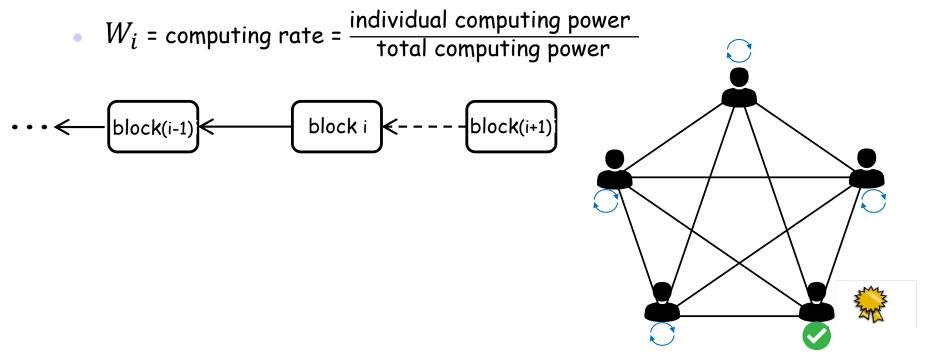
Hierarchical Edge-Cloud Computing for Mobile Blockchain Mining Game

Suhan Jiang, Xinyi Li and Jie Wu Dept. of Computer and Information Sciences Temple University, USA


1. Blockchain

PoW-based blockchain mining

• Mining a block is a puzzle solving race on miners' computing power

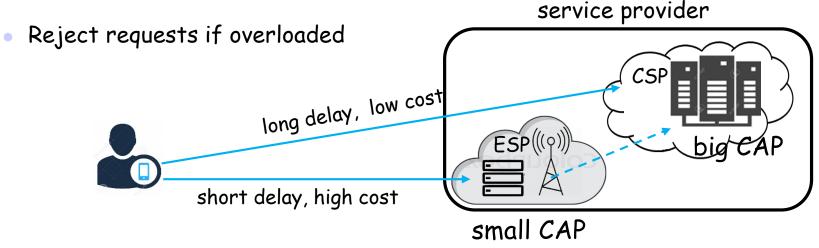

Mining incentive

- Each block will be rewarded with R
- Prob . of winning a puzzle solving race

Motivation: Apply in Mobile Devices

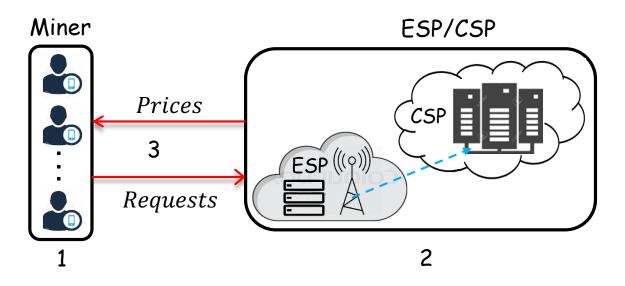
- Few blockchain applications in mobile environments
 - Mobile devices cannot satisfy mining requirements
 - Limited computing power and energy
 - Solution: computation offloading

• Offloading incurs delay (d) and cost (C) from service provider


• A miner's utility
$$U_i = R \cdot W_i - C$$

•
$$W_i = (1 - \beta(d)) \times \text{computing rate}$$

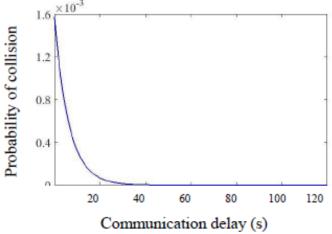
specific function of delay proportional to computing power


A Two-layer Offloading Paradigm

- Two service providers
 - A remote cloud computing service provider (CSP)
 - Rich resource capacity, low price, long delay
 - A nearby edge computing service provider (ESP)
 - Limited resource capacity (E_{max}), high price, short delay
- Different operation modes
 - ESP is connected to CSP
 - Auto-transfer requests to CSP if overloaded
 - ESP is standalone from CSP

2. Problem Formulation

- 1. Nash subgame of N miners to maximize utility U_i
 - Decide on resource share from ESP (e_i) and CSP (c_i)
- 2. Nash subgame of ESP/CSP to maximize revenue $V_e(V_c)$ • Decide on the resource unit price $P_e(P_c)$
- 3. Stackelberg game between miners and ESP/CSP
 - Interplay between leaders (ESP/CSP) and followers (miners).


