
A Client-biased Cooperative Search Scheme in
Blockchain-based Data Markets

Suhan Jiang, Yubin Duan, Jie Wu
Department of Computer and Information Sciences, Temple University

{Suhan.Jiang, yubin.duan, jiewu}@temple.edu

Abstract—Lots of privacy and security issues in the current
cloud-based data markets will be eliminated by taking advantage
of blockchain-based decentralized storage services, which can
provide a new paradigm for safe data outsourcing and correct re-
mote search. However, existing data markets are also questioned
on their inflexible and opaque pricing, where the value of data
ownership and the cost of query search are mixed. Thus, a better
pricing model is necessarily needed in an emerging decentralized
data market. In this paper, we envision an Ethereum-based data
market, in which the pricing model for each query includes two
parties: owner (paid for his data ownership) and miner (rewarded
by query search). We study a new cooperative search scheme
through a proxy to reduce cost on the client (user) side. Suppose
each user query is charged based on the number of keywords
in the query. The cost reduction is based on combining multiple
queries into a group subject to the constraint that the resulting
combined query is not significantly larger than any of its original
query in terms of the number of keywords. The total price is
based on total number of keywords in all groups. As the optimal
grouping depends on the pricing of both owner and miner, we
build a small testbed to analyze how price setting will affect
grouping results. Since it is a cooperative model with shared
resources, we also study various incentive properties on the client
side, thereby yielding a cost sharing mechanism to split joint cost
in a truth-revealing and fair manner.

Index Terms—Blockchain, cooperative search, cost model, cost
sharing, grouping strategy.

I. INTRODUCTION

Data has become a tradeable good in our society nowadays.
Most online data markets, e.g. Amazon Athena and Xignite,
are cloud-based. Cloud offers a convenient single platform
for trading data, and provides value-added services that help
derive data products. However, centralized clouds also give
rise to privacy and security issues in data storage and search.
Thus, works on decentralized storage services have been
proposed to alleviate these concerns. Blockchain techniques
[1] are widely used to guarantee data integrity and provide
scalability for handling big data. In terms of remote search,
smart contract [2] is leveraged to protect the correctness and
immutability of search results. Unfortunately, lots of existing
works focus on the single-user setting, where a database is
queried only through its owner. As in real data markets, a
data owner makes profit by sharing his data with legitimate
clients. Thus, a more complex multi-user setting should be
discussed in the decentralized storage.

In this paper, we envision an Ethereum-based data market
that provides services related to data storage, search and
trades. Since Ethereum [3] is a blockchain-based decentral-

Fig. 1: Given a database with six keywords, five queries q1, q2, q3, q4, q5,
each being a six-bit binary string with 1 for search and 0 for not search, are
issued from users to retrieve information.

ized computing platform [2] merged with smart contract, it
guarantees reliable data storage and correct remote search. As
is shown in Fig. 1, this new type of data market has three
basic entities. As a data provider, an owner profitably shares
his database by allowing third-party called users to query his
database. Unlike any cloud-based data market, where private
data is uploaded to the cloud and in the central control of
the cloud provider, an Ethereum-based data market allows
databases to be managed in a decentralized fashion. That is,
an owner can either send his small-size information to the
Ethereum blockchain [2] for the convenience of searching,
or distribute his large data in an off-blockchain storage [4],
e.g. IPFS [5], with a pointer to the data on the distributed
ledger of blockchain. We assume all data is encrypted under a
searchable symmetric encryption (SSE) scheme before being
outsourced to keep it confidential while still allowing query-
based searches. Users are data consumers and are willing to
retrieve information from a designated database with some
payment. We assume that users directly send queries to a
corresponding owner, and the owner issues search transactions
as if he is querying. As data searchers, miners in Ethereum
make money by executing search functions in smart contracts.

Thus, query pricing in such a decentralized data market is
unilaterally decided by both owners and miners. Each user
query is charged for two parts: one for the data owner at a pre-
set price based on data value, and the other for miners based
on their workload, which is a pay-as-you-go mode. Thanks to
Ethereum’s gas system, a miner’s computation consumption
is traceable and transparent in Ethereum. Besides, a query’s
computation consumption and the corresponding search delay,
as well as its cost, tend to be proportional to its keyword
number. Since all users want to query at a cheap price,
cooperative search can be a good approach to save total cost,
hence decreasing individual payments. To illustrate, let us

978-1-7281-1856-7/19/$31.00 ©2019 IEEE

consider an example in Fig. 1. Five users want to search over
the same database to retrieve information with six keywords.
Given per-query cost c′ from the owner and per-keyword cost
c from miners, each query will be separately charged by the
owner and miners. For example, the cost of query q1 = 111000
(a six-bit binary string for six keywords, with 1 for select
and 0 for not select) is c′ for the owner plus 3c due to 3-
keyword search in Ethereum. Without cooperation, the overall
cost of these queries is 5c′+11c (5 users and 11 accumulative
keywords). To save cost, their queries can be grouped. Among
all grouping strategies, we briefly mention two here: (1) a cost-
saving-based strategy without considering delay constraints.
Five users are grouped together, and their combined query
is 111111 at a total cost of c′ + 6c. Search latency largely
increases for each client. (2) a delay-tolerant-oriented strategy
(as is shown in Fig. 1) that groups q1, q2, q4 in G1, and q3, q5
in G2. Thus, the total cost for all users is 2c′+6c and any user
at most waits additional 1-keyword search time. This example
reflects a tradeoff between delay constraint and cost efficiency.

We consider users with limited delay-tolerance. We design
a client-biased cooperative search scheme, which facilitates
group formation among users driven by cost savings subject to
a uniform delay constraint all users agree upon. Users submit
their individual queries and delay constraints to a front proxy.
The proxy gathers users with similar delay constraints into a
set, and matches users from the same set as search groups in
order to minimize overall cost subject to the delay constraint
(i.e., the number of 1s in each group query should not exceed
a given number). After grouping, the data owner receives
combined queries from the proxy, and issues search requests
to Ethereum. This cooperative search scheme improves a data
owner’s processing capacity by reducing the query number.

In a cooperative model, cost sharing must be regulated in
a truth-revealing and fair manner. Truth-revealing helps avoid
free-riding users who want to get some information without
payment, and fairness can promote a stable and long-term
cooperation among users. For example, we consider a com-
mon cost sharing mechanism, which equally distributes group
cost among its members. After applying it to the grouping
result in Fig. 1, q3 and q5 will be equally charged with
(c′+3c)/2. It seems unfair because q5 has fewer keywords in
its original form compared with q3. In our paper, we design a
keyword-based cost sharing mechanism according to original
queries, which yields some desirable properties like group-
strategyproofness and sharing incentive. In Fig. 1, the cost
2c′ paid to the owner will be equally distributed among 5
users, each of whom is responsible for 2c′/5. The total cost
of searching for the first keyword is c, equally shared by q1
and q2. The last keyword also costs c, which is only borne by
q5, since there is no other user querying this keyword.

