Bitcoin Mining with Transaction Fees
A Game on the Block Size

Suhan Jiang and Jie Wu
Dept. of Computer and Information Sciences
Temple University, USA
1. Bitcoin

- A blockchain-based digital payment system
 - A distributed ledger using PoW mining mechanism
 - Prob. of solving a block puzzle relies on a miner’s computing rate
 \[\lambda_i = \frac{\text{individual power}}{\text{total power}} \]
 - To win a block
 - Solve puzzle and then propagate the block to reach consensus
 - Propagation delay discounts the winning probability \(W_i \)
Each winner will be rewarded with R_i, including:

- **Block subsidies S:** finite supply and eventually become zero
- **Transaction fees F_i:** offered by users and gradually increase
 - Without F_i, miners have no incentive to include transactions in their blocks \([1]\)

Trend between S and F_i:

- The sum of block subsidies and the average transaction fees collected per block remains **constant** \([2]\).

Miner’s Utility U_i

- **Utility** $U_i = R_i \times W_i$
 - Block reward $R_i = S + F_i$
 - Block subsidy S is a fixed value in a block
 - Transaction (TX) fee $F_i \propto$ block size: $F_i = \alpha B_i$
 - Winning probability W_i
 - Positively related to computing rate λ_i
 - Discounted by propagation time p_i
 where $p_i \propto$ block size: $p_i = \beta B_i$ [3]

- **Block size** B_i
 - Default size $\bar{B} = 1$ MB
 - Recommended by system
 - Miner can choose any $B_i \leq \bar{B}$

Trade-off on Block Size

- Choose a large block size \(B_i \) a small block size

\[
\begin{align*}
\text{If } B_i & \uparrow \text{ then } R_i \uparrow \text{ but } W_i \downarrow \\
\text{If } B_i & \downarrow \text{ then } W_i \uparrow \text{ but } R_i \downarrow
\end{align*}
\]

- Find an optimal size \(B_i \) to maximize \(U_i \)
 - We want to find a suitable \(\overline{B} \) such that
 - \(\overline{B} \) is each miner's optimal size
2. Characterize W_i Using B_i

- Distribution of block finding time X_i
 - **PDF:** $f_{X_i}(t; B_i, \lambda_i) = \begin{cases} 0 & t < p_i \\ \lambda_i e^{-\lambda_i(t-p_i)} & t \geq p_i \end{cases}$
 - **CDF:** $F_{X_i}(t; B_i, \lambda_i) = \begin{cases} 0 & t < p_i \\ 1 - e^{-\lambda_i(t-p_i)} & t \geq p_i \end{cases}$

- W_i among n miners
 - Winner should have the smallest block finding time
 - $W_i = Pr\left(X_i = \min \{ X_j | j = 1, \ldots, n \} \right) = \frac{\lambda_i \sum_{j=1}^{n} e^{\sum_{j=1}^{n} \lambda_j (p_i - p_j)} - e^{\sum_{j=1}^{n} \lambda_j (p_i - p_j + 1)}}{\sum \lambda_j}$

Discounted by propagation delay
3. Game on Block Size

- Two types of players
 - Cheater: manipulate his block size B_i for utility maximization
 - Honest miner: use default block size \overline{B}

- Game analysis on two different settings
 - Homogeneous miners
 - Assume all miners have the same computing rate
 - Analysis on Bitcoin mining network
 - Heterogeneous miners
 - Each miner can have different computing rate
 - Case studies on one cheater and two cheaters
4. Homogeneous Setting

- Bitcoin mining network
 - Approximated as 8 equal-size pools [4]
 - Viewed as 8 homogeneous cheaters
 - $S = 12.5$ and $F_i = B_i$ (that is $\alpha = 1$)
 - **Theorem 1.** In an 8-pool Bitcoin mining network, all cheaters' optimal block size is 4MB.
 - Thus, we recommend 4MB as default block size

5. Heterogeneous Setting

Qualitative analysis on utility and block size

- **Theorem 2.** A miner indirectly increases each of his rivals’ utility by increasing his own block size.

- **Theorem 3.** A miner’s optimal block size is positively related to his computing power (Fig. 1)

![Graph showing block size for two miners](image)

Miner 1’s mining power
Miner 2’s mining power

(a) \(S = 12.5, \alpha = 0.16, \beta = 8.2 \)
(b) \(S' = 25, \alpha = 0.3, \beta = 8.2 \)

Fig. 1: Two miners 1 & 2: \(\lambda_1 < \lambda_2, \lambda_1 + \lambda_2 = 1 \)
Case Study: One Cheater

- **Setting:** miners are divided into two groups
 - Corrupted pool controlled by a cheater: Pool 1
 - Optimize B_1 for utility maximization
 - Computing rate: λ_1
 - The rest of the miners are honest: Pool 2
 - Use the default block size \overline{B}
 - Computing rate: λ_2 in total

Pool 1 and pool 2 are heterogeneous with regard to computing rate.
Pool 1’s Utility Analysis

- **Parameters affecting pool 1’s optimal size**
 - B_1 is positively related to computing rate λ_1
 - Decrease of subsidy S leads to increase of B_1
 - Large network delay rate β will reduce B_1

Fig. 2: Optimal block size using different sets of (S, α, β)
Peaceful Equilibrium

- **Peaceful equilibrium** is a condition where
 - Pool 1’s optimal block size $B_1 = \bar{B}$
 - Upper bound of λ_1
 - Theorem 4. If $\lambda_1 \leq 1/3$, A’s optimal block size B_1 equals to \bar{B}
 - Block subsidy and equilibrium ($\lambda_1 > 1/3$)
 - The decrease of S could lead to more equilibria (Fig. 3)
 - Since TX fees become main income, pool 1 has incentive to increase B_1

Fig. 3: Red area represents $B_1 = \bar{B}$ and black area represents $B_1 < \bar{B}$
Network Delay and Equilibrium ($\lambda_1 > 1/3$)

- When network delay is reasonable: (Fig. 4)
 - If α is high enough and S is low, then $B_1 = \overline{B}$

- When network delay is serious: (Fig. 5)
 - Hard to see peaceful equilibrium, that is $B_1 < \overline{B}$
 - Damage Bitcoin network if attackers issue delay attacks

Fig. 4: $\beta = 8.2$
Fig. 5: $\beta = 82$
Case Study: Two Cheaters

- **Setting:** miners are divided into three groups
 - Two cheaters: L and H
 - L has a smaller pool with computing rate: λ_L
 - H has a larger pool with computing rate: λ_H
 - The rest of the miners M are honest
 - Use the default block size \bar{B} with computing rate: λ_M in total

- Cheaters:
 - Pool L manipulate B_L
 - Pool H manipulate B_H

- Honest Pool M set $B_M = \bar{B}$

L, H, and M are heterogeneous regarding to computing rate.
Sided Misbehaviors

- One side: only L cheats on his block size
 - If $\lambda_L > 8\%$, L's optimal size $B_L < \bar{B}$ (Fig. 6)

- Both sides: L and H cheat on block sizes
 - For $\bar{B} = 1$ MB, L and H always have optimal sizes smaller than \bar{B}, no matter what their computing rates are (Fig. 7)
 - Current default size must be redefined
6. Conclusion

- A game on block size
 - Consider tradeoff between propagation time and TX fees
 - Model the relation between winning probability and block size

- Game Analysis on two different settings
 - Homogeneous miners in bitcoin mining network
 - Heterogeneous miners for case studies

- Real-world data to confirm theoretical analysis
 - Future work: conduct experiments on real blockchain platform, eg. CITA [5], to measure real-time propagation delay influences.

Thank you

Q & A