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Abstract—In a Bitcoin market, miners participate in
blockchain mining with an aim to make profits. Until reaching
consensus, PoW-valid blocks (including validated transactions
and proper PoW solutions) can be viewed as being successfully
mined and are rewarded. There are two types of rewards for
miners: fixed block subsidies and time-varying transaction fees.
Block subsidies, predetermined by design, are the current major
revenue source. Transaction fees, offered by Bitcoin transaction
senders to accelerate their transactions, heavily depend on the
corresponding transaction size. Thus, a larger-size block tends
to contain higher transaction fees and hence more rewards.
However, the probability of a miner to successfully mine a block
diminishes as the block size increases, since a larger-size block
takes a longer time to reach consensus. Thus, the reward included
in the block is vitally affected by its size, which is independently
decided by a miner. In this paper, we use a game-theoretic
approach to study how a miner’s payoff, i.e., expected profits,
is determined by his block size. More specifically, we derive an
expression to characterize the relation between the miner’s payoff
and block sizes. Besides, we use game theory to analyze how
profit-driven miners will manipulate their block sizes to optimize
payoff instead of adopting the default block size. We conduct
numerical experiments on real-world data collected from Bitcoin
to find peaceful equilibrium where miners have no incentive to
misbehave. The achieved block sizes thereby give guidelines on
the default block size, in order to deter miners from misbehaving.
Our analysis suggests a block size of 4 MB.

Index Terms—Bitcoin, blockchain, deviant mining strategy,
game theory, transaction fees.

I. INTRODUCTION

As the most successful decentralized digital currency, Bit-
coin applies blockchain, a distributed ledger, to record trans-
actions in the form of linked blocks secured by cryptography.
The consensus protocol is the core of blockchain, since it
regulates how to maintain such an append-only public ledger
in a distributed fashion. Bitcoin is built on top of a proof-of-
work (PoW) protocol. In the Bitcoin network, agents called
miners collect blocks of transactions, verify their integrity, and
append them to the blockchain. Miners are required to solve
a computationally difficult PoW puzzle, in order to append a
block to the blockchain. This mechanism ensures the security
and reliability of blockchain, since lots of trial and error is
required on average before computing a valid solution to such
a puzzle. The process of successfully adding a block to the
chain can be viewed as a mining round and the blockchain
grows due to continuously repeated mining rounds. Each miner
successfully appending a block will receive monetary rewards
as a mining incentive.
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Fig. 1: Block reward evolution trend [10].

A major success factor of Bitcoin is its novel reward mech-
anism. This mechanism couples, albeit loosely, the extension
of the blockchain with newly minted Bitcoins. The creation of
Bitcoins is only accompanied by a new block added perma-
nently to the blockchain, as a reward for its creator. However,
due to a 21,000,000-unit upper bound of bitcoin supply,
starting from 50 BTC, the block subsidy halves every 210,000
blocks and will eventually become zero. Thus, transaction fees,
offered by transaction senders, are also introduced to gradually
replace block subsidy as the other mining incentive. However,
there are two types of rewards in the current Bitcoin market:
fixed block subsidies and time-varying transaction fees. As
is shown in Fig. 1, fixed block subsidies for mining will be
entirely substituted with transaction fees in the long run. Since
the security of Bitcoin’s consensus protocol relies on miners
behaving correctly, the reward structure of the protocol should
encourage honest miners (those who strictly follow the Bitcoin
protocol when mining) by ensuring their payoff is proportional
to their mining power. However, it cannot always hold due
to the increasingly-significant transaction fees in the Bitcoin
reward mechanism. More and more miner misbehaviors arise
due to transaction fee. To gain more rewards, miners usually
have more incentive for transactions with more fees. Thus,
chances are high that a transaction without fee could not be
processed immediately or might not even be relayed by miners.

There also exist cases where misbehaving miners give up
part of available transaction fees in hopes of enhancing his
chance to win all other unabandoned rewards. Carlsten et al.
[1] proposed such a deviant mining behavior called Undercut-
ting. Undercutting attackers always actively fork the head of
the chain without claiming all transactions. Those unclaimed
transactions (associated with fees) can incentivize more miners
to support attackers’ blocks instead of an oldest-seen block,
since they can collect more transaction fees in their next block
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Fig. 2: Two possible options for a miner when accepting a new block.

by mining on an attacker’s block. Actually, mining on a block
that claims fewer transaction fees instead of a block seen first
is also a deviant behavior. Fig. 2 illustrates how these two
mining misbehaviors work. Imagine three miners of different
types: honest Heidi, greedy Grace, and scheming Sybil. Grace
receives two blocks from Heidi and Sybil, respectively, and
Sybil’s block arrives a little late. Grace has two options:
(1) extend the longest chain, mining on Heidi’s block and
receiving an expected reward of 0; (2) mine on Sybil’s block,
with an expectation to receive 5 BTC in the next block.
The Bitcoin protocol dictates option (1), but quick reasoning
suggests that option (2) is more beneficial for Grace.

