007.

[28] B. Lantz, B. Heller, and N. McKeown. A network in a laptop: rapid
prototyping for software-defined networks. In HotNets, page 19,
2010.

[29] N. Laoutaris, M. Sirivianos, X. Yang, and P. Rodriguez. Inter-
datacenter bulk transfers with netstitcher. In SIGCOMM, 2011.

[30] H. H. Liu, X. Wu, M. Zhang, L. Yuan, R. Wattenhofer, and D. A.
Maltz. zupdate: updating data center networks with zero loss. In
SIGCOMM, pages 411–422, 2013.

[31] A. Ludwig, S. Dudycz, M. Rost, and S. Schmid. Transiently secure
network updates. In SIGMETRICS, 2016.

[32] A. Ludwig, J. Marcinkowski, and S. Schmid. Scheduling loop-free
network updates: It’s good to relax! In PODC, pages 13–22, 2015.

[33] A. Ludwig, M. Rost, D. Foucard, and S. Schmid. Good network up-
dates for bad packets: Waypoint enforcement beyond destination-
based routing policies. In HotNets, pages 1–7, 2014.

[34] S. Luo, H. Yu, L. Luo, and L. Li. Arrange your network updates
as you wish. In IFIP Networking, 2016.

[35] J. McClurg, H. Hojjat, P. Cerný, and N. Foster. Efficient synthesis
of network updates. In SIGPLAN, pages 196–207, 2015.

[36] R. McGeer. A safe, efficient update protocol for openflow net-
works. In HotSDN, 2012.

[37] N. McKeown, T. Anderson, H. Balakrishnan, G. M. Parulkar, L. L.
Peterson, J. Rexford, S. Shenker, and J. S. Turner. Openflow:
enabling innovation in campus networks. Computer Communication
Review, 38(2):69–74, 2008.

[38] T. Mizrahi and Y. Moses. Software defined networks: It’s about
time. In INFOCOM, 2016.

[39] T. Mizrahi, O. Rottenstreich, and Y. Moses. Timeflip: Scheduling
network updates with timestamp-based TCAM ranges. In INFO-
COM, pages 2551–2559, 2015.

[40] T. Mizrahi, E. Saat, and Y. Moses. Timed consistent network
updates. In SOSR, pages 21:1–21:14, 2015.

[41] X.-N. Nguyen, D. Saucez, C. Barakat, and T. Turletti. Officer: A
general optimization framework for openflow rule allocation and
endpoint policy enforcement. In INFOCOM, Apr. 2015.

[42] A. Noyes, T. Warszawski, P. Cerný, and N. Foster. Toward
synthesis of network updates. In SYNT, pages 8–23, 2014.

[43] Z. A. Qazi, C. Tu, L. Chiang, R. Miao, V. Sekar, and M. Yu. Simple-
fying middlebox policy enforcement using sdn. In SIGCOMM,
pages 27–38, 2013.

[44] B. Raghavan, M. Casado, T. Koponen, S. Ratnasamy, A. Ghodsi,
and S. Shenker. Software-defined internet architecture: decoupling
architecture from infrastructure. In HotNets, pages 43–48, 2012.

[45] S. Raza, Y. Zhu, and C.-N. Chuah. Graceful network state migra-
tions. IEEE/ACM Trans. Netw., 19(4):1097–1110, 2011.

[46] M. Reitblatt, N. Foster, J. Rexford, C. Schlesinger, and D. Walker.
Abstractions for network update. In SIGCOMM, pages 323–334,
2012.

[47] L. Vanbever, S. Vissicchio, C. Pelsser, P. François, and O. Bonaven-
ture. Lossless migrations of link-state igps. IEEE/ACM Trans.
Netw., 20(6):1842–1855, 2012.

[48] S. Vissicchio and L. Cittadini. Flip the (flow) table: Fast lightweight
policy-preserving sdn updates. In INFOCOM, 2016.

[49] W. Wang, W. He, J. Su, and Y. Chen. Cupid: Congestion-free
consistent data plane update in software defined networks. In
INFOCOM, 2016.