Specifically, given a set of n queries over a database, our
objective is to classify n queries into k groups with each group
satisfying a uniform delay constraint so that the total cost over
all groups is minimized. The contributions of this paper are
summarized as follows:

• Extending from the single-user setting in decentralized

storage, we propose an Ethereum-based data market.
• A client-biased, limited-delay-tolerant cooperative search

scheme driven by cost savings is designed to maximize
social welfare on the user side.

• We formulate an n-query-grouping problem as a set
partition problem, prove it as NP-hard, and we solve it
through approximation with guaranteed bounds, as well
as an efficient projected gradient descent method.

• A cost sharing mechanism is provided to fairly split
total payment among all participating users. This mecha-
nism guarantees several desirable properties, e.g. group-
strategyproofness and sharing incentive.

• Extensive evaluations on real query traces AOL demon-
strate the effectiveness of our cooperative scheme. A
small testbed of Ethereum-based data market is also im-
plemented to show the relationship between the number
of keywords and the search delay by the miners.

II. RELATED WORK

1) Blockchain-based storage platforms: Decentralized stor-
age platforms [4, 6–9] are designed to allow users to store
outsourced files on the peers who make profits by leasing their
unused storage. Data can be stored either on-blockchain [6–
8] or off-blockchain [4]. Filecoin [6] implements blockchain
structured file storage and Datacoin [7] uses the blockchain
as a data store for file blocks. Storj [8] employs end-to-end
encryption and stores files on the blockchain, while [4] stores
files in an off-blockchain storage, retaining only a pointer to
the data on the public ledger.

2) Online data markets: On traditional online data markets,
independent data owners sell their data through some digital
platforms [10, 11]. Usually, buyers (users) have to buy the
entire database from a seller, then download and query it
offline, which is inefficient for buyers. On cloud-based data
markets [12, 13], data owners upload their data in the cloud
and make money by sharing it with users. Users pay to obtain
what they want through a query interface instead of buying the
entire database. Cloud providers are rewarded by providing
services, e.g. storage and search. Our Ethereum-based data
market is similar to cloud-based data markets, where users
pay for querying, while owners and miners earn by providing
data and services, respectively.

3) Cost models: Traditional online markets take a one-time
payment set by data owners. On cloud-based data markets,
either data owners [12] or cloud providers [13] can be sellers,
with term-based offers such as monthly subscriptions. Some
cloud providers use a pay-as-you-go mode. Each query is
charged based on bytes of scanned data [14]. On the Ethereum-
based data market, owners and miners are all sellers, jointly
charging users. Previously-mentioned online data markets all
adopt a unilateral cost model [15], while the cost model can
also be bilateral, such as auction, in a more complex situation.

4) Cooperative search: The cooperative keyword-based
search scheme has been proposed in [16] by grouping all
received queries together within a fixed timeout to achieve
privacy. In [17], authors equally divide queries into a fixed

number of groups to achieve k-anonymity and load balancing.
Our work also deals with query grouping problems, while
focusing on user-side cost saving and search delay guarantee.

5) Cost sharing schemes: A good cost sharing mechanism
will distribute shared cost among users in a truth-revealing and
fair manner [18]. Current cost sharing mechanism is group-
based [17]. Our proposed mechanism is keyword-based, which
guarantees group-strategyproofness and sharing incentive.

III. PRELIMINARIES

1) Scheme Overview: Our multi-user cooperative search
scheme consists of two stages, involving four entities, as is
shown in Fig. 1. The first stage consists of three entities:
users, a proxy and a data owner. Although we assume a data
owner and a proxy, it can be easily extended to multiple
owners and proxies. All users send their queries along with
delay constraints to the proxy. The proxy gathers users with
similar delay constraints into same sets. We assume each set
is sufficiently large, thus treat them separately. In each set,
the minimal value of all users’ delay constraints is set as
the set delay upper bound. Given an n-query set, the main
function of the proxy is to run our grouping strategies which
classify n queries into k groups (k is a variable) and send those
combined queries to the data owner. In the second stage, a data
owner issues search transactions to Ethereum, based on queries
received from his proxy. Then miners execute related functions
to obtain search results. The total cost is shared among n users
using our cost sharing mechanism.

2) Design Goals: To implement a client-biased cooperative
search scheme in the Ethereum-based data market, our main
goals are divided into three parts. First, we need to design ef-
fective grouping strategies by simultaneously achieving social
optimum: the total cost among n users is minimal, and latency
limitation: each user can be guaranteed to retrieve desired
information within their uniformly-agreed delay tolerance.
Second, we want to design a cost sharing mechanism among n
users, which offers group-strategyproofness: each user should
truthfully reveal individual query request even if collusion is
permitted, since lying provides no benefit to his interest, and
sharing incentive: each user should achieve individual cost
reduction if their total cost gets reduced. Third, we would like
to implement an Ethereum testbed to verify the practicality
of our proposed search schemem, and the actual relationship
between the keyword number and the search delay.

IV. GROUPING STRATEGY

A. Notation and Cost Model

Assuming we have a set of n queries, Q = {q1, q2, · · · , qn},
that are issued from different users but over the same database.
Corresponding notations are listed in Table I.

The cost C(q) of a query q consists of two parts: c′ is
charged by a corresponding owner due to his contribution on
data and c · |q| is paid to a miner in search of information.

TABLE I: Summary of Notations.

Symbol Description
d number of keywords in the dictionary

wi the i-th keyword in the dictionary
n number of queries
Q n-query set
Gi group i, which is a subset of Q

|Gi| number of queries in Gi

qi query from user i, in the form of a binary string
|qi| number of keywords in qi
q̂i combined query of Gi

|q̂i| number of keywords in q̂i
k number of groups
Pi a partition over Q with i non-overlapping groups
c cost of miner searching for a keyword
c′ cost of a data owner

1) Cost without Grouping: The n queries in the set Q are
individually executed and their total cost is the accumulation
of their individual costs.∑n

i=1
C(qi) = c′ · n+ c ·

∑n

i=1
|qi| (1)

2) Cost with Grouping: Another way to execute Q is to
create a single group G that contains all n queries and execute
it as a single query q̂ = |q1 ∨ · · · ∨ qn|.

