
2-Dominant Resource Fairness: Fairness-Efficiency
Tradeoffs in Multi-resource Allocation

Suhan Jiang, Jie Wu
Department of Computer and Information Sciences

Temple University

Abstract—Fair allocation has been studied intensively in both
economics and computer science. Many existing mechanisms that
consider fairness of resource allocation focus on a single resource.
With the advance of cloud computing that centralizes multiple
types of resources under one shared platform, multi-resource
allocation has come into the spotlight. In fact, fair/efficient multi-
resource allocation has become a fundamental problem in any
shared computer system. The widely-used solution is to partition
resources into bundles that contain fixed amounts of different
resources, so that multiple resources are abstracted as a single
resource. However, this abstraction cannot satisfy different de-
mands from heterogeneous users, especially on ensuring fairness
among users competing for resources with different capacity lim-
its. A promising approach to this problem is dominant resource
fairness (DRF), which tries to equalize each user’s dominant
share (share of a user’s most highly demanded resource, i.e.,
the largest fraction of any resource that the user has required
for a task), but this method may still suffer from significant
loss of efficiency (i.e., some resources are underused). This paper
develops a new allocation mechanism based on DRF aiming to
balance fairness and efficiency. We consider fairness not only in
terms of a user’s dominant resource, but also in another resource
dimension which is secondarily desired by this user. We call this
allocation mechanism 2-dominant resource fairness (2-DF). Then,
we design a non-trivial on-line algorithm to find a 2-DF allocation
and extend this concept to k-dominant resource fairness (k-DF).

Index Terms—Allocation, efficiency, fairness, multi-resource.

I. INTRODUCTION

Resource allocation is one of the central topics in the field
of computer science. There are many policies that govern
resource allocation to achieve fairness among users. Max-min
fairness, one of the most popular allocation policies, tries to
maximize the allocation for the most poorly treated users, i.e.,
maximize the minimum. Weighted max-min fairness adds a
new concept called weight based on max-min fairness, and
assigns each user with a share of the resources according to
a preset weight. However, an obvious limitation in most of
the existing works is that they are only devoted to single-
resource allocation when quantifying the notion of fairness,
e.g. by allocating available link bandwidth to network flows.

Fair (or efficient) multi-resource allocation is a fundamental
problem in any shared computer system. A typical example is
data centers that process numerous jobs with heterogeneous
resource requirements on bandwidth, memory, and CPU etc.
Both Hadoop and Dryad employed a simple solution based
on resource abstraction. As is shown in Fig 1, all resources
are partitioned into bundles with fixed amounts of different

Fig. 1: A multi-resource allocation setting using resource abstraction.

resources, so that multiple resources are abstracted as a single
resource. However, this simple resource abstraction ignores the
different demands of heterogeneous users, and cannot always
match nicely with user demands.

Ghodsi et al. [1] first put forward a compelling approach to
this problem, which is known as dominant resource fairness
(DFR). In brief, DRF allocates resources according to users’
proportional demands, applying max-min fairness to each
user’s dominant share. Dominant share is the maximum share
that a user has been allocated of any resource. Such a resource
is then called a dominant resource. Although DRF has at-
tracted much attention, this allocation approach has been ques-
tioned continuously for the reasons given below: (1) fairness
dispute - DRF only considers one dimension when allocating
all resources. Once the allocation of a user’s dominant resource
is determined, resources in other dimensions are proportionally
assigned according to the user’s request. (2) efficiency loss -
Jin et al. [2] and Bertsimas et al. [3] respectively showed that
proportional fairness, which maximizes the sum of the log of
completed tasks of different users, always more efficiently uses
resources than DRF does.

A. Motivation

We use the example shown in Figure 1 to illustrate existing
problems in the DRF allocation mechanism. Given a system
with three resources 〈Bandwidth, Memory, CPU〉 and
two users 〈user1, user2〉, the capacity of each resource is
200 units respectively. User 1 executes each task with the
request vector 〈40, 8, 8〉, while user 2 requires 〈8, 5, 1〉
for each task. According to DRF, user 1 gets an allocation
of 〈100, 20, 20〉, and user 2 gets 〈100, 62.5, 12.5〉. The
resulting allocation is shown in Fig. 6.

978-1-5386-6808-5/18/$31.00 © 2018 IEEE

200 200 200

user 1: 𝑥 tasks user 2: 𝑦 tasks

Τ8𝑥 200 Τ5𝑦 200
subject to

Τ40x 200 = Τ8y 200
40x + 8y ≤ 200
8x + 5y ≤ 200
8x + y ≤ 200

maximize x, y

x = 2.5 y = 12.5

< 100, 20, 20 > < 100, 62.5, 12.5 >

Fig. 2: An example of dominant resource fairness allocation.

user 1

++
40 8 8

1 task

user 2

++
160 100 20

20 tasks

user 1

100 20 20

2.5 task

user 2

100 62.5 12.5

12.5 tasks

++

++

Fig. 3: Efficiency loss in dominant resource fairness allocation.

In the fairness domain, it is obvious that the amount of
resources allocated to each user is only dependent on his
dominant resource request. According to the blue line shown
in Fig. 4, if user 2’s request on memory (which isn’t his
dominant resource) varies, there is no change on the number
of total tasks he can complete. In the efficiency domain, if
we define efficiency in terms of the aggregate tasks of all
users, this example also reflects DRF’s deficiency. In this
setting, DRF produces an allocation with 2.5 tasks for user
1 and 12.5 tasks for user 2. This allocation brings about
a significant loss in system efficiency. If we assign 2 tasks
to user 1 and 15 tasks to user 2, this allocation yields 17
tasks in total, which is more efficient than DRF. Consider an
extremely unequal allocation, where all resources are allocated
to user 2, it will produce 25 tasks completed in total. In
addition, we can also measure efficiency based on the amount
of leftover resource capacity. In this example, DRF yields
15 tasks, leaving 285 units of resources unused in total. If
we assign 22.5 tasks to user 2, it also leads to 285 units
of resources left unused. It is obvious, resource utility is
higher in the second allocation. In fact, each of the existing
mechanisms designed for multi-resource allocations represents
one point of the fairness-efficiency tradeoff. Besides, this
example motivates us to think about if we could design a
new mechanism to reach the following goals: (1) balance the
number and the value of resources given to user 1 and user
2, in order to achieve the fairness in the traditional sense; (2)
increase total efficiency of resource utility, in order to complete
more tasks. While fairness is a basic requirement of different
users for resource competition, efficiency is the most desirable
property for a system provider, with the efficiency expressed
in terms of the aggregate tasks of all users. Hence, a key
challenging issue is how to balance these two factors with

the desired performance satisfactory. Unfortunately, though
generally applicable to multi-resource environments, DRF still
performs poorly when efficiency is a concern.