[50] D. P. Williamson and D. B. Shmoys. The Design of Approximation
Algorithms. Cambridge University Press, 2011.

[51] W. Zhou, D. K. Jin, J. Croft, M. Caesar, and P. B. Godfrey. En-
forcing customizable consistency properties in software-defined
networks. In NSDI, pages 73–85, 2015.

[52] X. Zhu, Q. Li, W. Mao, and G. Chen. Online vector scheduling
and generalized load balancing. Journal of Parallel and Distributed
Computing, 74(4):2304–2309, 2014.

Jiaqi Zheng is currently a Ph.D. candidate from
Department of Computer Science and Technol-
ogy, Nanjing University, China. He was a Re-
search Assistant in the City University of Hong
Kong in 2015, and a Visiting Scholar in Temple
University in 2016. His research interests include
data center networks, software defined networks
and cloud computing. He received the best pa-
per award from IEEE ICNP 2015.

Hong Xu is an assistant professor the Depart-
ment of Computer Science, City University of
Hong Kong. He received his M.A.Sc. and Ph.D.
degrees from the Department of Electrical and
Computer Engineering, University of Toronto.
His research interests include data center net-
working, SDN, NFV, and cloud computing. He
was the recipient of an Early Career Scheme
Grant from the Research Grants Council of the
Hong Kong SAR, 2014. He also received the
best paper awards from IEEE ICNP 2015 and

ACM CoNEXT Student Workshop 2014. He is a member of ACM and
IEEE.

Guihai Chen is a distinguished professor of
Shanghai Jiao Tong University. He earned BS
degree in computer software from Nanjing Uni-
versity in 1984, ME degree in computer appli-
cations from Southeast University in 1987, and
PhD degree in computer science from the Uni-
versity of Hong Kong in 1997. He has a wide
range of research interests with focus on paral-
lel computing, wireless networks, data centers,
peer-to-peer computing, high-performance com-
puter architecture and data engineering.
Haipeng Dai is a research assistant in the De-
partment of Computer Science and Technolo-
gy in Nanjing University, Nanjing, China. He re-
ceived the B.S. degree in the Department of
Electronic Engineering from Shanghai Jiao Tong
University, Shanghai, China, in 2010, the Ph.D.
degree at the Department of Computer Science
and Technology in Nanjing University, Nanjing,
China, in 2014. His research interests are mainly
in the areas of network measurement, mobile
computing, and internet of things.
Jie Wu is the Associate Vice Provost for Inter-
national Affairs at Temple University. He also
serves as the Chair and Laura H. Carnell profes-
sor in the Department of Computer and Informa-
tion Sciences. Prior to joining Temple University,
he was a program director at the National Sci-
ence Foundation and was a distinguished pro-
fessor at Florida Atlantic University. His current
research interests include mobile computing and
wireless networks, routing protocols, cloud and
green computing, network trust and security, and

social network applications. Dr. Wu is a CCF Distinguished Speaker and
a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

TRANSACTIONS ON SERVICES COMPUTING 1

APPENDIX A
PROOF OF THEOREM 3

Proof: To begin with, we present some related proper-
ties and definitions to facilitate the proof.

Property 3. If X and Y are nonnegative random variables,
then E [max(X,Y)] ≤ E[X] + E[Y] holds [15].

Definition 4. Let Xs
f,e be a binary random variable that

indicates whether flow f ∈ Fsp is routed through link e
in stage s. If f passes through link e in stage s, Xs

f,e = 1,
otherwise Xs

f,e = 0.

Definition 5. Let ze =
∑
f∈Fmp

df max(x̃sf,e, x̃
s+1
f,e), which

represents the maximum load on link e for f ∈ Fmp
during the transition from stage s to stage s+ 1.

Definition 6. Let Xe =
∑
f∈Fsp

df max(Xs
f,e, X

s+1
f,e) + ze be

a random variable that indicates the maximum load on
link e during the transition from stage s to stage s+ 1.