Miners' Subgame

- Formulation of strategy and objective
 - Determine e_i and c_i under budget limitation B_i to

maximize $U_i = R \cdot W_i - (P_e \cdot e_i + P_c \cdot c_i)$

- Winning probability W_i and delay d
 - d discounts W_i by $1 \beta(d)$ • $\beta(d) = 1 - e^{-\lambda d}$ represent mining difficulty
 - Tradeoff on delay and price
 - CSP lowers cost while decreasing W_i
 - ESP increases W_i while adding cost

PDF of a conflicting block being found given another block is being propagated

Validation of Winning Probability

• W_i combines winning either in edge or cloud

$$W_i = W_i^e + W_i^c$$

• $W_i^e = \frac{e_i}{E+C} \cdot \left(1 + \frac{\beta C}{E}\right)$ and $W_i^c = \frac{c_i}{E+C} \cdot (1-\beta)$
• where $E = \sum_{i=1}^N e_i$ and $C = \sum_{i=1}^N c_i$

• Theorem 1. W_i is valid to express winning probability of

individual miners in a mobile blockchain mining network

• Proof: We present the full verification process by checking that $\sum_{i=1}^{N} W_i = 1$ always holds.

Service Providers' Subgame

- Formulation of strategy and objective
 - \circ ESP determines a unit price P_e to

maximize $V_e = (P_e - C_e) \cdot E$ where $E = \sum_{i=1}^{N} e_i$ ESP unit cost ESP sold-out units

 \circ CSP determines a unit price P_c to

maximize
$$V_c = (P_c - C_c) \cdot C$$
 where $C = \sum_{i=1}^{N} c_i$
CSP unit cost CSP sold-out units

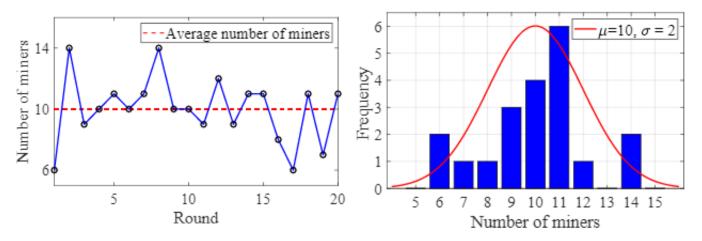
Stackelberg Game

- A two-stage game
 - Stage 1: ESP/CSP subgame
 - ESP(CSP) optimizes its unit price $P_e(P_c)$ by predicting the miners' reactions as well as considering the rival's price strategy.
 - Stage 2: miner subgame
 - each miner responds to the current prices, by sending requests to ESP/CSP, considering its budget and other miners' requests.
- Stackelberg equilibrium (SE)
 - formed by subgame perfect Nash equilibria (NE) in both the leader stage and the follower stage

Game Analysis in Connected Mode

- Theorem 2. A unique NE exists in miner subgame
- Theorem 3. Stackelberg game has a unique SE
- A best response algorithm to find the unique SE point in Stackelberg game.
- Theorem 4. If all miners have identical budgets B, each miner's request in NE can be expressed as

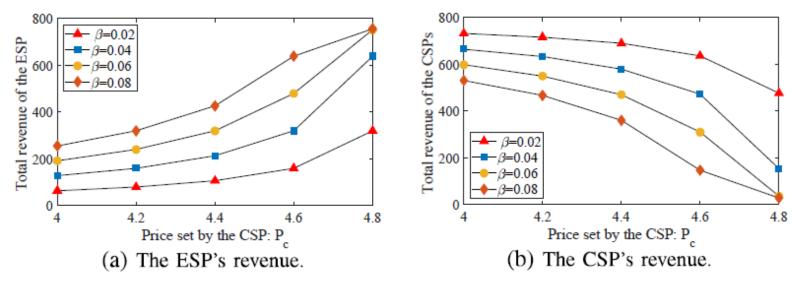
$$\begin{cases} e_i^* = \frac{B\beta h}{(1-\beta+h\beta)(P_e - P_c)}, \\ c_i^* = \frac{B\left[(1-\beta)(P_e - P_c) - P_c\beta h\right]}{P_c(1-\beta+h\beta)(P_e - P_c)} \end{cases}$$


Game Analysis in Standalone Mode

- Theorem 5. Given a price set (P_e, P_c) , there exists at least one NE in miner subgame.
- Theorem 6. SE exists in the Stackelberg game.
 - Note: there may exist more than one SE point.
- A distributed price bargaining algorithm with guaranteed convergence to find one SE point.

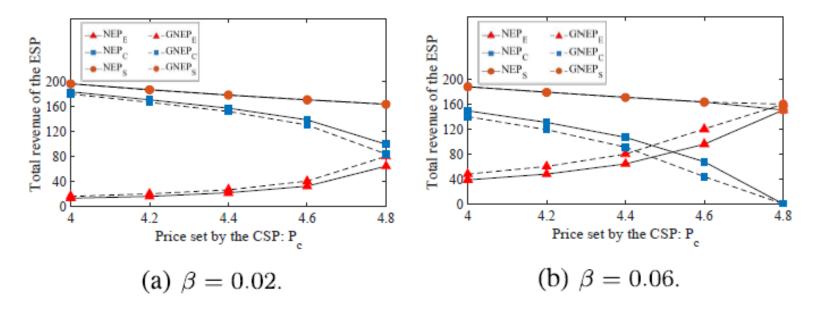
System Dynamics: Population Uncertainty

- The number of miners changes in each round
 - \circ Modeled as a random variable $~N~\sim~\mathcal{N}(\mu,\,\sigma^2)$


• where N = k with probability $P(k) = \Phi(k) - \Phi(k-1)$.