1) Miners’ Misbehaviors on Block Size: The previously-
mentioned transaction-fee manipulation can be viewed as
miners’ misbehaviors on the block size, given the amount of
transaction fees included in a block is linearly proportional
to its size. Thus, a larger-size block tends to contain more
transaction fees. We consider how a miner’s mining payoff
(expected profits) will be affected by his block size in the
long run. The payoff is determined mainly by a miner’s
winning probability and his expected reward. The expected
reward increases as the block grows larger, while the winning
probability goes down since smaller blocks tend to reach
consensus faster. The Bitcoin protocol itself has requirements
on the block size. A block should be bounded within 1 MB and
include all valid transactions if available transactions are not
enough to fully occupy a 1-MB block. If all miners follow the
Bitcoin protocol in an ideal network, then a miner’s payoff
is proportional to his mining power. However, if a miner
dedicatedly designs his block size in order to maximize his
payoff, it is possible that he can gain more than his fair share
out of total profits, given the current Bitcoin mechanism that
includes transaction fees as a source of reward.

2) Our Result: To some extent, transaction fees can be
seen as a flaw in Bitcoin as it discourages honest miners and
thereby poses an important threat to the stability of Bitcoin
network. Manipulating transaction fees is for the purpose of
gaining more rewards and essentially is miners’ misbehavior
on the block size. To analyze the profit-driven miners strategy
evolution in transaction-fee regime, we start with how a
miner’s payoff is determined by his block size. We derive
an expression for the distribution and use the law of total
expectation to characterize the relation between a miner’s
payoff and his block size, as well as other parameters. We
then discuss how miners with different mining powers can
determine their optimal block sizes to maximize payoffs. We

find the optimal block size is positively related to the miner’s
mining power. Based on the observation, we define a game on
the block size, where honest miners always follow the default
block size, while misbehaving miners play strategies on their
own block sizes to optimize payoffs. We investigate our game
in different scenarios. Both the game theoretical analysis and
numerical results show the existence of peaceful equilibrium
where all miners are refrained from misbehaving. We further
analyze how different values affect the corresponding equi-
libria. Since payoff ratios and mining ratios are equivalent
in peaceful equilibria, the corresponding block size gives us
guidelines on the Bitcoin default block size, which will deter
miner’s misbehaviors and encourage honest mining. Thus,
deviant behaviors in the transaction-fee regime can also be
deterred. Our main contributions are summarized as follows:

• We derive expressions to capture relations between miner’s
expected payoffs and their block sizes.

• We prove a miner with less mining power prefers a smaller
block size in order to optimize his payoff.

• We define a block-size game to analyze how misbehaving
miners will manipulate their block sizes, instead of follow-
ing the default block size required in the Bitcoin protocol,
in order to maximize payoff.

• We show the Nash equilibria in the proposed game using
numerical analysis conducted on the real Bitcoin data.

• The Block sizes achieved in peaceful equilibria give guide-
lines on the default block size, that would deter misbehaving
miners and remove instability caused by transaction fees.

II. RELATED WORK

A vast majority of previous work examines possible types
of misbehaviors against the Bitcoin protocol and suggest
adaptations of the protocol to encourage honest mining, and
thereby ensuring its security. We very briefly mention some
of these works here. Usually, misbehaviors at the miners’ side
tend to be referred to as Mining attacks. Eyal and Sirer [4]
develop the selfish mining attack, a deviant mining strategy
that enables miners to get more than their fair share of rewards.
Other works, notably Sapirshtein et al. [6] have analyzed
selfish mining in more detail using Markov Decision Processes
(MDP). Various other attacks have been studied. For example,
members of a mining pool can launch a block withholding
attack against the pool itself [5], and this harms the victim
pool and its other members, but actually increases the revenue
of the rest of the network. In [10], the author considers
attacks performed between different pools where users are sent
to infiltrate a competitive pool giving rise to a pool game.
[15] deals with information propagation and Sybil attacks.
Most of them are consider a model where the subsidy is the
dominant incentive for mining. In this work, we analyze how a
miner’s behavior differs according to his block size in a reward
mechanism with block subsidies and transaction fees. Mser
and Bhme [18] review and analyze the history of transaction
fees in Bitcoin. They conclude that historically miners prefer
to follow the protocol rules rather than optimize their gains.



They predict such a state is sustainable only when fees are a
negligible part of the incentive.

There also exists real attacks at the network layer. Each
Bitcoin node is connected over TCP to many peers, with a de-
fault maximum of 125. The peer-to-peer connections between
these nodes can be inferred through various techniques [7, 8].
Heilman et al. [9] demonstrated a network-level eclipse attack
where a single node monopolizes all possible connections
to a victim and eclipses it from the network. Thereby, the
eclipsing node can filter the eclipsed node’s view of the
blockchain. Although a few proposed counter-measures have
been implemented that reduce the feasibility of carrying out
an eclipse attack by a single node, multiple nodes can collude
and still succeed in eclipsing. Besides, Coinscope [7] proposed
non-trivial techniques to map out the Bitcoin network topology
as well as the mining power of various nodes. This network
knowledge can further help a network-level attacker.

In addition, game theory has been widely applied to analyze
Bitcoin attacks. Several recent works have examined the
game theoretic consequences of attacks. Kiayias et al. [14]
performed a theoretical analysis of various selfish mining
strategies in the fixed-reward model, and proved that when
miners are small enough, the default mining behavior is an
equilibrium. See also [11] for a (cooperative) game theoretic
analysis regarding pool mining.