B. Our Result

To some extent, the previous example shows the funda-
mental tradeoff between fairness and efficiency: fairness and
efficiency cannot be achieved simultaneously. In this paper,
we seek to answer a fundamental question of resource man-
agement: how to allocate multi-type resources among users
with heterogeneous demands, in an attempt to balance two
opposing factors - efficiency and fairness.

Based on this question, we propose a new allocation
mechanism called 2-dominant resource fairness (2-DF). A
concept called 2-dominant share (denoted by s) is used. si
is defined for each user i as the product of first two dominant
demand/capacity ratios. Compared with dominant resource
share, 2-dominant share is a better reflection of a user’s true
demand of all resources. Similarly to DRF, our allocation
mechanism tries to equalize each user’s 2-dominant share as
much as possible. Further, we extend this 2-dominant resource
fairness to k-dominant resource fairness (k-DF). We show our
allocation mechanism can improve resource utility in most
cases while still keeping some important fairness properties,
and we also prove that our allocation mechanism satisfies
both strategy-proofness and Pareto-optimality; meanwhile, we
could achieve envy-freeness in some scenarios that appear
quite frequently.

Our contributions in this paper are summarized as follows:

• Motivated by the deficiency of DFR policy, we reconsider
the definition of fairness and efficiency, and formulate
several basic metrics to measure fairness and efficiency
of a specific allocation mechanism in the multi-resource
scenario.

• A new allocation mechanism called 2-dominant resource
fairness is proposed to fairly and efficiently allocate
multiple resources to users with heterogeneous demands.

• An online scheduling algorithm is designed to realize 2-
DF allocation mechanism.

• We prove that in 2-DF allocation mechanism, strategy-
proofness and Pareto-optimality can be guaranteed, and
envy-freeness can be achieved in some scenarios that
appear quite frequently.

• We simulate our algorithm in real-world scenarios, and
compare the performances of our algorithm with the pre-
vious approaches according to our predetermined metrics.

The remainder of the paper is organized as follows. Sec-
tion II briefly reviews the related works, and Section III for-
mulates the metrics that are to measure fairness and efficiency
in multi-resource allocation settings. Section IV presents our
model and related allocation mechanism. In Section V, we
prove some important fairness properties achieved in our
mechanism. We discuss experiment results in Section VI, and
conclude our paper in Section VII.

12345678
Unit of memory requested by user 2

15

20

25

N
um

be
r

of
 to

ta
l t

as
ks

DRF
2-DF

Fig. 4: User changes his request on a non-dominant resource dimension.

II. RELATED WORK

Multi-resource allocation problems arise in increasingly
many applications. Data centers with multiple resources have
often employed a single resource abstraction by partitioning
different resources into bundles. However, multi-resource allo-
cation viewed as single-resource allocation inevitably leads to
significant inefficiencies because of the heterogeneous user de-
mands. Different approaches have been proposed to deal with
multi-resource allocation problems. Many different dimensions
have been taken into account, such as desirable allocation
characteristics, utility functions used to measure happiness of
users, and the step at which a resource allocation approach
should be applied [4].

As discussed earlier, Ghodsi et al. [1] proposed the DRF
policy, which provides fair allocation of multiple resources
in terms of dominant shares. It retains a number of desirable
sharing properties and has been widely studied in both theory
and practice. Then, Ghodsi et al. [5] extended DRF to packet
networks and proposed DRFQ, the first fair multi-resource
queuing algorithm. Gutman and Nisan [6] considered gener-
alizations of DRF in a more general utility model, such as the
Leontief preferences. Joe-Wong et al. [7] paid attention to the
tradeoffs between fairness and efficiency, and generalized the
DRF policy by designing a unifying multi-resource allocation
framework. Parkes et al. [8] extended DRF in several ways,
and in particular studied the case of indivisible tasks.

Wang et al. [9] and Friedman et al. [10] extended DRF’s
all-in-one resource model to distributed systems with heteroge-
neous machines, while Zeldes and Feitelson [11] proposed an
on-line algorithm based on bottlenecks and global priorities.
Kash et al. [12] extended DRF to a dynamic setting, where
users dynamically arrive over time but never depart. Also, Li
et al. [13] generalized the dynamic dominant resource fairness
mechanism to the bounded case, where each user has a finite
number of tasks. In their paper, a linear-time optimal algorithm
is presented. Dolev et al. [14], on the other hand, suggested
a different fairness notion for multi-resource allocation based
on fairly dividing a global system bottleneck resource. Zahedi
and Lee [15] applied the concept of Competitive Equilibrium
from Equal Outcomes (CEEI) in the case of the CobbDouglas
utilities to achieve properties similar to DRF.

Recently, a new mechanism called Greediness Metric Fair-
ness has been developed [16], [17], [18], which can be applied
to allocate physical resources by periodically adapting the pri-
orities of virtual machines. This mechanism is highly flexible
and applicable to scheduling, since it has no assumptions on

(a) Allocation result.

user 1

++
40 8 8

1 task user 2

++
160 100 20

20 tasks

(b) Pareto efficiency.

user 1

++

100 100 100

2.5 tasks user 2

++

100 100 100

12.5 tasks

(c) Sharing incentive.

user 2

++
100 20 20

4 tasksuser 1

++
100 62.5 12.5

1.6 tasks

(d) Envy-freeness.

user 1

++
100 20 20

2.5 tasks user 2

++
100 90 90

12.5 tasks

< 8, 5, 1 >
< 10, 9, 9 >

(e) Strategy-proofness.