C(q̂) = c′ + c · |q̂| (2)
We can determine if grouping is beneficial by comparing Eq.

(1) with Eq. (2).∑n

i=1
C(qi)− C(q̂) = c′(n− 1) + c(

∑n

i=1
|qi| − |q̂|) (3)

Even in the worst case, where no overlapping keywords are
among n queries, i.e.,

∑n
i=1 |qi| = |q̂|, Eq. (3) ≥ 0 still holds.

It is obvious that grouping is always beneficial. Thus, greedily
grouping all queries into a combined query is always a socially
optimal choice, if no user has a constraint on search delay.

B. Problem Formulation

Given Q = {q1, q2, ..., qn}, let α be the pre-agreed maximal
search delay, measured in the numbers of keywords among
n users. That is, each user is willing to wait for at most α-
keyword search time, whatever their original keyword numbers
before grouping. An optimal grouping problem is defined as:

Problem 1 (OPTIMAL QUERY GROUPING, OQG). Given a
set of queries Q = {q1, q2, ..., qn}, group the n queries into k
non-overlapping groups G1, G2, ..., Gk (k is a variable), such
that the number of keywords in each combined query is no
more than α and the overall cost of all groups is minimized.

C. Problem Hardness

Theorem 1. The OQG problem is NP-hard.

Proof. The Set Partitioning (SP) problem , known as NP-hard,
can be reduced to the OQG problem. The SP problem is ex-
pressed as: given a set of n positive integers {a1, a2, · · · , an}
and an integer A, where ∀i ∈ [1, n], ai ≤ A, such that∑n

i=1 ai = 2A, decide if this set can be partitioned into two
subsets with the same sum A. We can construct every instance
of the SP problem as a valid instance of the OQG problem
as follows. Let α, the upper limit of keyword number in each

combined query, be equal to A, and d, the number of keywords
in the dictionary, be 2A. Each ai is mapped to a query qi. We
define the number of keywords for each query |qi| as ai. We
also assume that there is no overlapping among all queries.
This is a valid instance of the OQG problem.

An optimal solution to the OQG problem with two groups
exists, if and only if there exists a partition in the original
SP problem. Obviously, merging n queries into a single group
G is infeasible, because the combined query q̂ contains 2A
keywords, exceeding the upper limit. Hence, at least one
query should be removed from G. According to our previous
analysis, for any group Gi in the optimal solution, its cost is
C(q̂i) = c′+c · |q̂i|. We minimize C(q̂i) over all k groups, but
c
∑k

i=1 |q̂i| is constant among all grouping strategies, hence
our problem is equivalent to minimizing the number of groups.

If the OQG problem has an optimal solution with two
groups G1 and G2, then there exists a partition of n queries
into two sets, such that

∑
qi∈G1

|qi| =
∑

qj∈G2
|qj | = α. This

partition is definitely an optimal solution to SP problem. On
the other hand, if the original SP problem has an equal-sum
partition, the OQG problem also has an optimal strategy with
two groups, since three groups yield more cost. Now, we can
conclude that the OQG problem is NP-hard.

D. Grouping Strategy

Since the OQG problem is NP-hard, we solve it using linear
programming relaxation and greedy algorithms.

1) Mathematic Relaxation: First, we give the matrix rep-
resentation of the above problem. Since each user has a
query string with length d, we define an n × d matrix Q
as representing all queries from n users. Let Y∈{0, 1}n×n

denote the grouping result, then each (i, j)-th element of Y
takes either 0 or 1. Yij = 1 means query qi is classified into
group Gj . The matrix representation is shown below.

argmin
Y

c′ · tr(δ(YTE))+c · tr(ET δ(YTQ)) (4a)

Y∈{0, 1}n×n
, δ(YTQ)e≤αe, Ye=e (4b)

where tr is the trace operator which sums up diagonal ele-
ments of a given matrix. E and e denote an all-1’s matrix and
an all-1’s vector, respectively, and both of their size can be
adjusted to fit the context. And δ(·) is an indicator function
such that δ(c) = 1 if c is non-zero and δ(c) = 0, otherwise.
The value of (i, j)-th element in matrix YTQ represents how
many times the keyword wj is queried among all members in
the group Gi. Since each overlapping keyword in a group only
needs querying once, δ(YTQ) indicates combined queries for
all groups. Thus, tr(ET δ(YTQ)) calculates the total keyword
number of all combined queries. Similarly, tr(δ(YTE)) indi-
cates the true group number.

We use the example in Fig. 1 to better explain each term
in Eq. (4a). Five queries q1, q2, q3, q4, q5 are represented as a
matrix Q in Fig. 2(a), where the i-th row represents qi. The
grouping result Y is provided in Fig. 2(b), indicating there
are two groups, q1, q2 and q4 in G1, and q3, q5 in G2. Thus,
the number of groups can be calculated using the expression
tr(δ(YTE)) = 2 based on Fig. 2(c). Besides, the combined

Q5×6=

⎡
⎢⎣

1 1 1 0 0 0
1 0 1 0 0 0
0 1 1 0 0 0
0 0 0 1 1 0
0 0 0 1 0 1

⎤
⎥⎦

(a)

Y5×5=

⎡
⎢⎣

1 0 0 0 0
1 0 0 0 0
0 1 0 0 0
1 0 0 0 0
0 1 0 0 0

⎤
⎥⎦

(b)

δ(YTE)=δ

⎛
⎝
⎡
⎣ 1 1 0 1 0

0 0 1 0 1
0 0 0 0 0
0 0 0 0 0
0 0 0 0 0

⎤
⎦×

⎡
⎣ 1 1 1 1 1

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎦
⎞
⎠=

⎡
⎣ 1

1
0

0
0

⎤
⎦

(c)

ETδ(YTQ)=

⎡
⎢⎣

1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1
1 1 1 1 1

⎤
⎥⎦×
⎡
⎣ 1 1 1 0 0 0

0 0 0 1 1 1
0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

⎤
⎦=

⎡
⎢⎣

1
1

1
1

1
1

⎤
⎥⎦

(d)
Fig. 2: Matrix representation of queries and grouping result (We don’t fill all
elements in some matrices for saving space).

queries of G1 and G2 are q̂1 = 111000 and q̂2 = 000111,
which are consistent with its matrix representation δ(YTQ)
shown in Fig. 2(d). Hence, the total keyword number over all
combined queries tr(ETδ(YTQ)) = 6 is equal to |q̂1|+ |q̂2|.