III. SYSTEM MODEL

In this section, we introduce a realistic Bitcoin mining
model used in this paper. As commonly done in blockchain-
related analysis, we assume the whole system is in a quasi-
static state [14, 21]. That means no miners join or leave,
existing miners maintain their behavior, and the system reaches
equilibrium. Therefore, in our model, the system comprises a
fixed set of miners associated with their mining power.

Suppose there are n miners starting to mine a new block on
the top the same block, i.e., there is no fork at the beginning
time. All players(miners) are asked to solve the proof-of-work
puzzle in order to mine a block. The puzzle can be solved
only by using a trial and error strategy, and the occurrence of
solving this problem can be well approximated by a random
variable following a Poission process. The time for the whole
system to find a valid block is exponentially distributed with
a fixed rate parameter. Time used to find the first block by
any of the miners is the minimum of all finding times by all
different miners. The value of the rate parameter is determined
by the consensus protocol, such that the expected block time
interval is of a constant value. The rate parameter represents
the difficulty of the proof-of-work puzzle, and we use the terms
difficulty and rate interchangeably. The total mining power
affects the value of the rate parameter. The difficulty parameter
value is adjusted by the whole system to decrease (or increase)
the rate of each miner. In an equilibrium, the rate parameter is
fixed as a constant. Currently, the difficulty of finding a block
is dynamically adjusted so that it takes T = 600 seconds
on average. Thus, the mining Poission process has a fixed
parameter 1/T for the whole network.

We assume that the difficulty of all puzzles is the same. In
fact, the difficulty of puzzles at each time is proportional to
the total mining power in the Bitcoin network of that time.
It is reasonable because in our quasi-static model, the miners
and their mining power are fixed, thus there is a stable total
mining power. There exists more than one valid solution for
each puzzle. It is possible that two or even more miners solve
their puzzles for a same-height block, which will result in a
blockchain fork. Then, the rest miners have to choose only one
to continue mining on. The branch accepted by the majority
survives, and the corresponding miner would be rewarded.
Thus, we could conclude that, miners who solve a puzzle are
not necessarily rewarded, and only the first to make his solved
block reach consensus will obtain rewards.

The reward of a mined block comes from two aspects:
the fixed block subsidy and the extra fee from transactions
included in this block. The block subsidy can be referred to
as base reward, which is relatively fixed over time. This reward
is comprised of the minting of new currency with the creation
of each block. Transaction fees come from the aggregation
of newly introduced transactions in the system. This reward
is time-dependent. As the time progresses, there are more
pending transactions in the system, and the potential fees grow.
We follow the assumption made in [1] that transactions (and
their associated fees) arrive at a constant and continuous rate.
To be more precise, during any time interval t, the sum of
fees in the announced transactions is ct, where c is a specific
constant. As is emphasized in [1], this assumption helps to
simplify analysis on the effects of transaction fees, although
there is no guarantee it holds in practice. Thus, the transaction
fee density of unverified transactions is also constant.

According to the Bitcoin mining protocol, each miner
can decide what and how many transactions to include in
their block. Following the assumption in [1], if there are m
transaction fees available, a miner can choose to include any
real-valued number of transaction fees between 0 and m in
his block. That is, a miner can selectively choose a set of
transactions whose fees are very close to whatever real-valued
target he wants. It is a reasonable approximation due to the
large number of transactions per block. Thus, the amount of
transaction fees included in a block is proportional to its size.
Besides, the set of transactions chosen by each miner has no
effects on the time and chance to solve hid puzzle. However,
it matters during the block broadcast time. Once a miner finds
a block, he needs to broadcast it to the rest of the Bitcoin
network. In order to be added permanently to the blockchain,
this block must be accepted by the majority. If we take the
block transfer delay into consideration, the time used to make
a block reach consensus is heavily dependent on its size and
hence, the set of transactions in it.

Once a block is mined, all miners move on to find the
next block. This process is repeated indefinitely. The profit
of a miner for each block is the difference between his
total expenses and his total reward. Rational miners strive to
maximize their profits, giving rise to a game.



TABLE I: Summary of Parameters.

Symbol Description
T Average block arriving interval
R Block subsidy
α Transaction fee density
β Block propagation time per unit
n Number of miners or players
λi Player i’s mining rate
hi Player i’s mining power where hi = λi/T
Bi Block size decided by player i
Pi Payoff for player i to mine a block

IV. DISTRIBUTION IN THE BLOCK SIZE GAME

The repeated search for the blocks becomes a series of
independent one-shot competitions, and in each competition,
only one miner gets the reward but all miners pay expenses.
To analyze the expected revenues, rather than considering the
individual iterations, we consider a one-shot game played by
the miners. A player’s strategy is the choice of his block size.
The choice of block sizes are made a-priori by all the players.

To find the payoff of each player, we start by analyzing the
block finding time probability distribution. This is a function
of the players selection of block sizes. We model the block
finding time as a random variable denoted X with cumulative
distribution function (CDF) and probability density function
(PDF) denoted FX(t;B, λ) and fX(t;B, λ), respectively. The
corresponding notations are listed in Table I.