Fig. 5: Examples of multi-resource fairness properties.

utility functions. Besides, there appears a new trend to take
advantage of machine learning to allocate multiple resources
to satisfy user requests [19].

III. METRICS ON FAIRNESS AND EFFICIENCY

When assessing the quality of an allocation, we can distin-
guish two types of indicators of social welfare: fairness and
efficiency. While fairness is a basic requirement of different
users for resource competition, efficiency is the most desirable
property for a system provider. Hence, a key challenging
issue is how to balance these two factors with the desired
performance and user satisfaction. Before discussing our new
allocation mechanism, we start with some widely-accepted
definitions of fairness and efficiency in the multi-resource
allocation environments, and formulate some metrics that
should be considered to measure a multi-resource allocation
mechanism.

In terms of fairness, equal sharing seems to be treated as
the conventional idea. However, it cannot always be a good

interpretation of fairness even for a single-resource allocation.
Given a total of 12-unit bandwidth and 3 network users, A
needs 1.5 unit bandwidth for web-browsing, B needs 4.5 unit
bandwidth for watching a film, and C needs 6 unit bandwidth
to hold a video conference. Egalitarianism will lead to an
allocation of 4 units for each user. 4 units for A are really a
waste while for B and C are not enough. This equal allocation
scheme produces a very low network resource utility. A better
allocation can be 〈1.5, 4.5, 6〉 for A, B, C, which ensures
that all users can be better off or at least no worse off than in
the case of equal sharing. A major challenge of multi-resource
fairness is incorporating the heterogeneity of different users’
requirements for different resources into the assessment of its
fairness. As mentioned in [4], there are two main reasons
why more complexity and less agreement are encountered
in defining multi-resource fairness: one is that fairness is an
intuitive concept, and the other is that the organization of
resources also has influence on defining fairness. Instead of
being stuck in different definitions of fairness, we list some
acknowledged and important properties of a fair multi-resource
allocation proposed by Ghodsi et al. [1].

Definition 1 (Pareto efficiency). Increasing the allocation of a
user will lead to decreasing the allocation of at least another
user. This means no user can run more tasks without harming
someone else’s benefits.

Definition 2 (Sharing incentive). Each user should be at least
no worse off by sharing resources compared with exclusively
equally partitioning each resource. Given a set of resources
and n users, each user should be able to run more tasks if
they share resources.

Definition 3 (Envy-freeness). A user should not prefer the
allocation of another user. Changing her current allocation
with that of anyone else would not improve her total task
number.

Definition 4 (Strategy-proofness). Users should not be able to
benefit from lying about their resource demands, which means
a user cannot run more tasks by lying.

It is obvious that DRF allocation mechanism can satisfy all
the properties above. See Fig. 5(b), if we improve user 2’s
utility by adding his tasks, then user 1’s tasks will definitely
decrease. This is so-called Pareto efficiency. Similarly, both
user 1 and user 2 will be as good as the condition where all
resources are equally allocated to them. This is an example
for Sharing incentive. In terms of Envy-freeness, we can find,
if user 1 and user 2 exchange their current allocations, both
of them will finish fewer tasks, as is shown in Fig. 5(d). And
from Fig. 5(e), if user 2 cheats on his resource demand, he still
only finishes 12.5 tasks as before. Thus, DRF is also subject
to Strategy-proofness.

Besides, we want to mention two more important concepts,
which are important for an allocation mechanism to achieve
so-called fairness in the traditional sense.
• multiple dimensions of resources: when calculating the

user 1

100 20 20

2.5 task

user 2

100 62.5 12.5

12.5 tasks

++

++

AUR=117.5+167.5
=285

0 117..5 167.5

++

NTT=2.5+12.5
=15

Fig. 6: Example of efficiency measurements.

resource allocation, the mechanism should not consider
only one dimension of all resources.

• non-dominant resources: fairness should consider the
consumption of non-dominant resources as well. If two
different tasks have the same demand of a given dominant
resource, then the one having smaller consumption of
non-dominant resources should receive some compensa-
tion. Further, if a task has a totally lower demand of all
given resources compared with other tasks, then it should
receive more compensation.

It is also not easy to measure efficiency in the multi-
resource allocation setting. In a single-resource scenario, the
most efficient allocation will clearly use the entire resources
and thus achieve the maximal number of tasks. On this
basis, we list two metrics to measure multi-resource allocation
efficiency.

• the number of total tasks completed: higher resource
efficiency is achieved by more tasks done by all users.

• the amount of unused resources: after all required re-
sources are allocated, more unused resources allow a
datacenter to serve forthcoming users.

IV. 2-DOMINANT RESOURCE FAIRNESS

In this section, we propose a new allocation mechanism
called 2-dominant resource fairness (2-DF) for heterogeneous
users with different requests for distinct resources.

A. Background and Model

In our model, we follow Ghodsi et al. [1] and assume that
resources of the same type are assembled in homogeneous
pools. Consider r infinitely divisible resources, the capacity
of each resource j is Cj . There are n users indexed by i.
Each user runs many parallel tasks. Each task is characterized
by a request vector Di = [ai1, ai2, · · · , air], which specifies
the amount of different resources needed during the runtime.
Because the tasks from a user are typically the same binary
program running on different data blocks of similar sizes,
they require the same amount of resources. We therefore
assume the same request vector across a user’s tasks and that
each user i requires an amount of each resource in fixed
proportion. User i’s final allocation is defined by a vector
Ai = [ϕiai1, ϕiai2, · · · , ϕiair], where ϕiaij represents the
fraction of resource j allocated to user i.

B. Multi-resource Fairshare Function

As discussed in the previous section, dominant share is
the core part of DRF. Thus, we consider ’fairshare’ which
is a generalization of dominant share for each user. When
allocating resources, we can easily apply max-min fairness to
each user’s fairshare. The drawback of dominant share is that
it only considers one resource for a user and cannot allow the
user to express how important this resource is in comparison
with other resources.