According to Property 3, Definition 6, and constraint
(1a),

E[Xe] =
∑
f∈Fsp

dfE
[
max

(
Xs
f,e, X

s+1
f,e

)]
+ ze

≤
∑
f∈Fsp

df
(
E
[
Xs
f,e

]
+ E

[
Xs+1
f,e

])
+ ze

=
∑
f∈Fsp

df
∑

p∈P (f):e∈p

(
E
[
Xs
f,p

]
+ E

[
Xs+1
f,p

])
+ ze

=
∑
f∈Fsp

df
∑

p∈P (f):e∈p

(
x̃sf,p + x̃s+1

f,p

)
+ ze

≤ 2µ∗Ce

Let Ye = Xe

Ce
=
∑
f∈Fsp

df

Ce
max(Xs

f,e, X
s+1
f,e) + ze

Ce
. From

above, E[Ye] ≤ 2µ∗. The random variables {Xs
f,e} are

mutually independent since link e for flow f is chosen
independently in Algorithm 1. Therefore, Ye, the sum of
random variables {Xs

f,e}, is independent. Choose δ such
that (1 + δ) = 8 ln k

ln ln k and apply Chernoff bound [50],

Pr

[
Ye ≥

8 ln k

ln ln k
2µ∗

]
≤
(

8 ln k

e ln ln k

)−8 ln k
ln ln k

≤ 1

k4
.

There are k switches in the network, so the number of links
between nodes is at most k2. By union bound,

Pr

[
max
e∈E

Ye ≥
8 ln k

ln ln k
2µ∗

]
≤
∑
e∈E

Pr

[
Ye ≥

8 ln k

ln ln k
2µ∗

]
≤ 1

k2
.

APPENDIX B
PROOF OF THEOREM 4

Proof: Suppose {β̂2
f,p}, {β̂3

f,p}, . . . , {β̂
n−1
f,p } is the opti-

mal intermediate stage with the least transient congestion.
Hence, we obtain

max(φ({α1
f,p} ∨ {β2

f,p}), . . . , φ({βn−1f,p } ∨ {γ
n
f,p}))

≥ max(φ({α1
f,p} ∨ {β̂2

f,p}), . . . , φ({β̂n−1f,p } ∨ {γ
n
f,p}))

Without loss of generality, we assume φ({α1
f,p} ∨ {β2

f,p}) is
the maximum value in the left side. We thus have

φ({α1
f,p} ∨ {β2

f,p}) ≥ φ({α1
f,p} ∨ {β̂2

f,p})
φ({α1

f,p} ∨ {β2
f,p}) ≥ φ({β̂2

f,p} ∨ {β̂3
f,p})

. . .

φ({α1
f,p} ∨ {β2

f,p}) ≥ φ({β̂n−1f,p } ∨ {γ
n
f,p})

From Property 1 and Property 2, we have

(n− 1) · φ({α1
f,p} ∨ {β2

f,p})
≥ φ({α1

f,p} ∨ {β̂2
f,p} ∨ . . . ∨ {β̂n−1f,p } ∨ {γ

n
f,p})

≥ φ({α1
f,p} ∨ {γnf,p})

From the above we conclude the proof, since we know that

φ({α1
f,p} ∨ {β2

f,p}) ≥
1

n− 1
· φ({α1

f,p} ∨ {γnf,p})

APPENDIX C
PROOF OF LEMMA 1

Proof: In a τ -pod fat-tree, each switch has τ ports.
There are τ/2 aggregation switches and τ/2 edge switches
in each pod. Core switches connect aggregation switch-
es across pods. A 4-pod fat-tree topology is illustrated
in Fig. 12. Aggregation and edge switches in pod j ∈
{1, 2, . . . , τ} are denoted by Aggji and Torji , respective-
ly, where i ∈ {1, 2, . . . , τ/2}. Core switches, which con-
nect aggregation switches, are denoted by Coriu, where
u ∈ {1, 2, . . . , τ/2}.