A. Distribution Analysis

The first step towards analyzing the system is to derive
an expression for the distribution, namely FX(t;B, λ) and
fX(t;B, λ). We begin with the distribution of a single player
i with mining rate λi. Assume i’s block size is Bi, thus, his
propagation time is pi = βBi. Denote the time this player
requires for successfully mining a block as a random variable
Xi. The probability density function (PDF) of Xi is

fXi(t;Bi, λi) =

{
0 t < pi

λie
−λi(t−pi) t ≥ pi

, (1)

which describes the probability of player i, whose mining
rate is λi, to successfully mines a block of size Bi at time t.
And the corresponding cumulative density function (CDF) is

FXi(t;Bi, λi) =

{
0 t < pi

1− e−λi(t−pi) t ≥ pi
, (2)

defining i’s accumulated winning probability until time t.
As FXi(t;Bi, λi) = Pr(Xi ≤ t) = 1 − Pr(Xi ≥ t), we

can obtain that

Pr(Xi ≥ t) =

{
1 t < pi

e−λi(t−pi) t ≥ pi
. (3)

Since all the players are competing on mining the next block,
any player with the minimal value of Xi is the first one to
find the next block. Therefore, the time required for finding
the next block is X = min

i∈{1,2,··· ,n}
Xi.

We use a boolean variable activei(t) to capture a player i’s
winnablility at time t, which is expressed in the below:

activei(t) =

{
0 t < pi

1 t ≥ pi
. (4)

It is obvious that, i has zero winnablility before time pi, even
if he could solve his PoW puzzle at t = 0. After pi, i starts
to hold a probability to win. Besides, we define active(t) as
the set of any player who is likely to win at time t. That is,
active(t) = {i | activei(t) = 1, ∀i}.

The probability that none of the players have found a block
by time t, Pr(X > t), is the product of Pr(Xi > t) for all i
(as players are independent of each other), shown in Eq.(5).

Pr(X > t) =
⋂

i∈{1,2,··· ,n}

Pr(Xi > t) =

n∏
i=1

Pr(Xi > t)

= e
∑
i∈active(t)[−λi(t−pi)]

(5)

Thus, X’s corresponding CDF and PDF are shown below,
FX(t;B, λ) = 1− Pr(X > t)

= 1− e
∑
i∈active(t)[−λi(t−pi)],

fX(t;B, λ) = (
∑

i∈active(t)

λi) · e
∑
i∈active(t)[−λi(t−pi)].

(6)

B. Proof of A Valid PDF

Theorem 1. fX(t;B, λ) is a valid probability density function
to express the probability of finding a block as time passes in
the whole blockchain mining network.

Proof. We present the full verification process in the below
by checking that

∫ +∞
−∞ fX(t;B, λ)dt = 1 holds.∫ +∞

−∞
fX(t;B, λ)dt =

l=n∑
l=1

∫ pl+1

pl

fX(t;B, λ)dt (7)

=

l=n∑
l=1

∫ pl+1

pl

λ|active(pl)|e
∑
j∈active(pl)

[λj(t−pl)]dt

=

l=n∑
l=1

∫ pl+1

pl

λxle
−xlλte

∑
j∈active(pl)

pjdt

= e−λ
∑

[e
∑
j∈active(pl)

(pl−pj) − e
∑
l∈active(pl)

(pl+1−pj)]

= e−λ[e
∑
j∈active(p1)(p1−pj) − e

∑
j∈active(p∞)(p∞−pj)]

= e−λ(e0 − e+∞) = 1

Thus, the PDF we use is valid, hence our model is as well.

V. PAYOFF IN THE BLOCK SIZE GAME

A. Payoff Analysis

The payoff is defined as the expected profit of player i.
We use the variable profiti to represent i’s profit and hence
at time t, i’s expected profit is denoted as E(profiti|X =
t). We model the profit of a block consisting of the fixed
block subsidy and transaction fees inside that block, which is
proportional to the block size. Thus, for a specific player i, the
total available profit is R + αBi. Recall that, in expectation,
the probability that a specific active player will find a block
is his mining power divided by the total mining power owned
by all the active players. Thus, if a block was found at time
t, then the expected profit of player i is shown below.

E(profiti|X = t) =
activei(t) · λi∑
j∈active(t) λj

(R+ αBi) (8)



Since we define the player i’s payoff as the expectation of
his profit, we express it in Eq.(9),

Pi = E(profiti) = E(E(profiti|X = t))

=

∫ +∞

−∞
E(profiti|X = t) · fX(t;B, λ)dt

= λi(R+ αBi)

n∑
l=i

e
∑
λj(pj−pl) − e

∑
λj(pj−pl+1)∑

λj

(9)

where j ∈ active(pl) for all valid l.
1) Impacts of Individual Block Size on Self-payoff: A player

can improve his expected payoff by two means - increasing
either (i) his expected reward or (ii) his chance of being re-
warded. Although both of them are implemented by adjusting
the block size, they are in conflicting directions. When a player
chooses a big block size, he prefers to increase his potential
transaction fee reward by including more transactions, at
the cost of lowering his chance to be rewarded (since a
bigger block incurs a longer propagation time). When a player
chooses a small block size, he prefers to increase his chance
for receiving a reward by shortening the propagation time of
his block (therefore prolonging his mining time), at the cost
of decreasing his reward amount from transaction fees.