In the following part, we propose two major rules that
should be considered when defining a fairshare function in
any multi-resource allocation mechanism. Then we let these
rules guide us to design our allocation mechanism.
• multiple dimensions of resources: when calculating the

resource allocation, a fairshare function should not con-
sider only one dimension of all resources. It should reflect
the demand of non-dominant resources as well. If two
different tasks have the same demand of a given dominant
resource, then the one having smaller demand of non-
dominant resources should receive some compensation.
Further, if a task has a totally lower demand of all
given resources compared with other tasks, then it should
receive more compensation.

• weights among different resources: for a given resource,
a fairshare function should allow users to determine the
weight to stress how important this resource is.

C. 2-Dominant Resource Fairness

In this part, we continue the previous model built on
our mechanism and introduce a fairshare function called 2-
dominant share in our allocation mechanism.

According to user i’s request vector Di=[ai1, ai2, · · · , air],
let di1=max

{
aij

Cj

}
where j ∈ [1, r] be user i’s first dominant

request ratio and di2=max
{

aij

Cj

}
−{di1} where j ∈ [1, r] be

i’s second dominant request ratio. The resources corresponding
to i’s dominant requests are called her dominant resources.
Here, we define that each user i has a 2-dominant share
expressed as ϕi · di1 · di2.

Definition 5 (2-dominant share). The 2-dominant share of a
user i is defined as.

si = ϕi · di1 · di2 (1)

In the 2-DF, we are trying to apply max-min fair allocation
with respect to the users’ 2-dominant share. That is, we always
maximize the lowest 2-dominant share first followed by the
second lowest, etc. Now, we present an example to illustrate
how our 2-DF allocation mechanism works.

An Example. We still use the example from Fig. 1 to
illustrate how 2-DF allocates resources according to users’
different requests.

In the above scenario, each task from user 1 consumes
1
5 of bandwidth, 1

25 of memory and 1
25 of CPU, so user

1’s first and second dominant requests lie on bandwidth and
memory (or CPU), respectively. Similarly, user 2’s first and

user 1: 𝜑1 tasks user 2: 𝜑2 tasks

𝑠1 = 𝜑1 ⋅ 𝑑11⋅ 𝑑12
= Τ𝜑1 125

𝑠2 = 𝜑2 ⋅ 𝑑21⋅ 𝑑22
= Τ𝜑2 1000

Τ8𝑥 200

Τ5𝑦 200

200 200 200

Fig. 7: Resource allocations under 2-DF.

Resource Allocation under DRF and 2-DF

DRF 2-DF

0

20

40

60

80

100

120

140

160

Bandwidth
Memeory
CPU

User 1 User 2 User 1 User 2

45

60

50

155

1

60

40

101

37.5

40

41.7

119.2 1.3

80

53.3

134.6

Fig. 8: Different allocations under DRF and 2-DF.

second dominant requests lie on bandwidth and memory, re-
spectively. 2-dominant fairness will equalize users’ 2-dominant
shares. The allocation can be computed mathematically as
follows: Let ϕ1 and ϕ2 be the number of tasks allocated
to user 1 and 2, respectively. Then user 1’s allocation vec-
tor is 〈40ϕ1, 8ϕ1, 8ϕ1〉, and user 2’s allocation vector is
〈8ϕ2, 5ϕ2, ϕ2〉. The total allocated amount of bandwidth
is (40ϕa + 8ϕb), the total allocated amount of memory is
(8ϕ1 + 5ϕ2), and the total allocated amount of CPU is
(8ϕ1 + ϕ2). Besides, the 2-dominant share of user 1 and user
2 is ϕ1 · 15 ·

1
25 = 1

125 · ϕ1, and ϕ2 · 1
25 ·

1
40 = 1

1000 · ϕ2. The
2-dominant fairness allocation is then given by the solution to
the following optimization problem:

maximize ϕ1, ϕ2 (2a)

subject to
1

125
· ϕ1 =

1

1000
· ϕ2 (2b)

40ϕ1 + 8ϕ2 ≤ 200

8ϕ1 + 5ϕ2 ≤ 200

8ϕ1 + ϕ2 ≤ 200

Solving this problem yields ϕ1 = 1.9, and ϕ2 = 15.4. Thus,
user 1 gets 〈77, 15.4, 15.4〉, and user 2 gets 〈123, 77, 15.4〉.

Recall the result mentioned in Section I-A, under DRF
allocation mechanism, user 1 will receive an allocation of
〈100, 20, 20〉, and user 2 will receive 〈100, 62, 5, 12.5〉.
Thus, 2-DF leads to an increase on the number of total tasks
from 15 to 17.3. Besides, if user 2’s request on memory (which
is his second dominant resource) varies, his completes more
tasks, as the red increasing line shown in Fig. 4.

The intuition behind this allocation mechanism is, if we
only consider fairness as equalizing each user’s dominant
share and satisfying any demand it has of other resource

Algorithm 1: 2-DF Scheduling Algorithm
1: R = [C1, · · ·, Cr]; # total resource capacities
2: U = [u1, · · ·, ur]; # total resources used by now, initially 0
3: si (i = 1...n); # user i’s 2-dominant share, initially 0
4: di1 = max

{
aij

Cj

}
(j = 1...r) ; # user i’s first dominant request

5: di2 = max
{

aij

Cj

}
− {di1} (j = 1...r) ; # user i’s second

dominant request
Ai = [ai1, · · ·, air]; # resources allocated to user i, initially 0

Output 2-DF
6: pick user i with lowest 2-dominant share si;
7: Di ← user i’s demand vector;
8: if U +Di ≤ R then
9: U = U +Di; # update consumed vector

10: Ai = Ai+Di; # update is allocation vector
11: si+ = di1 · di2;
12: else
13: return; # the cluster is full
14: end if
Output Reclaim
15: pick user i with one task done;
16: U = U −Di; # update consumed vector
17: U = U −Di; # update consumed vector
18: Ai = Ai−Di; # update is allocation vector
19: si− = di1 · di2;
20: si+ = di1 · di2;

dimensions, it seems unfair for those users whose tasks have a
low request on each resource dimension. Besides, it also leads
to low efficiency because more tasks come from more resource
allocations to users with smaller request vectors. Thus, we take
a look at one more resource dimension to know better about a
user’s real request, and want to give users with lower requests
on more resource dimensions more compensation to increase
their total allocation shares, thus leading to more tasks done.