Our objective is to find a grouping strategy Y, which will
result in a minimal overall cost for n queries, as Eq. (2) shows,
while each combined query has no more than α keywords
(δ(YTQ)e ≤ αe) and any original query only belongs to
a group (Ye = e). Since it is an NP-hard problem, we
consider a relaxation. According to [16], given a large constant
number β, e.g. β = 10, 20, 30, the indicator function over
the matrix YTQ, i.e., δ(YTQ), can be approximated with
a smooth function, E− e(−βYTQ), and the indicator function
over the matrix YTE, i.e., δ(YTE), can be approximated with
a smooth function, E−e(−βYTE). With the above relaxations,
we transfer the integer matrix Y into the continuous domain.
Then, we get a relaxed version of the OQG problem below:

argmin
Y

c′ · tr(E− e−βYTE)+c · tr(ET [E− e−βYTQ])

Y∈ [0, 1]n×n, Ye=e, e−βYTQe≥(d− α)e

which equals to its dual problem as below:

argmax
Y

c′ · tr(e−βYTE)+c · tr(ET e−βYTQ) (5)

Y∈ [0, 1]n×n, Ye=e, e−βYTQe≥(d− α)e

The objective of Eq. (5) is to maximize a convex function over
multiple variables with nonlinear constraints. We apply the
interior-point approach, transforming the original inequality-
constrained problem into a sequence of equality constrained
problems. A logarithmic barrier function with a dynamic
coefficient μ is constructed and added to the original objective
function to remove all inequality constraints. This algorithm
has a two-level iteration. The outer level iterates over the
coefficient μ, while the inner level optimizes the augmented
objective function using Newton method under a fixed μ. Since
Newton method may lead to a local optima, we can run the
algorithm with different initial values and select the best one.

In addition, we also design a rounding algorithm to obtain a

TABLE II: Examples of 7 User Queries.

Queries Content
q1 11010000
q2 00001101
q3 11000000
q4 00000111
q5 00001100
q6 00000011
q7 10000000

(a) Example One.

Queries Content
q1 11010000
q2 00001101
q3 11000000
q4 00000111
q5 00001100
q6 10000001
q7 00110000

(b) Example Two.

feasible 0−1 solution based on the continuous optima achieved
above. In each iteration, the rounding algorithm greedily sets
Yij as 1 to maximize the objective function in Eq. (5) while
still satisfying all constraints. To make our integer solution
closer to the optimum one, the rounding order of queries
matters. We always start with queries with the most keywords
first, because chances are higher for them to overlap with other
queries. Once their grouping result is determined, other queries
can be assigned to corresponding groups.

We consider a dictionary that consists of (w1, w2, w3, w4,
w5, w6, w7, w8) and two sample queries are as shown in
Table II(a) and II(b). We also assume c = c′. To show how it
affects grouping results, the constraint of search delay will be
set differently. Table III shows grouping results under different
delay constraints using our Mathematic Relaxation.

2) Projected Gradient Descent Method: The Newton
method is quite simple and gives a relatively fast rate of con-
vergence. However, this method is very expensive in each iter-
ation - it needs the function evaluation and then the derivative
evaluation. If the volume of queries is large, then this might not
be a good choice. Thus, to improve the efficiency when facing
large amounts of queries, we consider a simple modification
of gradient descent for constrained optimization: a projected
gradient descent method. In general, projected gradient algo-
rithms minimize an objective f(x) subject to the constraint
that x ∈ χ for some convex set χ. They do this by iteratively
updating x :=

∏
χ(x + η�f(x)), where η represents a step

length of learning rate, and
∏

χ = argmaxx {‖z − x‖ |x ∈ χ}
is the Euclidean projection onto set χ. First order projected
gradient algorithms are effective when second order methods
are infeasible because of the dimension of the problem.

3) Greedy Algorithm: Since Mathematic Relaxation uses a
first order local optimization method to solve a non-convex
optimization problem, of which computational complexity
isn’t proven, this strategy has no guarantee on time. Thus,
we consider a greedy algorithm with a guaranteed bound.

According to section IV-A, combination always brings about
cost saving. Here, we reconsider the OQG problem in terms
of cost saving. Given a set of queries Q = {q1, q2, ..., qn}
from n different users over the same database, group these n
queries into k non-overlapping groups G1, G2, ..., Gk where
the number of keywords in each group is no more than α such
that the overall sum of savings

∑k
i=1 S(Gi), is maximized.

Considering two queries, q and q′, we define the saving of
merging q with q′ as c′+c(|q|+|q′|−|q ∨ q′|). In other words,
combining two queries, q and q′ will save one charge from the
owner and overlapping-keyword search cost. Since one token

TABLE III: Grouping Results using Mathematic Relaxation.

Constraint Group Combined Query
4 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5, q6} q̂2 = 00001111
3 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q5} q̂2 = 00001101
G3 = {q4, q6} q̂3 = 00001111

(a) Example One.

Constraint Group Combined Query
5 G1 = {q1, q3, q6, q7} q̂1 = 11010001

G2 = {q2, q4, q5} q̂2 = 00001111

4 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5} q̂2 = 00001111

G3 = {q6} q̂3 = 10000001

(b) Example Two.

generation cost can be saved by combining any two queries
q and q′, the more overlapping keywords q and q′ have, the
more search cost it will save through their combination. If q
and q′ have a containment relationship, we can prove there
always exists some optimal grouping result that contains a
group with both q and q′, as is shown in Theorem 2.

Theorem 2. Given a set of queries Q = {q1, q2, ..., qn}, for
any two queries q and q′, if the keywords of q are entirely
contained in the keywords of q′, then there is some optimal
grouping strategy that contains a group with both q and q′.

Proof. Assume the optimal partition P over Q has two groups
G1 and G2, such that q ∈ G1 and q′ ∈ G2. Thus, individual
group saving of G1 is S(G1) = c′(|G1|− 1)+ c(

∑|G1|
i=1 |qk|−

|q̂1|), and the same for G2. We can obtain the overall savings
of G1 and G2 :

S(G1) + S(G2) = (6)

c′(|G1|+ |G2| − 2) + c(
∑|G1|+|G2|

i=1
|qk| − |q̂1| − |q̂2|)

Moving q to G2 leads to new groups G1′ = G1 \ {q} and
G2′ = G2∪{q}, with |G1′ | = |G1|−1 and |G2′ | = |G2|+1. q
is entirely contained by q′, hence |q̂2′ | = |q̂2|. Thus, S(G2′) =

c′(|G2|)+ c(
∑|G2|

i=1 |qi|+ |q| − |q̂2|). Although it is difficult to
directly know the exact value of |q̂1′ |, we can bound it as
|q̂1| − |q| ≤ |q̂1′ | ≤ |q̂1|, such that S(G1′) ≥ c′(|G1| − 2) +

c(
∑|G1|

i=1 |qi| − |q| − |q̂1|). Listed below is a lower bound of
the overall group savings for new groups G1′ and G2′ :

S(G1′) + S(G2′) ≥ (7)

c′(|G1|+ |G2| − 2) + c(
∑|G1|+|G2|

i=1
|qi| − |q̂1| − |q̂2|)

Comparing Eq. (6) and Eq. (7), we conclude that, moving q
to G2 yields a new partition, which is at least as good as P
and thus still optimal.