2) Impacts of Individual Block Size on Others’ Payoffs:

Theorem 2. A player indirectly increases each of his rivals’
payoff by increasing his own block size.

Proof. We calculate the first-order derivatives of player k’s
payoff over Bi:

∂Pk
∂Bi

= βλiλk(R+ αBk)

n∑
l=max{i,k}

e
∑
λj(pi−pl) − e

∑
λj(pj−pl+1)∑

λj
.

(10)
where k 6= i and j∈active(pl) for all valid l.

Obviously, ∂Pk/∂Bi ≥ 0 always holds. This result can be
interrupted as follows. When any player increases his own
block size, it brings external benefits to other players. This
is because the player lengthens his own propagation time,
allowing others to mine for a longer time. This increases their
probability of finding a valid PoW solution.

B. Optimal Block Size and Mining Power

According to Eq.(9), a player’s expected payoff is related
to the block sizes selected by all the players, as well as the
mining power distribution in the whole Bitcoin network. Now,
we are interested in finding out how a player’s mining power
would affect his decision on the block size. Intuitively,

Theorem 3. A player’s optimal block size is positively related
to his mining power.

Proof. We assume two heterogeneous players: player 1 with
lower mining power and player 2 with higher mining power.
Besides, we assume there is no bound on the block size. Thus,
players are allowed to put as many transactions as they want in
the block. We define player 1’s mining power as h1 and player
2’s mining power as h2 , respectively. Given h1 + h2 = 1
and h1 < h2, then we can see λ1 = h1/T and λ2 = h2/T .

We analyze these two players’ payoffs under two possible
conditions: (1) B1 < B2 and (2) B1 > B2, respectively.
(1) B1 < B2: This means player 1 with lower mining power
would choose a smaller block size than player 2. Then, each
player’s expected payoff can be expressed as

P1 = (R+ αB1)
[
1− (1− h1)e

−h1β(B2−B1)/T
]

P2 = (R+ αB2)h2e
−(1−h2)β(B2−B1)/T .

(11)

To figure out each player’s optimal block size, we calculate
the first-order derivative of Pj over Bj in Eq.(12).
∂P1

∂B1
=α

[
1−h2e

−h1β(B2−B1)
T

]
− h1h2

T
β(R+αB1)e

−h1β(B2−B1)
T

∂P2

∂B2
=αh2e

−h1β(B2−B1)
T − h1

T
β(R+αB2)h2e

−h1β(B2−B1)
T

(12)
Let ∂P2/∂B2

= 0, then B2 = T/β(1−h2) − R/α. Let B∗2 =
argmax
B2≥0

P2, thus we conclude that

B∗2 =

{
0 if R

α ≥
T

β(1−h2)
case (a)

T
β(1−h2)

− R
α otherwise case (b)

Now we discuss the optimal B∗1 = argmax0≤B1≤B∗2 P1. B∗1 is
dependent on B∗2 . Given player 2’s dominant strategy, player
1 should choose his best response. In case (a), B∗2 = 0, then
∂P1

∂B1
= α

[
1− h2e

h1βB1/T
]
− h1h2

T
β(R+ αB1)e

h1βB1/T .

For any B1 ≥ 0, ∂P1/∂B1 ≤ 0 always holds. Thus, B∗1 = 0. In
the case (b), B∗2 = T/β(1−h2) − R/α, and the payoff function
P1 for player 1 is concave in B1 since ∂

2P1/(∂B1)2 < 0 always
holds. As ∂P1/∂B1 |B1=B2 < 0 holds if R/α < T/β(1−h2), there
is a unique B∗1 , satisfying B∗1 < B∗2 . Obviously, the analysis
result is consistent with the condition B1 < B2.
(2) B1 > B2: This means player 1 with lower mining power
would choose a bigger block size than player 2. Now, each
player’s expected payoff can be expressed as

P1 = (R+ αB1)h1e
−(1−h1)β(B1−B2)/T

P2 = (R+ αB2)
[
1− (1− h2)e

−h2β(B1−B2)/T
]
.

(13)

Then by calculating ∂P1/∂B1=0, we obtain the optimal block
size B∗1 for player 1, which is listed below.