D. 2-DF Scheduling Algorithm

Algorithm 1 shows the pseudo-code for 2-DF scheduling.
The algorithm tracks the total resources allocated to each user
as well as the user’s 2-dominant share, si. At each step, DRF
picks the user with the lowest 2-dominant share among those
with tasks ready to run, if that user’s task demand can be
satisfied, i.e., there are enough resources. According to our
assumption, the tasks from a user should have the same request
vector, and we use variable Di to denote the demand vector
of user i. Once a launched task finishes, the user releases the
task’s resources and our 2-DF mechanism again selects the
user with the smallest dominant share to run her task.

E. Extending from 2-D to k-D with weights

If we evaluate our 2-dominant share using the rules men-
tioned in Section IV-B, we could see it really takes an addi-
tional non-dominant resource into consideration. However, 2-
dominant share can be extended to a better fairshare function,
which considers k dimensions of resources and allows a user
to stress how important each dimension is.

Let [di1, di2, · · · , dik] be the top k largest elements among
{dij} where j ∈ [1, r], and each of the k elements is associated
with a weight predefined by user i to express its importance.

user 2

++
94 85 85

11.75 tasks user 2

++
80 50 10

10 tasks

< 8, 5, 1 >
< 10, 9, 9 >

(a) Pareto efficiency.

user 1

++
106 21.2 21.2

2.65 tasks user 1

120 24 24

3 tasks

++

(b) Strategy-proofness.

Fig. 9: Examples of 2-DF fairness properties.

Then, we define that each user i has a k-dominant weighted
share expressed as ϕi

∏k
l=1 wil · dil. Similar to 2-DF, k-DF

applies max-min fair allocation with respect to the users’ k-
dominant weighted share. That is, it always tries to equalize
all users’ k-dominant weighted shares. Thus, 2-dominant share
is a special case of k-dominant weighted share, where k = 2
and wi1 = wi2 = 1 for each user i. For simplicity, we assume
all weights are defined as 1 in the rest of this paper.

V. PROPERTIES OF K-DF

Next, we will discuss some of those desirable properties
satisfied by k-DF and provide intuitive explanations for our
analyses. For simplicity, we normalize the capacities of r
infinitely divisible resources to be 1, respectively. We begin
with showing that k-DF yields Pareto-efficiency.

Theorem 1. Every k-DF allocation is Pareto-efficient.

Proof. Assume user i can increase her total allocation without
decreasing the allocation of anyone else. In fact, every user
in a k-DF allocation has at least one saturated resource. If
user i is monopolizing her saturated resource, it is impossible
to increase i’s allocated fraction on her saturated resource.
If the saturated resource is shared by user i and other users,
then increasing the allocation of i must lead to decreasing
the allocation of at least another user j who shares the same
saturated resource, violating the hypothesis.

Then, we show that k-DF promises Strategy-proofness.

Theorem 2. The k-dominant fairness is Strategy-proof, i.e.,
any user cannot increase her allocation of every resource (only
increasing fraction on some resources cannot bring about an
improved task number) in the k-dominant fairness by boosting
some component of her true request vector.

Proof. If user i is monopolizing her saturated resource, it is
impossible to increase i’s allocated fraction on her saturated
resource; thereby her total allocation cannot be increased no
matter what request vector she uses. Then, we discuss the
situation where user i’s saturated resource is also shared by
other users. Assume user i can increase her total allocation
by using a different request vector Di

′ 6= Di, which means
ϕi
′ > ϕi. Thus, user i’s k-dominant share ϕi

′ ·
∏k

l=1 dil is

increased. Since we are trying to equalize the k-dominant
share of each user, any other user’s k-dominant share is also
increased, resulting in a larger allocation on every resource.
However, in order to increase user i’s total allocation, we must
decrease the allocation of at least another user j sharing the
same saturated resource, violating the previous analysis.

Now, we assume there exists no completely dominant user
in the 2-dominant fairness, i.e., for any two users i and j,
their first two dominant requests satisfy either di1 ≤ dj1 and
di2 ≥ dj2, or di1 ≥ dj1 and di2 ≤ dj2.

Theorem 3. Under the condition of no completely dominant
user in the 2-dominant fairness, every 2-dominant fairness
allocation is envy-free.

Proof. Assume by contradiction that there exists envy between
user i and user j. Either user i or user j can be an envier. The
envied must have a strictly higher fraction of every resource
that the envier wants; otherwise, the envier cannot run more
tasks under its allocation. Let m and n be i’s two dominant
resources and p and q be j’s two dominant resources such that
(1) ϕiaim ≥ ϕiain; (2) ϕjajp ≥ ϕjajq . Now, we prove the
theorem based on the following two conditions.

On the first condition, user i is the envier. According to the
2-dominant resource allocation mechanism, we can get the
inequality equations 4 below.

if

{
aim · ain · ϕi = ajp · ajq · ϕj

aim ≤ ajp, ain ≥ ajq
(3)

then

{
ϕiaim ≤ ϕjajp

ϕiain ≥ ϕjajq
(4)

For ϕiain ≥ ϕjajq , there are three possible conditions:
• if n and q represent the same resource, then ϕiain ≥

ϕjajn;
• if ajq ≥ ajn, then ϕiain ≥ ϕjajn;
• if ajq ≤ ajn, meaning that resource n is user j’s first

dominant resource;
then ϕiaim ≥ ϕiain ≥ ϕjajp ≥ ϕjajm, namely ϕiaim ≥
ϕjajm. Since ϕiaip ≤ ϕiaim, then ϕiaip ≤ ϕjajp. Thus,
both user i and user j have a higher (at least equal) fraction
on one resource than the other does, violating the hypothesis.

