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Abstract—Computation offloading has been considered as a
viable solution to blockchain mining in mobile environments.
In this paper, we present a two-layer computation offloading
paradigm that includes an edge computing service provider (ESP)
and a cloud computing service provider (CSP). We formulate
a multi-leader multi-follower Stackelberg game to address the
computing resource management problem in such a network,
by jointly maximizing the profits of each service provider (SP)
and the payoffs of individual miners. Two practical scenarios
are investigated: a fixed-miner-number scenario for permissioned
blockchains and a dynamic-miner-number scenario for permis-
sionless blockchains. For the fixed-miner-number scenario, we
discuss two different edge operation modes, i.e., the ESP is
connected (to the CSP) or standalone, which form different
miner subgames based on whether each miner’s strategy set is
mutually dependent. The existence and uniqueness of Stackelberg
equilibrium (SE) in both modes are analyzed, according to which
algorithms are proposed to achieve the corresponding SE(s). For
the dynamic-miner-number scenario, we focus on the impact
of population uncertainty and find that the uncertainty inflates
the aggressiveness in the ESP resource purchasing. Numerical
evaluations are presented to verify the proposed models.

Index Terms—Cloud computing, edge computing, game theory,
load sharing, mobile blockchain mining.

I. INTRODUCTION

There is a wide adoption of blockchain technology ranging
from cryptocurrency, financial services, Internet of Things
(IoT) to public and social services. As a distributed ledger,
blockchain records data in the form of linked blocks se-
cured by cryptography. Consensus protocol is the core of
blockchain, since it regulates the maintenance for such an
append-only public ledger in a distributed fashion. Currently,
most blockchain applications are on top of a proof-of-work
(PoW) protocol. In a PoW-based blockchain network, miners
collect blocks of data, verify their integrity, and append them
to the blockchain. In order to add a block to the blockchain,
miners are required to solve a computationally challenging
PoW puzzle. The security and reliability are thus ensured by
this mechanism which requires numerous trials and errors for
a valid solution. The blockchain grows with the repetitive
block-appending processes, each of which is considered as
one mining round; meanwhile, the owner of the on-chain block
receives monetary rewards as the mining incentive.

However, the energy consumption and the computing power
required to perform PoW computation are prohibitively high
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Fig. 1: Mobile blockchain mining network: (1) offloading to the ESP; (2)
offloading to the CSP; (3) automatic transfer from the ESP to the CSP.
for mobile devices, thus hindering the practical usage of
blockchain in mobile environments. Offloading PoW computa-
tion to the external machines has been proven effective in over-
coming the aforementioned limitations and promoting mobile
blockchain applications. Specifically, both an edge computing
service provider (ESP) and a cloud computing service provider
(CSP) can provide computing resources for mobile devices.
While a CSP can guarantee a good isolation among multiple
computation offloading requests (i.e., there is no competition
for cloud computing resources) with a relatively cheap price,
significant network delays hamper the performance of cloud
computing. Due to the delay-sensitive nature of mining, an
ESP is considered as an efficient proximity alternative with the
capability of providing low-latency service. However, mobile
miners may have to compete against each other for the limited
and expensive edge computing resources.

In this paper, we present a hierarchical computation offload-
ing paradigm consisting of two service providers (SPs), i.e.,
a nearby ESP and a remote CSP, and a set of miners in a
mobile blockchain mining network. As depicted in Fig. 1, each
miner is willing to offload its PoW computation to either of
these two SPs or both of them. Once the ESP is overloaded
with requests, it responds differently according to its operation
mode. Specifically, two edge computing operation modes, i.e.,
the ESP connected to the CSP and standalone, have been
implemented in practice. Consequently, an edge computing
request, which fails to be satisfied by the ESP, will be sent
to the backup CSP in the connected mode (characterized by
the line(3) in Fig. 1), or completely rejected in the standalone
mode. Miners’ requests are mutually affected in the standalone
mode, and should be dedicated to avoid overloading the ESP.