Suppose there does not exist path p′ such that
φ({D∗f,e|e∈p′} ∨ βs

∗

f∗,p′) < 4µ̃. We denote source and des-

tination switch of flow f∗ by Torpodih and Tor
podj
g . Let

Eh (Eg) be the set of links incident to switch Torpodih

(Tor
podj
g). Let lh (lg) be the number of links in set Eh

(Eg) such that φ({D∗f,e}) > 4µ̃, where e ∈ Eh(Eg). Let
l′h (l′g) be the number of links in set Eh (Eg) such that
4µ̃ − d∗ ≤ φ({D∗f,e}) ≤ 4µ̃, where e ∈ Eh(Eg) and
d∗ = df

∗
/Ce. We denote by Fh the total amount of flow

in all links incident to switch Torpodih , and thus Fh >
lh ·4µ̃ ·Ce+ l′h (4µ̃− d∗) ·Ce ≥ lh ·4µ̃ ·Ce+ l′h (4µ̃− µ̃) ·Ce.
Hence,

Fh > 4lhµ̃Ce + 3l′hµ̃Ce (4)

Now we consider the lower bound of µ̃, which is the
case that the total amount of flow Fh are evenly splitted in
τ/2 links incident to Torpodih .

µ̃Ce ≥
2Fh
τ

(5)

Combining (4) and (5), τ/2 > 4lh + 3l′h, we obtain

τ

6
>

4

3
lh + l′h (6)

We denote by l′′h (l′′g) the number of links in set Eh (Eg)
such that φ({D∗f,e}) < 4µ̃ − d∗, where e ∈ Eh(Eg). By
inequality (6), we have

TRANSACTIONS ON SERVICES COMPUTING 2

1
1Agg

1
1Cor

1
2Agg

1
1Tor 1

2Tor

2
1Agg 2

2Agg

2
1Tor 2

2Tor

3
1Agg 3

2Agg

3
1Tor 3

2Tor

4
1Agg 4

2Agg

4
1Tor 4

2Tor

1
2Cor 2

2Cor2
1Cor

Pod1 Pod2 Pod3 Pod4

Fig. 12. 4-pod fat-tree topology

l′′h =
τ

2
− lh − l′h =

τ

2
− 4

3
lh − l′h +

lh
3
>
τ

3
+
lh
3

(7)

For the same reason, τ/6 > (4/3)lg + l′g . Hence,

l′′g =
τ

2
− lg − l′g >

τ

3
+
lg
3

(8)

According to whether switch Torpodih and Torpodjg are in
the same pod, we prove Lemma 1 in cases.

Case 1: source switch Torpodih and destination switch
Tor

podj
g are in the same pod, i.e., i = j.
From inequality (7) and (8), we obviously obtain,

l′′h >
2

3
· τ
2
, l′′g >

2

3
· τ
2

We observe that more than 2/3 links incident to Torpodih
have load relative to its capacity less than 4µ̃ − d∗. And so
also is Torpodig . Moreover, The network topology in podi is
a bipartite graph. Hence, there must exist a switch set A
in aggregation layer and constitute a nonemply path set
Pagg = {〈Torpodih Aggpodij Torpodig 〉}, where Aggpodij ∈ A
and |A| > τ/6. Obviously, φ({D∗f,e|e∈p′}) < 4µ̃− d∗, where
p′ ∈ Pagg . We further induce that there exists path p′ ∈ Pagg
such that φ({D∗f,e|e∈p′} ∨ β

s2
f∗,p′) < 4µ̃, which is contrary to

the assumption.
Case 2: source switch Torpodih and destination switch

Tor
podj
g are in the different pods, i.e., i 6= j.
Let Ec be the set of links incident to core switch Corγu.