On the second condition, user j is the envier. We can get
the inequalities 6 below by following the 2-dominant resource
allocation mechanism.

if

{
aim · ain · ϕi = ajp · ajq · ϕj

ajp ≤ aim, ajq ≥ ain
(5)

then

{
ϕjajp ≤ ϕiaim

ϕjajq ≥ ϕiain
(6)

Quite similar to Condition 1, for ϕjajq ≥ ϕiain, there are
three possible conditions:
• if q and n represent the same resource, then ϕjajq ≥

ϕiaiq;

• if ain ≥ aiq , then ϕjajq ≥ ϕiaiq;
• if ain ≤ aiq , meaning that resource q is user i’s first

dominant resource;

then ϕjajp ≥ ϕjajq ≥ ϕiaim ≥ ϕiaip, namely ϕjajp ≥
ϕiaip. Since ϕjajm ≤ ϕjajp, then ϕjajm ≤ ϕiaim. Quite
similar to the first condition, on the second condition where
ϕjajq ≥ ϕiain, we still get the same conclusion, that is, both
user i and user j have a higher (at least equal) fraction on one
resource than the other does, violating the hypothesis.

Under both conditions, we can achieve the same conclusion
that both user i and user j have a higher (at least equal)
fraction on one resource than the other does, violating the
hypothesis.

Next, we will extend this envyfree scenario from 2-d to k-d.
Let [di1, di12, · · · , di1k] be the top k largest elements among
{dij} where j ∈ [1, r]. We assume there exists no completely
dominant user in the k-dominant fairness, i.e., for any two
users i and j, their top k dominant requests satisfy:

∃m,∃n,

∏k

l 6=m
dil ≤

∏k

l 6=m
djl∏k

l 6=n
dil ≥

∏k

l 6=n
djl

(7)

Theorem 4. Under the condition of having no completely
dominant users in the k-dominant fairness, every k-dominant
fairness allocation is envy-free.

Proof. Assume by contradiction that there exists envy between
user i and another user j. Either user i or user j can be an
envier. The envied must have a strictly higher fraction of every
resource that the envier wants. According to the k-dominant
fairness, user i and user j should have equal k-dominant
fairness, that is:

ϕi ·
∏k

l=1
dil = ϕj ·

∏k

l=1
djl (8a)

subject to
∏k

l 6=m
dil ≤

∏k

l 6=m
djl (8b)∏k

l 6=n
dil ≥

∏k

l 6=n
djl (8c)

Then, equations in 8 can be reduced in the following form:{
ϕidim ≥ ϕjdjm

ϕidin ≤ ϕjdjn
(9)

Assume dim and din represent i’s requests on resource u
and v, djm and djn represent j’s requests on resource x and
y. For ϕidim ≥ ϕjdjm, if u and x are the same resource,
then ϕiaiu ≥ ϕjaju; if aju ≤ ajx, then ϕiaiu ≥ ϕjajx ≥
ϕjaju, namely ϕiaiu ≥ ϕjaju. In addition, if aju ≥ ajx,
there must exist one resource, w, which could satisfy aiw ≥
aiu && aju ≥ ajw, such that ϕiaiw ≥ ϕiaiu ≥ ϕjajx ≥
ϕjajw, namely ϕiaiw ≥ ϕjajw. Thus, we can always find
one resource of which user i has no less fraction than user j
does.

For ϕidin ≤ ϕjdjn, we can also achieve a similar con-
clusion that there always exists one resource of which user j

Capacity NFC DRF 2DF

3 1.62 1.34 1.39

5 1.81 1.48 1.56

TABLE I: Average NTT.

has no less fraction than user i does. Thus, user i has no less
fraction than user j does of one resource; meanwhile, user
j has no less fraction than user i does of another resource,
violating the hypothesis.

VI. PERFORMANCE EVALUATION

We consider two multi-resource allocation scenarios in
different data centers to evaluate our allocation mechanism.
All allocation mechanisms were implemented with MATLAB-
R2017b, running on a local machine with an Intel Core 2 Duo
E8400 3.0 GHz CPU and 8 GB RAM.

To measure resource efficiency, we use two metrics, which
are previously mentioned in Section III. We formally define
the two metrics: NTT which represents the number of total
tasks completed by all users and AUR which represents the
amount of unused resource after an allocation. Besides, we
also compare our allocation mechanism with some existing
allocation works.

A. The first scenario

In the first scenario, there is a data center with three distinct
and divisible resources, r1, r2, and r3. There are 3 users,
each of whom requires a fixed amount of each resource to
accomplish a task. Tasks are assumed to be infinitely divisible.
Resource capacity vector is expressed as < C,C,C >. We
conducted two experiments with different values of C where
C ∈ {3, 5} to observe how resource capacity would impact
fairness and efficiency. In both experiments, each user i’s
request vector is < di1, di2, di3 > where dij is an integer
in the range of 1 to C for any j = 1, 2, 3.

1) Three comparison allocation mechanisms: We compare
the efficiency in terms of NTT under three different allocation
mechanisms: (1) No Fairness Constraints (NFC) which tries to
achieve a maximal number of total tasks without considering
fairness, (2) Dominant Resource Fairness (DRF) and (3) 2-
Dominant Resource Fairness (2-DF).

The average NTT completed by 3 users with different
request vectors under the three allocation mechanisms are
shown in Table I. As can be seen, the number of total
tasks obtained by 3 users under NFC is the highest of all
allocation mechanisms. This result, to some extent, reflects
the fact that fairness is often a conflicting objective against
efficiency in the presence of multiple resources. Besides, 2-DF
outperforms DRF, and as the resource capacity increases, 2-
DF’s advantage becomes more evident. Thus, we can conclude
that, our allocation mechanism would have good scalability in
a data center with large resource capacities.

0 1 2 3

User request

1

2

3

N
T

T

DRF
2DF

(a) C = 3

0 1 2 3 4 5

User request

1

2

3

4

5

N
T

T

DRF
2DF

(b) C = 5

Fig. 10: Cases where higher NTT is achieved in 2-DF than DRF..