We exploit game theory to analyze the complex interactions



among SPs and mobile miners. To solve the price-based
resource management problem, we leverage a multi-leader
multi-follower Stackelberg game, which includes two sub-
games for the SPs (as leaders) and the miners (as followers),
respectively. In the SP subgame, each SP has a privilege to
set unit prices on its computing resources by anticipating the
miners’ responses. In the miner subgame, the miners decide
their requests according to the observed unit prices. Moreover,
we investigate how edge operation modes will affect the
miner subgame. In the connected mode, the miner subgame is
formulated as a classical Nash equilibrium problem (NEP).
However, the miner subgame becomes a generalized Nash
equilibrium problem (GNEP) in the standalone mode. GNEPs
differ from NEPs in that, while in an NEP only the players’
objective functions depend on the other players’ strategies, in
a GNEP both the objective functions and the strategy sets
depend on the other players’ strategies. In the standalone
mode, due to the limited computing units at the ESP side,
whether a miner’s edge computing request can be satisfied is
affected by other miners’ requests.

All previous studies assume that the miner number is fixed
as a common knowledge in the proposed games. In practice,
for permissionless blockchains where miners can randomly
join or leave, the miner number may change. Thus, we also
discuss the impact of population uncertainty on the miners’
strategies by modeling the miner number as a random variable.
The major contributions of this paper are as follows:
• We propose a Stackelberg game to solve a price-based

computing resource management problem in a mobile
blockchain mining network with two SPs.

• We study the proposed Stackelberg game in two practical
edge operation modes, thereby formulating two different
miner subgames: an NEP in the connected mode and a
GNEP in the standalone mode.

• We analyze the existence and uniqueness of Stackelberg
equilibrium (SE) for both edge operation modes, based on
which algorithms are proposed to obtain SE solutions.

• We consider a special case of homogeneous miners and
derive explicit-form expressions of the most profitable price
strategies for each SP and the optimal resource requests for
individual miners in each mode.

• We study the impacts of population uncertainty, which
incurs more resource requests at the ESP side.

• We conduct experiments in a reinforcement learning frame-
work to validate our analysis. The achieved equilibria are
consistent with our theoretical results.

II. SYSTEM MODEL AND GAME FORMULATION

A. A Mobile Blockchain Mining Network

This paper focuses on a mobile blockchain mining network.
Corresponding notations are listed in Table I. We consider
N end users, which we also call miners, and two service
providers. Fig. 1 depicts an overview of this network. The
SP side consists of a nearby ESP and a remote CSP that
make profits by contributing their computing power, sold by

TABLE I: Summary of Notations.

Symbol Description
Pe/Pc unit price set by the ESP/the CSP
Ce/Cc unit cost of the ESP/the CSP
Ve/Vc utility of the ESP/the CSP

h/1− h the ESP’s expected hit/miss rate in the connected mode
Emax total computing capacity of the standalone ESP
Dc average delay the CSP
N total number of miners
mi the i-th miner

Ui/Wi/Bi mi’s utility/winning probability/budget
ei/ci number of ESP/CSP units requested by mi
ri mi’s request vector to the SPs, in the form of [ei, ci]ᵀ

r stacked request vectors of all miners
r−i stacked request vectors of all miners excluding mi’s
R blockchain mining reward
β discount rate caused by delay

unit. One unit from the ESP is functionally equivalent to one
from the CSP. In the proposed network, message transmission
time is viewed as communication delay. We neglect the
communication delay between the ESP and miners and define
communication delay between the CSP and the ESP/miners is
Dc. Besides, the ESP is assumed to have limited computing
capability, while the CSP owns unlimited computing power.

The end-user side is a network with N miners using mobile
devices. We differentiate them in terms of available budget
which gives an upper bound on the amount of computing units
they can afford. Thus, different types of miners have different
requests on computing power. We employ a utility function
to describe each miner’s expected payoff, i.e., the difference
between its expected income and expected cost. The SPs and
the miners have bidirectional communications for exchanging
price and request information. Miners receive prices from the
SPs and transmit their requests to them.