B∗1 =


0 if R

α ≥
T

β(1−h1)
case (a)

T

β(1− h1)
− R

α
otherwise case (b)

We verify if B∗2 < B∗1 holds. We begin with case (a),
where R/α ≥ T/β(1−h1) and B∗1 = 0. Thus, ∂P2/∂B2 =

α
(
1− h1e

h2βB2/T
)
− (h1h2/T )β(R + αB2)e

h2βB2/T . When
B2 = 0, we obtain ∂P2/∂B2

|B2=0 = (α − h1/TβR)h2. Based
on R/α≥ T/β(1−h1), we can see B∗2 =0 if α≤Rβh1/T (since
∂P2/∂B2

|B2=0 ≤ 0 ), and B∗2 > 0 if Rβh1/T ≤ α ≤ Rβh2/T
(since ∂P2/∂B2

|B2=0 > 0). Thus, B∗2 ≥B∗1 holds in case (a).
We proceed with case (b), where R/α<

T/β(1−h1) and B∗1 =
T/β(1−h1)−R/α. When B2 = B∗1 , we obtain ∂P2

∂B2
|B2=B∗1

=

(1 − h1

h2
)αh2, which is bigger than 0 given h1 < h2 and P2

is a concave function in B2 as ∂2P2/(∂B2)2 < 0 holds, then
B∗2 > B∗1 . Thus, the result violates the condition B1 > B2.
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(a) R = 12.5, α = 0.16, β = 8.2
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(b) R = 25, α = 0.3, β = 8.2

Fig. 3: Player with lower mining power will have smaller optimal block size.

Based on the previous discussion, it is obvious to see that,
given h1 < h2, B∗1 < B∗2 always holds.

We also use real-world data from the Bitcoin network to
validate our conclusions. The numeric results can be seen in
Fig. 3. We plot the optimal block sizes for both players under
different conditions. In Fig. 3(a), the solid lines represent B∗1
and B∗2 under the condition B1 < B2. The red solid line is
above the blue solid line, which is consistent with the condition
B1 < B2. As h1 increases, i.e., h1 is close to h2, these two
solids approach and finally intersect when h1 = h2. However,
the result reflected by the dashed lines violates the condition
B1 > B2 (the blue dashed line is below the red one). In the
Fig. 3(b), we modify the Bitcoin network settings by changing
the block subsidy, transaction fee density and the network
delay, but we still get the same trend. Thus, a player with
low mining power should choose a small block size while a
player with high mining power should choose a big one.

VI. SYSTEM EQUILIBRIUM ANALYSIS AND SEARCH

The payoff presented in Eq.(9) is derived given all players’
strategies. If a player changes his strategy, then the payoffs of
all the other players will also be affected. We are interested
in finding equilibria, i.e., strategies of all players such that
no player can improve its payoff by changing its strategy.
It is infeasible to express a player’s payoff in a symbolic
manner, since it is a function of all players’ strategies as
well as the difficulty parameter, which is expressed as an
implicit function. Therefore, we use numerical analysis to find
equilibria in the system.

We implement an equilibrium-search-tool, a tool we use to
numerically search for an equilibrium, and that works in the
following manner. The equilibrium-search-tool receives as an
input for the system income and expenses parameters, as well
as a list of tuples representing all players strategies. Each tuple
of that list is in the form of {i, hi, Bi}, where i is a players
index, hi is the mining power controlled by player i, and Bi
is the block size selected by player i.

Iteratively, the equilibrium-search-tool randomly chooses an
input tuple {i, hi, Bi}, and searches what value of a block size
Bi will result in maximal payoff for player i. This process is
repeated until no player increases its payoff by changing any
of its rigs, meaning an equilibrium is reached. Note that all
equilibria found by such process are only ε-Nash equilibria, as
they are limited by the numerical precision of the calculation.
To counter that predicament, we repeat the search process with
different random start times and different optimizing order. In

all conducted experiments, the randomness introduced had no
effect on the output equilibrium. That strengthens our analysis
of an equilibrium.

VII. ONE MISBEHAVING MINER

We begin our analysis with an assumption that there is
exactly one miner with misbehavior. For simplicity, we assume
that miners are divided into two groups, a corrupted pool A
controlled by the misbehaving miner, and the rest of the miners
M behaving heuristically. It is irrelevant whether M operates
as a single pool, as a collection of pools, or individually. Each
miner in M always honestly mines with the default block
size B (1MB at the time of writing this paper), while A
manipulates his block size BA to optimize his expected payoff.

A. Attacker’s Expected Payoff

Let A’s mining power equal to hA, then M controls hM =
1−hA of the total mining power. Based on Eq.(9), we calculate
A’s expected payoff in Eq.(14).

PA=

(R+ αBA)
[
1− (1− hA)e

−hAβ(B−BA)/T
]

ifBA≤B.

(R+ αBA)hAe
−(1−hA)β(BA−B)/T otherwise.

(14)
B. Numerical Analysis on One-Sided Misbehavior

The expected payoff presented in Eq.(14) is derived given
A’s mining power and block size. In fact, A’s optimal block
size B∗A can be decided according to ∂PA/∂BA = 0, and is
an implicit function related to hA. Now, we focus on how A’s
mining power hA would influence his decision on BA. Thus,
we allow A to put as many (or few) transactions as he wants
in the block. Since it is infeasible to express B∗A in a symbolic
manner, we use numerical analysis to find B∗A under different
values of hA, in hopes of finding out a unified and reasonable
explanation to these numerical results.