In the first experiment, among 39 combinations of request
vectors, 2-DF executes more tasks than DRF does in around
51.7 % of total cases. In Fig. 10(a), we show all unique cases
where 2-DF performs better in terms of NTT. In the second
experiment, the capacity was changed to 5 units for each
resource. Among 59 combinations of request vectors, 2-DF
executes more tasks than DRF does in around 58.1% of total
cases. In Fig. 10(b), due to the large amount of cases, we only
display those unique cases in which NTT obtained by 2-DF
is at least 30% more than that obtained by DRF.

2) Fairness: In fact, under our 2-DF mechanism, our al-
location cannot guarantee sharing incentive (SI) proposed in
DRF, which proposes that each user should at least get 1

n
share on its dominant resource. However, if we compare the
efficiency achieved by all 2-DF allocations, which satisfy SI,
with that of corresponding DRF allocations, results are still
good. In the first experiment, the 2-DF allocations satisfying
SI increase by around 0.04 task on average, compared with
their DRF counterparts. In the second experiment, the 2-
DF allocations satisfying SI increase by around 0.08 task on
average, compared with their DRF counterparts.

In Section III, we mention a scenario where complete envy-
freeness can be achieved. We explore the occurrence frequency
of this scenario, and the result is not too bad. In the first
experiment, the envyfree cases account for 64.0%, and among
all cases where 2-DF obtains higher efficiency and envy-free
cases occupy around 37.2%. In the second experiment, the
envyfree cases account for 58.8%, and among all cases where
2-DF obtains higher efficiency, envyfree cases account for
around 38.7%.

6789101112131415
Unit of memory requested by user 1

3

3.5

4

4.5

5

N
um

be
r

of
 to

ta
l t

as
ks

DRF
2-DF

(a) NNT in DRF and 2-DF.

6789101112131415
Unit of memory requested by user 1

2.5

5.5

8.5

11.5

14.5

17.5

A
m

ou
nt

 o
f

un
us

ed
 r

es
ou

rc
e DRF

2-DF

(b) AUR in DRF and 2-DF.

6789101112131415
Unit of memory requested by user 1

25

30

35

40

45

A
T

R
 a

llo
ca

te
d

to
 u

se
r

1

DRF
2-DF

(c) ATR allocated to user 1 in DRF and 2-DF.

Fig. 11: Performance changes when user 1’s request of memory per task varies.

Combination User 1 User 2

I heavy heavy

II heavy light

III light light

TABLE II: Three combinations of user request types

B. The second scenario

In the second scenario, we assume a data center with 1000-
unit bandwidth, 1000-unit memory and 1000-unit CPU. All
resources are shared by two users. Again, each user requires a
fixed amount of each resource to accomplish a task, and tasks
are assumed to be infinitely divisible.

In this scenario, we consider two users with different request
types: heavy and light. A request Di =< di1, di2, di3 > is said
to be heavy, where ∀ j = [1, 2, 3], dij ∈ {25x1, 5x1, x1}. x1 is
a random variable, which is picked randomly while following
the normal distribution ∼ N(8, 0) in our experiments. Simi-
larly, a request Di =< di1, di2, di3 > is said to be light, where
∀ j = [1, 2, 3], dij ∈ {25x2, 5x2, x2} and x2 ∼ N(1, 0).

There are three combinations of user request types, as is
shown in Table II. There are three request levels for both
request types: big (25x), medium (5x), and small (x). Given a
specific request type, we design 8 types of request vector with
different request levels in different resource dimensions. We
list all types here: < 25x, 25x, 25x >, < 25x, 25x, 5x >,
< 25x, 25x, x >, < 25x, 5x, 5x >, < 25x, 5x, x >, <
5x, 5x, 5x >, < 5x, 5x, x >, and < 5x, x, x >. Given a
specific combination of request types, there are 8 × 8 = 64
possible pairs of two request vectors. For each pair of request
vectors, we want to compare the efficiency of DRF and 2-DF.
To be precise, we conducted 10 experiments over a given pair
of request vectors, by randomly choosing values of x1 and
x2 based on their distributions Due to the large number of
experiments we did, we have confidence in the consistency
and reliability of the results. All results present below are the
average over their own experiments.

Based on the 3 × 8 × 8 × 10 = 1920 experiments we
did, we conclude two typical cases, which any other case
can be induced from. We show these two cases in Fig. 12.
It is obvious that, when comparing NTT, 2-DF outperforms
DRF , especially when user 1 has big-level requests on each

(a)
I: user 1 {25x1, 25x1, 25x1}
II: user 1 {25x1, 25x1, 25x1}
III: user 1{25x2, 25x2, 25x2}

(b)
I: user 1 {25x1, 5x1, x1}
II: user 1 {25x1, 5x1, x1}
III: user 1{25x2, 5x2, x2}
Fig. 12: Two typical cases.

resource dimension and user 2 has small-level requests on
each resource dimension, whatever their request types are. The
average increase is 45% when comparing NTT of 2-DF and
DRF among all experiments.

To measure efficiency of DRF and 2-DF in terms of AUR,
we calculate the average amount of unused resources under
DRF and 2-DF, respectively in two cases. The result is shown
in Table III. It is obvious that 2-DF consumes less resources
while yielding more tasks, which allows a data center to serve
more users in the future.

1) Sharing incentive: In fact, under our 2-DF mechanism,
our allocation cannot guarantee sharing incentive (SI) pro-

Ave AUR DRF 2DF

I 418 654

II 418 802

III 418 654
(a)

I: user 1 {25x1, 25x1, 25x1}
II: user 1 {25x1, 25x1, 25x1}
III: user 1{25x2, 25x2, 25x2}

Ave AUR DRF 2DF

I 1218 1271

II 1218 998

III 1218 1271
(b)

I: user 1 {25x1, 5x1, x1}
II: user 1 {25x1, 5x1, x1}
III: user 1{25x2, 5x2, x2}

TABLE III: Average AUR .

posed in DRF, which said that each user should at least get 1
n

share on its dominant resource. However, if we compare the
efficiency achieved by all 2-DF allocations, which satisfy SI,
with that of corresponding DRF allocations, results are still
good. In the first experiment, the 2-DF allocations satisfying
SI increase by around 0.04 task on average, compared with
their DRF counterparts. In the second experiment, the 2-
DF allocations satisfying SI increase by around 0.08 task on
average, compared with their DRF counterparts.