We consider two practical edge operation modes, i.e., con-
nected to the CSP or standalone, differing in whether the
ESP would share loads with the CSP if it is computationally
overloaded. Based on these two modes, we characterize the
limited computing capability of the ESP in two ways. In the
connected mode, to capture the capacity limitation, we define
a hit (miss) rate h (1−h) to represent the probability of an
edge request being satisfied by the ESP (being transferred to
the CSP), where h is a common knowledge in the game. In the
standalone mode without load sharing, the ESP only has Emax
computing units and hence rejects requests once overloaded.

B. SP-Miner Interaction: A Stackelberg Game

We focus on interactions between the SPs and the miners.
Each miner’s income depends all miners’ strategies and its cost
varies according to the prices set by each SP. In fact, each SP
decides its unit price by considering miners’ requests as well as
the rival SP’s price. Game theory provides a natural paradigm
to model the interactions between the SPs and the miners in
this network. Each SP sets the unit price and announces it to
the miners. The miners respond to the price by requesting
an optimal amount of computing units to the SPs. Since
the SPs act first and then the miners make their decision
based on the prices, the two events are sequential. Thus, we



model the interactions between the SPs and the miners using
a Stackelberg game. In our proposed game, the SPs are the
leaders and the consumers are the followers. It is a multi-leader
multi-follower Stackelberg game with two stages.

In the first stage, the competition between the ESP and
the CSP forms a non-cooperative leader subgame, where
each SP optimizes its unit price (Pe/Pc) by predicting the
miners’ reactions as well as considering the other SP’s price
strategy. In the second stage, each miner, i.e., mi, responds to
the current prices, by sending request(s) to the target SP(s),
considering its budget Bi and requests of other miners’. Since
requests are generated for individual utility maximization, a
non-cooperative follower subgame is also formed.

1) Miner Side Utility: Let ei and ci be mi’s requests on the
ESP and the CSP, respectively. Given the constant R as the
mining reward, we define mi’s optimization problem below.

Problem 1 (MINER SUBGAME: OPMINER).
maximize Ui = R ·Wi − (Pe · ei + Pc · ci), (1a)
subject to Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0, (1b)

where Wi represents mi’s expected winning probability, an
accurate definition and detailed explanations of which will be
given in Section III. Each miner mi aims to maximize its
utility and constraint (1b) ensures that mi is within its budget.

2) SP Side Utility: The objective of each SP is to optimize
its profit by determining the corresponding unit price. Given
the ESP’s unit cost Ce and the CSP’s unit cost Cc, the
optimization problem (including OPESP and OPCSP) at SP side
is thus defined as in Eq.(2a) and Eq.(2b) for the ESP and the
CSP, respectively.
Problem 2 (SP SUBGAME: OPSP).

maximize Ve = (Pe − Ce) · E where E =
∑N

i=1
ei (2a)

maximize Vc = (Pc − Cc) · C where C =
∑N

i=1
ci (2b)

3) Stackelberg Game: OPSP and OPMINER together form
the proposed Stackelberg game. To achieve the corresponding
Stackelberg equilibrium (SE) in this game, where neither the
leaders (SPs) nor the followers (miners) have incentives to
deviate, we need to find its subgame perfect Nash equilibria
(NE) in both the leader stage and the follower stage, by
applying backward induction. Formally, the SE point(s) is
defined as follows.