Hence, we can greedily group queries q and q′, and treat
them cost-wise as a single query q′, which can be further
merged with other queries. The containment can easily be
determined by OR operation. This is a Naive Greedy solution,
of which the time complexity is O(n2). For the rest of the
paper, we assume all such containments have been identified.

It is obvious that, without any constraints on the search
delay, the optimal solution is to combine n users as a group,

Algorithm 1 Greedy Partition

Input: a system, (Q,C)
Output: a partition over Q, P

1: function GREEDY-PARTITION(Q,C)
2: P1 ← {Q}
3: for each i ∈ [1, n] do
4: for all W ∈ Pi do
5: (S,W) ←OPTIMAL-SUBSET(W)
6: (Si,Wi) ← argmin (C(S) + C(W/S)− C(W))
7: Pi+1 ← (Pi − {Wi}) ∪ {Si,Wi/Si}
8: if each W ∈ Pi satisfies search delay then
9: return Pi

and issue a single combined query. However, when constraints
are added, it becomes an NP-hard problem, thereby we con-
sider a Greedy Partition solution to efficiently approximate its
optimal result with an upper bound. Greedy Partition starts
with a single group, iterating to split a group of which the
splitting cost is minimal among all existing groups, until all
query groups are subject to the search delay constraints. As it
is a typical set partition problem, we will consider Problem 1
in terms of set theory as follows.

First, given a query set Q, we define a set function C :
2Q → R where

∀ G ⊆ Q, C(G) =

{
0 G = ∅
c′ + c · |q̂| otherwise

(8)

Then, we can reformulate the OQG problem as below. Given
a system (Q,C, k), where Q is a set of queries, C : 2Q → R

is a set function, and k is a variable with 1 ≤ k ≤ n.
minimize C(G1) + C(G2) + · · ·+ C(Gk) (9a)
subject to G1 ∪G2 ∪ · · · ∪Gk = Q (9b)

Gi ∩Gj = ∅ 1 ≤ i < j ≤ k (9c)
|q̂i| ≤ α 1 ≤ i ≤ k (9d)

As is proven in the paper [19], given a nondecreasing
submodular system (V, f, k), where f(V)+f(∅) ≥ f(S) holds
for any nonempty subset S of V , the set partition problem can
be approximated within a factor of (2 − 2/k) in polynomial
time. They provide a greedy algorithm to guard this result.
Since our system is also submodular (proven below), we
present Greedy Partition which satisfies delay constraints.

As is shown in Algorithm 1, Greedy-Partition has two func-
tions. The main function GREEDY-PARTITION returns the final
partition P over a given set Q. Starting with the 1-partition
P1 = Q, in its ith iteration, we obtain an i+1-partition Pi+1

by partitioning some members of the previous i-partition Pi.
We halt when a partition P satisfies the delay constraints. For
any member W in i-partition Pi, we call function OPTIMAL-
SUBSET [19] to find its minimal-partitioning-cost subset. Since
a minimal-cost solution is desired, we choose the least-cost
partition among all members. The time complexity of this
algorithm is O(kn3), where k is the number of groups, and
n is the query number. Grouping results of previous examples
are listed in Table IV.

In the rest of this section, we will demonstrate that Greedy

TABLE IV: Grouping Results using Greedy Partition.

Constraint Group Combined Query
4 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5, q6} q̂2 = 00001111

3 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q5} q̂2 = 00001101

G3 = {q4, q6} q̂3 = 00001111

(a) Example One.

Constraint Group Combined Query
5 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5, q6} q̂2 = 10001111

4 G1 = {q1, q3, q7} q̂1 = 11010000

G2 = {q2, q4, q5} q̂2 = 00001111

G3 = {q6} q̂3 = 10000001

(b) Example Two.

Partition can solve the OQG problem within a factor of
(2−2/k) in polynomial time. According to [19], our proposed
algorithm on a given system (Q,C) can achieve above proper-
ties if the following two conditions hold: (1) C is submodular,
and (2) C is non-decreasing.

Before showing Greedy Partition satisfies the above
two conditions, we introduce their definitions. Given a
finite set V and a set function f : 2V → R, f
is (1) submodular if ∀S ⊆ V and s1, s2 ∈ V \
S, f(S ∪ {s1}) + f(S ∪ {s2}) ≥ f(S ∪ {s1, s2}) + f(S) al-
ways holds; (2) non-decreasing if f(V) + f(∅) ≥ f(S) holds
for any nonempty subset S of V .
Lemma 1. The set function C : 2Q → R is submodular.
Proof. Now, we will show for every G ⊆ Q and q1, q2 ∈
Q \ G, Eq. (10) always holds. Without loss of generality we
can assume that G �= ∅, otherwise the answer is immediate.
C(G∪{q1})+C(G∪{q2}) ≥ C(G∪{q1, q2})+C(G) (10)
Since C(G∪{q1})+C(G∪{q2}) = 2c′+c(|q̂ ∨ q1|+|q̂ ∨ q2|)

and C(G ∪ {q1, q2}) + C(G) = 2c′ + c(|q̂ ∨ q1 ∨ q2| + |q̂|),
we need to prove Eq. (11) ≥ 0 always holds.
C(G ∪ {q1}) + C(G ∪ {q2})− C(G ∪ {q1, q2})− C(G)

= c(|q̂ ∨ q1|+ |q̂ ∨ q2|)− c(|q̂ ∨ q1 ∨ q2|+ |q̂|)
= c(|q̂ ∨ q1|+ |q̂ ∨ q2| − |q̂ ∨ q1 ∨ q2| − |q̂|) (11)

Assume that, nonnegative integers x, y, z represent the num-
ber of overlapping keywords between q̂ and q1, q̂ and q2,
q1 and q2, respectively. Let m be the overlapping keyword
number among q̂, q1, and q2. It is obvious that z ≥ m ≥ 0.

|q̂ ∨ q1|+ |q̂ ∨ q2| = 2 |q̂|+ |q1|+ |q2| − x− y

|q̂ ∨ q1 ∨ q2|+ |q̂| = 2 |q̂|+ |q1|+ |q2| − x− y − z +m

|q̂ ∨ q1|+ |q̂ ∨ q2| − |q̂ ∨ q1 ∨ q2| − |q̂| = z −m ≥ 0 (12)
Based on Eq. (12), we conclude, for every G ⊆ Q and

q1, q2 ∈ Q\G, Eq. (10) always holds. Thus, C : 2Q → R

is a submodular set function.