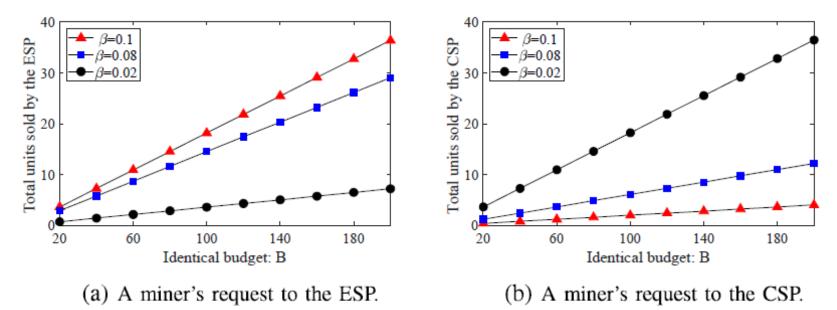
(a) Statistics on the miner number (b) Corresponding histogram and underlying distribution $N(\mu, \sigma^2)$.

4. ExperimentSetting

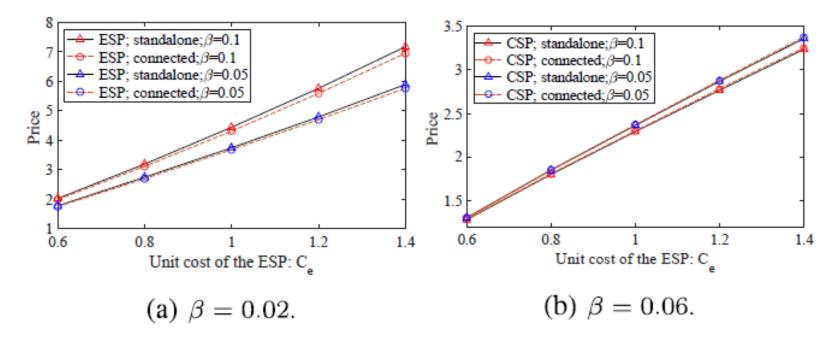

- - A small network of 5 miners with identical budgets B=200
 - Each experiment is averaged over 50 rounds
- Miner subgame equilibrium
 - influences of communication delay
 - Delay decreases the number of resources sold by CSP and his revenue.

Miner Subgame Equilibrium

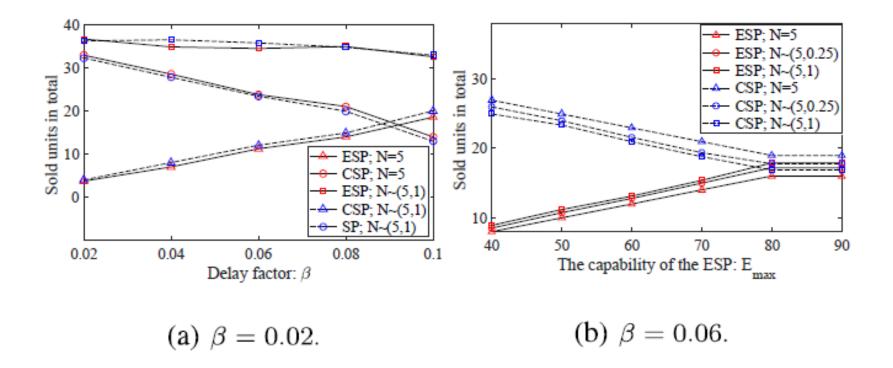
Influences of operation modes


- Miners are discouraged from buying units from an ESP working in the connected mode.
- Crosses in (b) the CSP's optimal prices under different communication delays.

Miner Subgame Equilibrium


Influences of miners' budgets

Higher budgets, more requests as well as more revenues


ESP/CSP Subgame Equilibrium

- Influences of service providers' costs
 - prices increase linearly as unit costs increases
 - ESP charges a higher price

Population Uncertainty

Render miners more aggressive to buy computing resources from the ESP

5. Conclusion

- A Stackelberg game with two subgames
 - Consider delay and cost tradeoff in mobile mining environment
 - Model the relation between winning probability and delay
 - Solve a price-based resource management problem
- Two ESP operation modes:
 - Connected vs standalone
- Impacts of population uncertainty
- Experiments to confirm theoretical analysis

Thank you

Q&A