Definition 1. Let [E∗, C∗] and [P ∗e , P
∗
c ] denote the optimal

resource request vector of all miners and the optimal com-
puting unit price vector of SPs, respectively. Let [e∗i , c

∗
i ]
N
i=1 =

[E∗, C∗], then the point (E∗, C∗, P ∗e , P
∗
c ) is the Stackelberg

equilibrium if the following conditions hold:
Ve(P

∗
e , E

∗) ≥ Ve(Pe, E∗),∀Pe, (3a)
Vc(P

∗
c , C

∗) ≥ Vc(Pc, C∗),∀Pc, (3b)
Ui(e

∗
i , c
∗
i , P

∗
e ,P

∗
c ) ≥ Ui(ei, ci, P ∗e , P ∗c ),∀i. (3c)

C. Main Results

We summarize the main results of our analysis based on
whether the miner number is a constant or a random variable.

Scenario 1: the miner number N is a constant.
(1) The ESP operates in the connected mode:
• In the heterogeneous-miner case, we prove the existence and

uniqueness of SE (Theorem 3) and provide a best response
algorithm (Algorithm 1) to find the unique SE point.

• In the homogeneous-miner case, we derive explicit-form
expressions of the optimal pricing for the SPs (Theorem 5)
and resource management strategies (Theorem 4) for all the
miners, given miners share an identical budget.

(2) The ESP operates in the standalone mode:
• In the heterogeneous-miner case, the existence of the SE is

validated by capitalizing on the variational inequality the-
ory (Theorem 6). An effective distributed price bargaining
algorithm (Algorithm 2) with guaranteed convergence is
proposed to find one SE point.

• In the homogeneous-miner case, we symbolically express
the optimal prices and resource management strategies (Ta-
ble II) given that each miner has unlimited budget.

Scenario 2: the miner number N is a random variable.
• Assuming the miner number is subject to a Gaussian dis-

tribution, we reformulate the proposed game and apply a
modified version of Algorithm 2 to achieve one SE point, the
correctness of which is further confirmed by a reinforcement
learning framework.

• Experiments indicate population uncertainty renders miners
more aggressive to buy resources from the ESP.

III. A MINER’S WINNING PROBABILITY

A. Parameter Analysis

As the core part of each miner mi’s utility, Wi is determined
by multiple parameters. To win mining rewards, mi has to be
the first to solve its PoW puzzle and propagate its block to
reach consensus. The chance for mi to find a PoW solution
is positively correlated to its relative computing power, which
is the ratio of mi’s computing power out of all computing
power in the network. There is a delay for a mined block
to be known by the entire network. During the delay period,
another conflicting block may be found and propagates in the
network as well. An earlier-mined block can be nullified since
its conflicting block may reach consensus faster. Generally,
delays may cause the occurrence of conflicting blocks, and
then lower the probability of a mined block being accepted
by the blockchain. Obviously, Wi is discounted by delays.
The relation between the probability of block collision and
the delay has been studied in Bitcoin [1], a classic PoW-
based blockchain application. Fig. 2(a) provides its block
collision probability density function (PDF) with respect to
the communication delay, which is subject to an exponential
distribution. Thereby, the discount rate, i.e., the block collision
cumulative distribution function (CDF), is almost linear to the
communication delay, as shown in Fig. 2(b). In this paper, we
assume that the proposed network follows the same pattern of
collision PDF and CDF as in Bitcoin. For simplicity, we ignore
the block propagation time among all miners. Thus, the delay
only comes from the communication time between a miner and
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(a) Probability density function of a
conflicting block being found while
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(b) Average number of conflicting
blocks per 24 hours as a function of
communication delay, averaged over
all the nodes in the network [3].

Fig. 2: Communication delay can cause occurrences of conflicting blocks.

an SP. We denote mi’s winning probability will be affected by
the a delay discount function, denoting β. Given the closeness
of the ESP, we only consider the miner communication delay
to the CSP, denoting Dc, which will incur a discount rate of
β (short for β(Dc)).