Fig. 4(a) shows how A’s optimal block size B∗A is related
to his mining power hA, given B = 1 and T = 600. We fix
the parameters R, α, and β and vary the parameter hA. Values
of each set (R,α, β) are based on the real-time information
from [16]. From the black dashed line we can see A always
puts few transactions in his block. B∗A = 0 is reasonable
due to the huge network delay, i.e., β = 82. When we set
the network delay to a normal level (β = 8.2), we find
A’s optimal block size becomes larger as his mining power
increases. We can also see that decreasing the block subsidy
motivates A to increase his block size to optimize payoff, even
if the transaction fee density decreases. Thus, we could predict
that, once the transaction fee dominates the Bitcoin reward
mechanism, optimal block size increases for each player no
matter what his mining power is. Results in Fig. 4(b)-(c)
show that, the payoff ratio is equivalent to the mining ratio
between A and M when A adopts his optimal block size
while M follows default block size. In fact, if only A seeks
to gain more by manipulating his block size, we could see the
payoff distribution between A and M still follows the fairness
requirement: the payoff should be distributed proportionally to
the mining power in the long run.



(a) Optimal block size using different sets of
(R,α, β).
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Fig. 4: Numerical analysis based on real-time information from [10].
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(b) R = 0
Fig. 5: Existence of the peaceful equilibrium when R is fixed.
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(b) β = 82
Fig. 6: Existence of the peaceful equilibrium when β is fixed.

Since any block over 1 MB will be denied in the real Bitcoin
network, we are interested in finding peaceful equilibria which
refrain A with any hA from manipulating his block size. That
is, we want to find on what conditions, A can optimize his
payoff by always filling up his 1-MB block. Obviously, B∗A ≥
1 must hold on those conditions, such that A is forced to fill up
his block, in order to maximize his expected payoff (although
it is still not his optimal payoff due to the 1MB limitation).

In Fig. 5(a), we firstly fix the parameter R as 12.5, and we
vary the parameters α and β. The red shaded areas represent
the existence of peaceful equilibria given different values
of α and β (if you are reading this paper in a black-and-
white version, those grey parts represent equilibria). The figure
shows that, a peaceful equilibrium tends to appear when α is
high and β is low. That is, if the transaction fee density is
high enough and the network delay is within a low range,
A’s optimal block size is always over 1 MB, which forces
him to maximize his obtainable payoff by choosing his block
size as the default 1 MB. In Fig. 5(b), we assume the block
reward runs dry, i.e., R = 0, and we cannot observe a peaceful
equilibrium unless either α → 0 or β ≥ 600 (which is
impossible in reality unless a delay attack exists). This is
reasonable since transaction fees are the only incentive.

In Fig. 6, we fix the parameters β (81.92 in (a) and 8.192

in (b)), and we vary the parameters R and α. These figures
show that if R is low and α is high, then a peaceful equilibrium
is possible; however, if either of these parameters is deviant,
then there can be no peace. This further confirms the result
in Fig. 5(b), as the block subsidy goes low (even dry), the
transaction fee dominates, A with any mining power has the
motivation to choose a larger block size. Besides, Fig. 6 also
implies β is especially important. As we can compare, the red
shaded area obviously shrinks as β goes up. That is, dramatic
increase on the network delay will lead A to choose a block
size smaller than 1 MB. In practice, if someone issues a delay
attack (which can delay a message for at most 20 minutes
), then players may have no incentive to collect transactions
in their blocks. This would be a disaster for the liveness of
Bitcoin.

VIII. TWO POOLS

We proceed to analyze the case with two misbehaving
miners where miner L has a small pool and miner H has
a big pool. By size comparison, we simply mean that L has
less mining power than H . Obviously, B∗L ≤ B∗H . A third
entity M represents the rest of the Bitcoin mining market and
behaves heuristically, using the default block size B.

A. Peaceful Equilibria

First, we are interested in finding peaceful equilibria which
refrain both L and H from deviating from B. On these
conditions, both B∗L and B∗H must be no less than B so that if
L and H want to maximize their expected payoffs, they have
to fill up their blocks. The payoff functions of L and H under
the condition of B ≤ BL ≤ BH are listed in Eq.(15):

PL = (R+ αBL)
hL

hM + hL
×[

e
−hMβ(BL−B)/T − hHe

−hMβ(BH−B)/T−hLβ(BH−BL)/T
]

PH = (R+ αBH)hHe
−hMβ(BH−B)/T−hLβ(BH−BL)/T .

(15)

We can calculate B∗L and B∗H by solving the equations
∂PL/∂BL = 0 and ∂PH/∂BH = 0 if R, α, and β are
all given. Again, we use numerical analysis here and the
corresponding results are present in Fig. 7 and Fig. 8.

In Fig. 7, we fix R while vary α and β and the red shaded
areas are peaceful equilibria given different values of α and β.
Comparing Fig. 7 with Fig. 5, we find the peaceful equilibria
are reduced. This is because more misbehaved miners leads to
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(b) R = 0

Fig. 7: Existence of the peaceful equilibrium when R is fixed.
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(b) β = 82

Fig. 8: Existence of the peaceful equilibrium when β is fixed.

a more unstable and unpredictable mining environment. When
R=12.5, Fig. 7(a) shows that a peaceful equilibrium appears if
α is high and β is low. That is, if transaction fee density is high
enough and network delay is within a low range, both B∗L and
B∗H are over 1 MB, thereby they have to choose the default
block size to obtain a maximized payoff in expectation. In
Fig. 7(b), we assume the block reward runs dry, i.e., R = 0, we
find that a peaceful equilibrium comes as long as the network
delay β falls into a reasonable range since transaction fees are
the only income source. In Fig. 8, we fix β while vary R and
α. These figures show that, if R is low and α is high, then
a peaceful equilibrium is possible; however, if either of these
parameters is deviant, then there can be no peace. Thus, when
transaction fees dominate, L and H with any mining power
have the motivation to choose larger block sizes. Fig. 8 also
shows the red shaded area obviously shrinks as the number
of misbehaved players increases. Thus, the more misbehaved
players, the less stable Bitcoin mining will be.

