Bitcoin Mining with Transaction Fees A Game on the Block Size

Suhan Jiang and Jie Wu Dept. of Computer and Information Sciences Temple University, USA

1. Bitcoin

- A blockchain-based digital payment system
 - A distributed ledger using PoW mining mechanism
 - Prob. of solving a block puzzle relies on a miner's computing rate

 λ_i = individual power / total power

- To win a block
 - Solve puzzle and then propagate the block to reach consensus
 - Propagation delay discounts the winning probability W_i

Bitcoin Mining Incentives

- Each winner will be rewarded with R_i, including
 - Block subsidies S: finite supply and eventually become zero
 - \circ Transaction fees F_i : offered by users and gradually increase
 - Without F_i, miners have no incentive to include transactions in their blocks [1]
- Trend between S and F_i
 - The sum of block subsidies and the average transaction fees collected per block remains constant [2].

[1] Houy, Nicolas. "The Bitcoin mining game." SSRN Electronic Journal, 2014.[2] Kaskaloglu, Kerem. "Near zero Bitcoin transaction fees cannot last forever." Proceedings of the International Conference on Digital Security and Forensics, 2014

Miner's Utility U_i

- Utility $U_i = R_i \times W_i$
 - Block reward $R_i = S + F_i$
 - Block subsidy S is a fixed value in a block TX fee density
 - Transaction (TX) fee $F_i \propto$ block size: $F_i = \hat{\alpha} B_i$
 - Winning probability W_i
 - Positively related to computing rate λ_i
 - Discounted by propagation time p_i

Block size B_i

- \circ Default size $\overline{B}=$ 1 MB
 - Recommended by system
 - Miner can choose any $B_i \leq \overline{B}$

where $p_i \propto \text{block size: } p_i = \beta B_i$ [3]

1 MB in total

Network delay rate

TX TX TX TX

not filled

replete

[3] Decker, Christian, and Roger Wattenhofer. "Information propagation in the bitcoin network." *IEEE P2P 2013 Proceedings*. IEEE, 2013.

Trade-off on Block Size

Choose a large block size\ a small block size

If $B_i \downarrow$

but R_i

then W_i

Ri

- If $B_i \uparrow$ then $R_i \uparrow$ but $W_i \downarrow$ R_i
- Find an optimal size B_i to maximize U_i
 - \circ We want to find a suitable \overline{B} such that
 - \overline{B} is each miner's optimal size

2. Characterize W_i Using B_i

• Distribution of block finding time X_i

• PDF:
$$f_{X_i}(t; B_i, \lambda_i) = \begin{cases} 0 & t < p_i \\ \lambda_i e^{-\lambda_i (t-p_i)} & t \ge p_i \end{cases}$$

• CDF: $F_{X_i}(t; B_i, \lambda_i) = \begin{cases} 0 & t < p_i \\ 1 - e^{-\lambda_i (t-p_i)} & t \ge p_i \end{cases}$

• W_i among n miners

• Winner should have the smallest block finding time

$$W_{i} = Pr\left(X_{i} = min\left\{X_{j}|j=1,\cdots n\right\}\right)$$
$$= \lambda_{i} \sum_{l=i}^{n} \frac{e^{\sum \lambda_{j}(p_{j}-p_{l})} - e^{\sum \lambda_{j}(p_{j}-p_{l+1})}}{\sum \lambda_{j}}$$
Discounted by propagation delay

3. Game on Block Size

Two types of players

- Cheater: manipulate his block size B_i for utility maximization
- $\circ\,$ Honest miner: use default block size $ar{B}$
- Game analysis on two different settings
 - Homogeneous miners
 - Assume all miners have the same computing rate
 - Analysis on Bitcoin mining network
 - Heterogeneous miners
 - Each miner can have different computing rate
 - Case studies on one cheater and two cheaters

4. Homogeneous Setting

- Bitcoin mining network
 - Approximated as 8 equal-size pools [4]
 - Viewed as 8 homogeneous cheaters
 - S = 12.5 and $F_i = B_i$ (that is $\alpha = 1$)
 - Theorem 1. In an 8-pool Bitcoin mining network, all cheaters' optimal block size is 4MB.
 - Thus, we recommend 4MB as default block size

[4] Tsabary, Itay, and Ittay Eyal. "The gap game." Proceedings of the 2018 ACM SIGSAC Conference on Computer and Communications Security. ACM, 2018.

5. Heterogeneous Setting

- Qualitative analysis on utility and block size
 - Theorem 2. A miner indirectly increases each of his rivals' utility by increasing his own block size.
 - Theorem 3. A miner's optimal block size is positively related to his computing power (Fig. 1)

Case Study: One Cheater

- Setting: miners are divided into two groups
 - Corrupted pool controlled by a cheater: Pool 1
 - Optimize B_1 for utility maximization
 - Computing rate: λ_1
 - The rest of the miners are honest: Pool 2
 - Use the default block size $ar{B}$
 - Computing rate: λ_2 in total

Pool 1 and pool 2 are heterogeneous with regard to computing rate.

Pool 1's Utility Analysis

Parameters affecting pool 1's optimal size

- \circ B_1 is positively related to computing rate λ_1
- \circ Decrease of subsidy S leads to increase of B_1
- \circ Large network delay rate eta will reduce B_1

Peaceful Equilibrium

Peaceful equilibrium is a condition where

• Pool 1's optimal block size $B_1 = \overline{B}$

• Upper bound of λ_1

• Theorem 4. If $\lambda_1 \le 1/3$, A's optimal block size B_1 equals to \overline{B}

- Block subsidy and equilibrium ($\lambda_1 > 1/3$)
 - The decrease of S could lead to more equilibria (Fig. 3)

Fig. 3: Red area represents $B_1 = \overline{B}$ and black area represents $B_1 < \overline{B}$

Network Delay and Equilibrium ($\lambda_1 > 1/3$)

- When network delay is reasonable: (Fig. 4)
 - If α is high enough and S is low, then $B_1 = \overline{B}$
- When network delay is serious: (Fig. 5)
 - Hard to see peaceful equilibrium, that is $B_1 < \overline{B}_1$
 - Damage Bitcoin network if attackers issue delay attacks

Case Study: Two Cheaters

- Setting: miners are divided into three groups
 - Two cheaters: L and H
 - L has a smaller pool with computing rate: λ_L
 - H has a larger pool with computing rate: λ_H
 - The rest of the miners M are honest
 - Use the default block size $ar{B}$ with computing rate: λ_M in total

L, H, and M are heterogeneous regarding to computing rate.

Sided Misbehaviors

- One side: only L cheats on his block size
 - If $\lambda_L > 8\%$, L's optimal size $B_L < \overline{B}$ (Fig. 6)
- Both sides: L and H cheat on block sizes
 - For $\overline{B} = 1$ MB, L and H always have optimal sizes smaller than \overline{B} , no matter what their computing rates are (Fig. 7)
 - Current default size must be redefined

6. Conclusion

- A game on block size
 - Consider tradeoff between propagation time and TX fees
 - Model the relation between winning probability and block size
- Game Analysis on two different settings
 - Homogeneous miners in bitcoin mining network
 - Heterogeneous miners for case studies
- Real-world data to confirm theoretical analysis
 - Future work: conduct experiments on real blockchain platform, eg. CITA [5], to measure real-time propagation delay influences.

Thank you

Q&A