Lemma 2. The set function C : 2Q → R is non-decreasing.

Proof. Based on Definition 2, we should prove C : 2Q → R,
C(Q)+C(∅) ≥ C(G) holds for any nonempty subset G of Q.
According to Eq. (8), C(∅) = 0. Since ∀G ⊆ Q, it is obvious
that set Q’s combined query contains more keywords than

its subset G’s combined query. Thus, we can obtain C(Q)−
C(G) ≥ 0, hence, C(Q) + C(∅) ≥ C(G).

Theorem 3. The QOG problem can be approximated within
a factor of (2− 2/k) by Greedy Partition.

This theorem easily follows from Lemmas 1 and 2. This
grouping strategy is suitable for those users who have require-
ments on cost reductions.

V. FAIR COST SHARING

Our grouping strategies will yield a total cost for n users.
Thus, one must find a way to distribute the cost among all
users. A major purpose of our proposed grouping strategies
is to seek high efficiency of the whole network, in the
fields of both finance and computation. As self-interested
and autonomous entities, clients may behave strategically by
misreporting their willingness to query to maximize their
profit, thereby harming the efficiency. Thus, we want our
cost sharing mechanism to be incentive compatible, i.e., it
is in the interest of clients to be truth telling [19]. Also, it
should provide incentive for clients in their assigned groups
to participate in the coalition without coercion, i.e., it is fair
and maintains the stability of a given grouping result.

A. Cost Sharing Mechanism

To address this challenge, we design a cost shar-
ing mechanism with two desirable properties: (1) group-
strategyproofness and (2) sharing incentive. In the following,
we first present our mechanism, then prove it can satisfy the
above two properties. In our cost sharing mechanism, the total
cost of n clients is composed of two parts: one part goes to the
data owner’s account, and the other is for Ethereum miners; so
does it for individual cost. Each user is equally responsible for
the total payment to the data owner. Given a grouping result
of k combined queries, the data owner will make a revenue
of kc′, each client paying kc′/n to him.

Any keyword in a combined query may be redundant for
some of its group members, and it is unfair for a user to pay for
a keyword he never requests. Thus, the total cost of searching
a certain keyword is only borne by those users who request it.
Thus, the cost sharing is at the granularity of n clients instead
of each group. For each unique keyword, we calculate its total
cost in all combined queries, and then evenly distribute the cost
among all users querying this keyword. That is, if a keyword
is queried by m of n users and appears in t of k combined
queries, its total search cost is tc, and each one from m users
is equally responsible for a cost share of tc/m.

We show how to share the total cost using the grouping
result shown in Table IV(a) under the constraint of 3 keywords.
For the rest of this paragraph, each client i is identified
by his query qi. The grouping result is G1 = {q1, q3, q7},
G2 = {q2, q5}, and G3 = {q4, q6}. Thus, the cost paid to the
corresponding data owner is 3c

′
, equally distributed among 7

clients. Table Va presents total cost for each keyword and who
should be fairly responsible for the corresponding cost. Table
IV(b) gives the final split cost for each client. For example,

TABLE V: An Example of User Cost Sharing.

Keyword Cost Shared by
w1 1 · c q1, q3, q7
w2 1 · c q1, q3
w3 0 · c
w4 1 · c q1
w5 2 · c q2, q5
w6 2 · c q2, q4, q5
w7 1 · c q4, q6
w8 2 · c q2, q4, q6

(a) Cost of each keyword

Clients Cost
q1

3
7
c′ + (1

3
+ 1

2
+ 1) · c

q2
3
7
c′ + (2

2
+ 2

3
+ 2

3
) · c

q3
3
7
c′ + (1

3
+ 1

2
) · c

q4
3
7
c′ + (2

3
+ 1

2
+ 2

3
) · c

q5
3
7
c′ + (2

2
+ 2

3
) · c

q6
3
7
c′ + (1

2
+ 2

3
) · c

q7
3
7
c′ + 1

3
· c

(b) User individual cost

client 1’s total cost is 3c′/7 + (1/3 + 1/2 + 1)c, where (1)
3c′/7 is paid to the data owner, shared with all other 6 clients;
(2) c/3 comes from querying keyword w1, shared with users
q3 and q7; (3) c/2 comes from querying keyword w2, shared
with q3; (4) c comes from querying keyword w4 by himself.

B. Theoretical Analysis

We present theoretical analysis to demonstrate that our cost
sharing mechanism achieves some desirable properties. For
group-strategyproofness, we should demonstrate each client
will honestly disclose his real query request even if they are
permitted to collude. For each keyword, if a client’s dominant
strategy is to truthfully tell whether he wants to query it or
not, then truth-revealing is his dominant strategy. Thus, we
can divide the whole proof into d steps, and the j-th step
shows that each client would prefer revealing his real request
on the keyword wj in our cost-sharing mechanism. Thereby,
we divide our cost sharing mechanism on keyword search part
into d cost sharing methods, one for each keyword, then we
prove each method satisfies group-strategyproofness.

The cost sharing method of keyword wj is a function,
ξj , which distributes the total cost of searching for the j-th
keyword, denoted as Cj , to its requesters. More formally, ξj
takes two arguments, a subset of users G and a user qi, and
returns a nonnegative real number satisfying the following: (1)
if qi �∈ G then ξj(G, qi) = 0, and (2)

∑
qi∈G ξ(G, qi) = Cj .

As is proven in [20], if ξj is a cross-monotone, then the
mechanism specified above is group-strategyproofness for
keyword wj . Thus, we need to prove ξj is cross-monotone.
A cost sharing method can be said as cross-monotone if for
G ⊆ R, ξj(G, qi) ≥ ξj(R, qi) for every qi ∈ G.

Lemma 3. For every j ∈ [1, d] , ξj is cross-monotone.

Proof. Any qi ∈ R \ G refers to a client not requesting the
j-th keyword, thereby they are charged zero cost share. Thus,
G ⊆ R, ξj(G, qi) = ξj(R, qi) for every qi ∈ G. Thus, ξj is a
special cross-monotone cost sharing mechanism.