B. One-Sided Misbehaviors

We also want to know when only L is deviant from the
default block size, which means B∗L < B and B∗H ≥ B.
Below are the payoff functions under the assumption BL < B
and BH = B. The equation given below is the corresponding
payoff functions when only L misbehaves.
PL = (R+ αBL)×[
1− hM

hL + hM
e
−hLβ(B−BL)/T − hLhH

hM + hL
e
−hLβ(B−BL)/T

]
= (R+ αBL)

[
1− (1−HL)e

−hLβ(B−BL)/T
]

PH = (R+ αB)hHe
−hLβ(B−BL)/T .

(16)
Again, we conduct numerical analysis to find Nash equilib-

rium and see how parameters affect the achieved equilibria.
The red shade in Fig. 10 shows all possible equilibria when

L’s mining power varies given some fixed parameter(s). We
can see with a low transaction rate and a high network delay,
a miner with lower mining power cannot achieve more payoff
even by choosing a smaller block size than the default block
size. Thus, we can conclude that, the manipulation on the
block size doesn’t work here. In practice, however, the trans-
action rate is high and the network delay is usually controlled
at a reasonable level. In those cases, we find that there exists
an upper bound for L’s mining power. See the example in
Fig. 10(a) given the parameters: R = 12.5, α = 6, β = 8.2,
the upper bound is around 8%. Once exceeding this bound,
there is no existence of equilibria, which means, if L holds
more than 8% mining power, then his optimal block size is
definitely smaller than B. As a misbehaved player, L could
choose a B∗L instead of B. Thus, the current default block
size 1 MB can never ensure any player would behave well,
since a misbehaved player with over 8% mining power can
manipulate his block size by setting it smaller than the default
to gain more than his fair reward share.

C. Two-Sided Misbehaviors

We now analyze when both sides want to misbehave, which
means B∗L < B and B∗H < B. Given these assumptions, we
start our analysis on the two-sided-misbehavior scenario by
expressing the utilities of both parties.

According to our previous analysis, we know that the player
with higher mining power always performs better if its block
size is bigger than that of a miner with lower mining power,
i.e., BH ≥ BL given hH ≥ hL. Below are the payoff functions
under the assumption BL ≤ BH < B:

PL =(R+ αBL)

[
1− hH

hL + hH
e
−hLβ(BH−BL)/T

− hLhM
hL + hH

e
−hLβ(B−BL/T )−−hHβ(B−BH )/T

]
PH =(R+ αBH)

[
hH

hL + hH
e
−hLβ(BH−BL)/T

− hHhM
hL + hH

e
−hLβ(B−BL)/T−−hHβ(B−BH )/T

]
.

(17)

According to the numerical analysis, we found the antici-
pated equilibrium is hardly to be found in the current Bitcoin
network. This means, even in such a simplified scenario,
the default block size 1 MB cannot refrain players from
manipulating block sizes to gain more. Thus, we need to
reconsider how the Bitcoin network designs the default block
size B. An important design protocol is that, B should be
smaller the optimal block size of every player with any mining
power. In the next part, we will use the current information
of the Bitcoin network to recommend a suitable default block
size according to the previously-mentioned design protocol.

D. Extension on Real Bitcion Mining Network

We now make an educated estimation on the real Bitcion
network. In Bitcoin today, there are 7 mining pools [11]
controlling about 85% of the mining power, while the rest
is divided among many smaller mining pools. Although they
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Fig. 9: Existence of the peaceful equilibrium when β is fixed. Red shaded areas represent parameter combinations where the peaceful equilibrium exists.
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Fig. 10: Existence of the peaceful equilibrium when β is fixed.

vary in size, we approximate that situation by assuming 8
equal-size miners.

Currently, the rewards from minting and fees are 12.5 BTC
and about 1 BTC, respectively. We extend from previous
analysis and try to find peaceful equilibrium among eight
mining pools. With the help of Matlab, we find the default
block size, which is suggested to be 4 MB.

IX. CONCLUSION

We define and analyze the block size game exploring
how block sizes form as a function of block subsidy and
transaction fees. We show that once fees become significant,
then manipulation on the block size appears. However, it does
not happen uniformly as previously believed, while it has
a significant effect on blockchain security. This means that
base rewards are critical for system security, and should be
achieved either by subsidies, fee backlogs, or alternative fee
schemes [22, 23]. We show that the default block size 4 MB is
sufficient to avoid deviant mining behavior of the block sizes
in presented scenarios; we expect Bitcoin to drop below this
threshold within a decade.
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