Let lcor (l′cor) be the number of links in set Ec such that
φ({D∗f,e}) > 4µ̃ (4µ̃−d∗ ≤ φ({D∗f,e}) ≤ 4µ̃), where e ∈ Ec.
Let B be the set of pairs (Aggpodiγ , Agg

podj
γ) in aggregation

layer between podi and podj which are interconnected by
core switch Corγu, such that both φ({D∗f,e′}) < 4µ̃ − d∗

and φ({D∗f,e′′}) < 4µ̃ − d∗, where e′ ∈ {〈Torpodih Aggpodiγ 〉}
and e′′ ∈ {〈Aggpodjγ Tor

podj
g 〉}. Let B′ be the set of pairs

(Aggpodiγ , Agg
podj
γ) in aggregation layer between podi and

podj such that φ({D∗f,e′}) ≥ 4µ̃ − d∗ or φ({D∗f,e′′}) ≥
4µ̃ − d∗, where e′ ∈ {〈Torpodih Aggpodiγ 〉} and e′′ ∈
{〈Aggpodjγ Tor

podj
g 〉}. Let l = (lh+ lg)/2 and l′ = (l′h+ l

′
g)/2,

we obtain

|B′| ≤
lh + l′h + lg + l′g

2
= l + l′

Note that if the assumption holds, the inequal-
ity φ({D∗f,e|e∈p}) ≥ 4µ̃ − d∗ must be satisfied,

where path p ∈ {〈Aggpodiγ CorγuAgg
podj
γ 〉} and aggre-

gation switch pairs (Aggpodiγ , Agg
podj
γ) ∈ B. Oth-

erwise flow f∗ can be routed through any path in
set Pcor = {〈Torpodih Aggpodiγ CorγuAgg

podj
γ Tor

podj
h 〉} and

φ({D∗f,e|e∈Pcor
}) < 4µ̃ − d∗. This is a contradiction. Hence,

we must have

lcor+ l
′
cor ≥

τ

2
· |B| = τ

2
·
(τ
2
− |B′|

)
≥ τ

2
·
(τ
2
− l − l′

)
(9)

We denote by Fpodi and Fpodj the amount of flow
originated from podi and directed to podj respectively.
Fpodi +Fpodj > lcor ·4µ̃Ce+ l′cor(4µ̃−d∗)Ce ≥ lcor ·4µ̃Ce+
l′cor(4µ̃− µ̃)Ce, we obtain

Fpodi + Fpodj > 4lcorµ̃Ce + 3l′corµ̃Ce (10)

Consider the following lower bound for µ̃, where the
amount of flow originated from podi and directed to podj
are evenly splitted by (τ/2)(τ/2) links respectively.

µ̃Ce ≥
4Fpodi
τ2

, µ̃Ce ≥
4Fpodj
τ2

(11)

Combining (10) and (11), we have

τ2

2
> 4 · lcor + 3 · l′cor (12)

From (9) and (12), we have that

τ2

2
> 3 · (lcor + l′cor) + lcor ≥ 3 · τ

2
· (τ

2
− l − l′) + lcor

By (7) and (8), we derive that

τ2

2
> 3 · τ

2
· (τ

3
+
l

3
) + lcor >

τ2

2
+
τ · l
2

+ lcor

Hence,

0 >
τ · l
2

+ lcor (13)

τ denotes the number of pods in fat-tree topology and
thus τ > 0. Recall the condition that l ≥ 0 and lcor ≥ 0,
we obtain (τ · l)/2 + lcor ≥ 0, which is a contradiction to
(13). Hence, there exists path p′ in fat-tree topology such
that φ({D∗f,e|e∈p′} ∨ β

s2
f∗,p′) < 4µ̃.

	Introduction
	Related Work
	An Optimization Framework
	A Motivating Example
	Network Model and Problem Definitions
	Problem Formulation
	Hardness Analysis

	A Rounding Algorithm
	A Greedy Improvement Algorithm
	Algorithm Design
	Approximation Ratio for Fat-tree

	A Heuristic Algorithm for BCUP
	Large-scale Simulations
	Setup
	Benchmark Schemes
	Basic Performance

	Implementation
	Conclusion
	References
	Biographies
	Jiaqi Zheng
	Hong Xu
	Guihai Chen
	Haipeng Dai
	Jie Wu

	Appendix A: Proof of Theorem 3
	Appendix B: Proof of Theorem 4
	Appendix C: Proof of Lemma 1