Theorem 4. Our cost sharing mechanism satisfies group-
strategyproofness and sharing incentive for all clients.

Proof. The property of group-strategyproofness can be proven
using Lemma 3. To show sharing incentive, we should reveal,
for any client, leaving his current assigned group would
not bring him more benefits. Sending an individual query
definitely brings more cost paid to the data owner, which is
cost-inefficient. As is shown in Eq. (3), grouping is always

50 75 100 125 150 175 200
0.05

0.15

0.25

0.35

0.45

0.55

Pe
rc

en
ta

ge
 o

f
th

e
re

du
ce

d
co

st

��� �����

�	� �����

�� �����

��� �����

�	� �����

�� �����

(a) X-axis : number of users.

50 75 100 125 150 175 200
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Pe
rc

en
t o

f
th

e
re

du
ce

d
co

st ��� �=0.1
��, �=0.15
��, �=0.25

��, �=0.1
��, �=0.15
��, �=0.25

��, �=0.1
��, �=0.15
��, �=0.25

(b) X-axis : number of users.

0.1 0.125 0.15 0.175 0.2 0.25
0.05

0.15

0.25

0.35

0.45

0.55

0.65

0.75

Pe
rc

en
t o

f
th

e
re

du
ce

d
co

st ��� ������ ��	
�

��� ������ ��	
�

�� ������ ��	
�

��� ������ ��	��

��� ������ ��	��

�� ������ ��	��

(c) X-axis : keyword density.

8 10 12 14 16 18 20
0

0.1
0.2
0.3
0.4
0.5
0.6

Pe
rc

en
t o

f
th

e
re

du
ce

d
co

st ��� ������ ��	
�

��� ������ ��	
�

�� ������ ��	
�

��� ������ ��	��

��� ������ ��	��

�� ������ ��	��

(d) X-axis : delay constraint.
Fig. 3: Evaluations of grouping strategies on real query traces. MR: Mathematic Relaxation, GP: Greedy Partition, and NA: Naive Greedy.

beneficial for each client to save cost paid to data owners.
Thus, no one has incentive to leave.

VI. PERFORMANCE EVALUATION

Our evaluation consists of two parts. In the first part, we
focus on evaluating our proposed cooperative search scheme
on real query traces AOL [21]. In the second part, we imple-
ment an Ethereum testbed to demonstrate the practicality of
our scheme, and also analyze the actual relationship between
the keyword number and the search delay.

A. Cooperative Search Scheme

Our experiments evaluate two grouping strategies in terms
of total cost reductions and the cost sharing mechanism in
terms of individual cost saving. Mathematic relaxation was
implemented with MATLAB-R2017b and greedy algorithms
were implemented with Eclipse 4.6 in Java. All experiments
are conducted on AOL. Ad AOL is a huge query collection,
we randomly choose 200 users with 31 804 queried keywords
in total, among which 17 786 are unique. Thus, a 400×17786
binary matrix is constructed to reveal each query’s request on
each keyword. Since it is still a large array, we semi-randomly
select part of the matrix in each experiment to satisfy pre-
set constraints on dictionary size, query number, and keyword
density. For simplicity, we define two parameters: keyword
density and charge ratio. Given a d-size dictionary and an
n-query set Q, keyword density ρ of Q is defined as ρ =∑n

i=1 |qi| /(n × d). Given c′ from a data owner and c from
miners, charge ratio r is defined as r = c′/c.

Grouping strategies: We analyze the percentage of reduced
total cost using our proposed grouping strategies: Mathematic
Relaxation (using PGD here since the query volume is large),
Naive Greedy and Greedy Partition. Fig. 3 shows, in all
parameter settings, all strategies achieve cost reduction by
at least 24.8%. Greedy Partition works slightly better than
Mathematic Relaxation, and Naive Greedy achieves the least
total cost reduction, which is around 50% of the other two
strategies. Since the complexity of Naive Greedy and Greedy
Partition is O(n2) and O(n3), respectively, we could see
an inevitable tradeoff between efficiency and performance.
Now, we analyze how each parameter influences the total cost
reduction. In Fig. 3(a), as n increases, the total cost reduction
also increases. Given a fixed ρ, changing d has little effect
on the cost reduction. Fig. 3(b) reflects, as ρ increases from
0.1 to 0.25, the total cost is reduced by about 10% for each
unique n. In Fig. 3(c), we have two set comparable parameters:

(d = 200, n = 150) and (d = 300, n = 100). Given a fixed ρ,
each set has the same number of 1s. From this experiment, we
could see the first set has more cost savings, since smaller size
of d yields higher chances of keyword overlapping. Fig. 3(d)
reflects that the effect of delay constraint α on the total cost
reduction decreases as its value increases.

Cost sharing mechanism: In the second part, we study
individual cost saving under our cost sharing mechanism by
picking up 10 users with d = 100. Each time, we change r and
select a better one from grouping results from Mathematic Re-
laxation and Greedy Partition. We compare the cost reduction
between individuals and the average. As is shown in Fig. 4,
individuals can benefit from our grouping strategies. Besides,
no user largely deviates from the average level, which shows
our cost sharing mechanism can achieve fairness.

Summary: Both grouping strategies are local optimal.
Mathematic Relaxation uses random restarts to produce multi-
ple rounds to mitigate this problem. The larger the number of
random restarts, the better the performance, but the more the
execution time. Therefore, Greedy Partition is more appropri-
ate for large scale query systems, and Mathematic Relaxation
can be used as the baseline to measure the grouping quality.
In terms of the cost sharing mechanism, each user can achieve
cost savings near around the average saving.

B. Ethereum Testbed

To demonstrate the practicality of our scheme, we imple-
mented a testbed in a simulated Ethereum network called
TestRPC [22]. TestRPC is a fast and customizable blockchain
emulator. It sets mining time as 0 while truly revealing exe-
cution time and gas consumption of a transaction. This design
allows us to focus on the search delay itself without being
affected by mining or waiting delays. Our Ethereum testbed
can be helpful in revealing the real relationship between the
number of keywords and search delay by the miners. This
provides a better estimate for search delay in the real system,
and thereby, a better estimation of the grouping constraint.