2) Complete envy-freeness: In Section III, we mentioned a
scenario where complete envy-freeness can be achieved. We
explore the occurrence frequency of this scenario, and the
result is not too bad. In the first experiment, the envyfree cases
account for 64.0%, and among all cases where 2-DF obtains
higher efficiency and envyfree cases occupy around 37.2%. In
the second experiment, the envyfree cases account for 58.8%,
and among all cases where 2-DF obtains higher efficiency,
envyfree cases occupy around 38.7%.

3) Traditional fairness: In Section III, besides discussing
the fairness property in the existing works, we also mention
two concepts related to the notion of fairness in real life. A fair
allocation should take multiple resources into consideration as
well, and should give some compensation to users with low re-
quirements in non-dominant resource dimensions. To measure
traditional fairness, in the third experiment, we compare the
amount of total resources (ATR) allocated to user 1 using DRF
and 2-DF, respectively, According to Figure 10, 2-DF allocates
obviously more resources user 1, with his decreasing request of
non-dominant resource. i.e., memory. However, DRF doesn’t
show any evidence to compensate to user 1. It is obvious
that 2-DF also considers non-dominant resources instead of
a single dominant resource when allocating.

VII. CONCLUSION

In this paper, we consider the open problem of multi-
resource sharing for heterogeneous users. We show that DRF

suffers from serious fairness concerns without utility guaran-
tees. We try to mitigate this problem with the new sharing
policy known as 2-dominant resource fairness, and we extend
this concept to k-dominant resource fairness. In our mecha-
nism, 2-dominant share is defined for each user as the product
of first two dominant demand/capacity ratios, and we try to
equalize the 2-dominant share of all users as much as possible.
2-dominant resource fairness provides strategy-proofness, in
that no user can run more tasks by lying about its demands.
Meanwhile, this policy is Pareto-optimal, and envy-freeness
can be achieved in certain scenarios. Besides, in the traditional
sense of fairness, 2-DF considers more resource dimension
when allocating, and results in a more balanced allocation
between dominant and non-dominant resources. Compared
with dominant resource fairness (DRF), our proposed model
achieves better efficiency, in terms of the number of total
tasks completed by all users. It is vital for efficiency-needed
applications, allowing a small penalty on widely-accepted
fairness properties.

VIII. ACKNOWLEDGMENT

This research was supported in part by NSF grants CNS
1757533, CNS 1629746, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, and IIP 1439672.

REFERENCES

[1] A. Ghodsi, M. Zaharia, B. Hindman, A. Konwinski, S. Shenker, and
I. Stoica, “Dominant resource fairness: fair allocation of multiple re-
source types,” in NSDI, 2011.

[2] Y. Jin and M. Hayashi, “Efficiency comparison between proportional
fairness and dominant resource fairness with two different type re-
sources,” in CISS, 2016.

[3] D. Bertsimas, V. F. Farias, and N. Trichakis, “The price of fairness,” in
Operational Research, vol. 59, no. 1, pp. 1731, 2011.

[4] P. Poullie, T. Bocek, and B. Stiller, “A survey of the state-of-the-art in
fair multi-resource allocations for data centers,” in IEEE Transactions
on Network and Service Management, 2017.

[5] A. Ghodsi, V. Sekar, M. Zaharia, and I. Stoica, “Multi-resource fair
queuing for packet processing,” in SIGCOMM, 2012.

[6] A. Gutman and N. Nisan, “Fair allocation without trade,” in Proc.
AAMAS, 2012.

[7] C. Wong, S. Sen, T. Lan, and M. Chiang, “Multi-resource allocation:
fairness efficiency tradeoffs in a unifying framework,” in IEEE/ACM
Transactions on Networking, 2013.

[8] D. Parkes, A. Procaccia, and N. Shah, “Beyond dominant resource
fairness: extensions, limitations, and indivisibilities,” in Proc. ACM EC,
2012.

[9] W. Wang, B. Liang, and B. Li., “Multi-resource fair allocation in hetero-
geneous cloud computing systems,” in IEEE Trans. Parallel Distrib.Syst,
2015.

[10] E. Friedman, A. Ghodsi, and C. Psomas, “Strategyproof allocation of
discrete jobs on multiple machines,” in Proc. ACM EC, 2014.

[11] Y. Zeldes and D. G. Feitelson, “On-line fair allocations based on
bottlenecks and global priorities,” in Proc. ACM/SPEC ICPE, 2013.

[12] I. Kash, A. Procaccia, and N. Shah, “No agent left behind: Dynamic
fair division of multiple resources,” in Proc. AAMAS, 2013.

[13] W. Li, X. Liu, and X. Zhang, “A further analysis of the dynamic
dominant resource fairness mechanism,” in Xiao, M., Rosamond, F.
(eds.) FAW, 2017.

[14] D. Dolev, D. G. Feitelson, J. Y. Halpern, R. Kupferman, and N. Linial,
“No justified complaints: On fair sharing of multiple resources,” in Proc.
ACM ITCS, 2012.

[15] S. Zahedi and B. Lee, “Ref: resource elasticity fairness with sharing
incentives for multiprocessors,” in Proc. ASPLOS, 2014.

[16] P. Poullie and B. Stiller, “Cloud flat rates enabled via fair multi-resource
consumption,” in Proc. AIMS, 2016.

[17] P. Poullie, S. Mannhart, and B. Stiller, “Virtual machine priority adaption
to enforce fairness among cloud users,” in Proc. CNSM, 2016.

[18] P. Poullie and B. Stiller, “The design and evaluation of a heaviness
metric for cloud fairness and correct virtual machine configurations,” in

Proc. GECON, 2016.
[19] W. Chen, Y. Xu, and X. Wu, “Deep reinforcement learning for multi-

resource multi-machine job scheduling,” in ArXiv e-prints,1711.07440,
2017.