Keyword number and search delay: We conduct two
experiments to verify the actual relation between the keyword
number and search delay. We stored a 5KB database with
20 keywords and 30 files, each tagged with one or more
keywords. In the first experiment, we randomly select 5
keywords and incrementally add 20 more each time to see
how the execution time changes. The result shows, as the
number of keywords increases, the delay time also increases
while there exists a slowdown in its growth rate. In the second

1 2 3 4 5 6 7 8 9 10
User ID

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Pe
rc

en
t o

f
th

e
re

du
ce

d
co

st r=0.5
r=1
r=2
r=5

Fig. 4: Individual vs average saving.

0.5 1 1.5 2 3 4 5
Charge ratio r

0.2

0.3

0.4

0.5

0.6

0.7

Pe
rc

en
t o

f
th

e
re

du
ce

d
co

st

MR, �=20
MR, �=25
GA, �=20
GA, �=25

Fig. 5: Effect caused by charge ratio.

experiment, we dedicatedly design 5 query sets, each including
4 queries. The total keyword number in each set is fixed at
10, while the unique keyword number changes. For each query
set, we execute them in two ways: (1) executing all queries
individually, and (2) executing a single query composed of
4 queries. We compare accumulative execution times and
combined execution times, and analyze how execution time
reduces as the number of overlapping keywords increases. The
result of this experiment shows that the relationship between
the number of overlapping keywords and execution time is
nearly proportional. Based on the above results, we conclude,
the search delay is at least sublinear to keyword numbers.

Charge ratio: In our real implementation, we store a 1.4MB
database with 300 unique keywords and 2000 files. Each file is
tagged with some different keywords. We issue 75 transactions
in order to store the entire database in blockchain. When
previously evaluating our cost sharing mechanism, we find
that charge ratio r can affect individual cost savings as well
as total cost reductions. Thus, when performing experiments
on our testbed, we first analyze how charge ratio r can affect
grouping results, hence changing cost reductions. As is shown
in Fig. 5, there is a positive sublinear relationship between
the total cost reduction and charge ratio r. In our previous
sections, assuming r = 1 to yield a maximal reduction on
total cost is acceptable, since it can be adjusted by a factor.

Four-user cooperative search: We also envision a small
four-user setting with different queries, and conduct several
optimal cooperative searches and their individual searches.
Fig. 6 reflects the cost reduction in the form of transaction
number and gas consumption amount, both of which are
important cost measures in Ethereum. These two parameters
follow a very similar changing pattern if given the same inputs.
The reason is each transaction invokes executions of the same
search function. As we can see, the cost reduction is positively
related to the ratio of overlapping matched file number and
the unique matched file number, which is a reflection of
overlapping keyword number in original queries.

Summary: Using our testbed, we analyze the actual relation
between the keyword number and the search delay, which is
sublinear. Experiments are conducted to see how charge ratio
affects cost reduction. The pricing for search part has more
effects on the total cost reduction compared with the owner’s
pricing. The last experiment on four-user cooperative search
has demonstrated the practicality of our proposed scheme.

VII. CONCLUSION

In this paper, we present a cooperative search scheme on
an Ethereum-based data market. We take advantage of smart

(1,5) (2,5) (2,11) (7,11) (7,13)
(a)

0

50

100

150

200

N
um

be
r

of
 tr

an
sa

ct
io

ns

cooperative
individual

(1,5) (2,5) (2,11) (7,11) (7,13)
(b)

0

100

200

300

400

500

600

700

U
ni

t o
f

ga
s

co
ns

um
pu

tio
n(

x1
06)

cooperative
individual

Fig. 6: Cost reduction using testbed (X-axis : number of (overlapping files,
unique files) tuples in non-grouping search result).

contract and gas system in Ethereum to separate a query
cost into two parts: one for data owners and the other for
miners. We also make use of grouping strategies to provide
efficiency and cost savings at the user side. We provide three
methods, suitable for different scenarios, to compute an effi-
cient grouping result. Besides, we propose a fair cost sharing
mechanism to split total cost among users given a grouping
result. This mechanism guarantees some desirable properties
such as group-strategyproofness and sharing incentive to avoid
free-riders. The experiment results show that our scheme is
efficient in terms of cost reduction for both the group as a
whole and individuals.

REFERENCES

[1] C. Cai, X. Yuan, and C. Wang, “Towards trustworthy and private
keyword search in encrypted decentralized storage,” in ICC’17.

[2] S. Hu, C. Cai, Q. Wang, C. Wang, X. Luo, and K. Ren,
“Searching an encrypted cloud meets blockchain: A decentral-
ized, reliable and fair realization,” in INFOCOM’18.

[3] G. Wood et al., “Ethereum: A secure decentralised generalised
transaction ledger,” Ethereum project yellow paper, 2014.

[4] G. Zyskind, O. Nathan et al., “Decentralizing privacy: Using
blockchain to protect personal data,” in SPW’15.

[5] “Ipfs,” https://ipfs.io/.
[6] “Filecoin,” https://filecoin.io/.
[7] “Datacoin,” http://datacoin.info/.
[8] “Storj,” https://storj.io/storj.pdf.
[9] R. Li, T. Song, B. Mei, H. Li, X. Cheng, and L. Sun,

“Blockchain for large-scale internet of things data storage and
protection,” IEEE Trans. on Services Computing, 2018.

[10] “Aggdata,” http://www.aggdata.com/.
[11] “Customlists.net,” http://www.customlists.net/home.
[12] “Azure data market,” https://datamarket.azure.com/.
[13] “Infochimps,” http://www.infochimps.com/.
[14] “Amazon athena,” https://aws.amazon.com/athena/.
[15] M. Balazinska, B. Howe, and D. Suciu, “Data markets in the

cloud: An opportunity for the database community,” Proc. of
the VLDB Endowment, 2011.

[16] Q. Liu, C. C. Tan, J. Wu, and G. Wang, “Cooperative private
searching in clouds,” J. Parallel Distrib. Comput., 2012.

[17] Q. Liu, Y. Guo, J. Wu, and G. Wang, “Effective query grouping
strategy in clouds,” J. Computer Science and Technology, 2017.

[18] N. Immorlica, M. Mahdian, and V. S. Mirrokni, “Limitations
of cross-monotonic cost-sharing schemes,” ACM Trans. on
Algorithms, 2008.

[19] L. Zhao, H. Nagamochi, and T. Ibaraki, “Greedy splitting
algorithms for approximating multiway partition problems,”
Math Program, 2005.

[20] N. R. Devanur, M. Mihail, and V. V. Vazirani, “Strategyproof
cost-sharing mechanisms for set cover and facility location
games,” Decision Support Systems, 2005.

[21] “Aol,” https://archive.org/details/AOL search data leak 2006.
[22] “testrpc,” https://www.npmjs.com/package/ethereumjs-testrpc.