B. Expression of Individual Winning Probability

In this part, we will derive an expression of Wi under
the assumption that each miner mi’s request, denoted by a
vector ri = [ei, ci]

ᵀ, is fully satisfied at the SP side. Let
r =∆ {r1, r2, · · · , rN} and r−i represent the request profile
of all miners and all other miners except mi, respectively.
We denote E in Eq. (2a) and C in Eq. (2b) as the total
number of computing units requested on the ESP and the CSP,
respectively. S=E+C therefore represents the total requested
computing units in the network. The winning probability, in
the form of Wi = W e

i + W c
i , consists of two parts, W e

i and
W c
i , jointly contributed by the ESP and the CSP, where W e

i

and W c
i are functions of ri and r−i given below:

W e
i (ri, r−i) = ei/S + ei

∑
j 6=i

βcj/ES, (4)

W c
i (ri, r−i) = ci/S − ci

∑
j 6=i

βej/ES. (5)

For a better understanding, we begin with the analysis on W c
i .

• W c
i : ci/S represents the expected chance that mi mines a

cloud-solved block b. Now we discuss the probability that b
is discarded before it reaches consensus. With a chance of β,
a conflicting block b′ would be found during the propagation
time Dc. A cloud-solved b′ has the same propagation time Dc

and thus cannot beat b. However, b will be discarded if b′ is
found in the edge and hence reaches consensus immediately.
W c
i in Eq. (5) characterizes the fact that, the probability of a

successful cloud mining is discounted by the chance that the
mined block is discarded due to any conflicting edge-solved
block. Here, ej/E approximates the rate that b′ is mined in the
edge by another miner mk. We don’t consider the situation,
where b′ is an edge-solved block for mi itself, as a discount
factor, since mi still wins.
• W e

i : mi’s winning probability of edge mining is the addition
of (i) the chance that mi is the first to successfully mine a
block using its edge computing power, expressed as ei/S and
(ii) a summed chance that mi’s edge-solved block surpasses
a cloud-solved block mined by any other miner mk. The
corresponding expression is shown in Eq. (4).

We verify the validity of Wi as a probability mass function.

Theorem 1. Wi=W e
i +W c

i is a valid probability mass func-
tion to express the winning probability of individual miners in
a mobile blockchain mining network.

Proof. We present the full verification process by checking
that

∑N
i=1Wi = 1 holds.∑N

i=1
Wi =

∑N

i=1
(W e

i +W c
i )

=
∑N

i=1
[ei/S+ci/S]

+ β
∑N

i=1
[ei(C−ci)/ES + ci(E−ei)/ES]

= 1+β
∑N

i=1
(eiC−ciE)/ES = 1.

Thus, we are now ready to conclude that, the winning
probability we use is valid, hence our model as well. Note
that mi’s winning probability and hence its utility depends
not only on its own request but also on the other miners’.

C. User Requests and SP Responses

All above analysis is based on the assumption that mi’s
request ri is responded to by the ESP and the CSP as what
it expects, i.e., if ri is fully satisfied by the ESP and the CSP
as its original form [ei, ci]

ᵀ (indicating the edge request hits
the ESP’s capability), the individual winning probability here
is denoted by Wh

i (h means hit) and shown in Eq. (6):

Wh
i = (ei + ci)/S + β(eiC − ciE)/ES. (6)

However, this assumption cannot always hold when we take
the ESP’s computing capability into consideration. It is pos-
sible that overall requests from the miner side are beyond
the ESP’s computing capability. Thus, we further refine the
individual winning probability based on whether ei can be
satisfied by the ESP or not. Now we discuss how ri will be
responded to if ei is beyond the ESP’s capability in the both
modes. We denote the corresponding winning probability by
W 1−h
i (1−h means miss).
1) Failure in connected mode: In this case, ei would be

transferred from the ESP to the CSP, and therefore, ri is
degraded as [0, ei + ci]

ᵀ. The total computing power in the
network stays unchanged as S, while E − ei and C + ei
represent the actual resource allocation by the ESP and the
CSP, respectively. Eq. (7) gives the winning probability.

W 1−h
i = (1− β)(ei + ci)/S. (7)

2) Failure in standalone mode: Since ei would be rejected
by the ESP, ri is degraded as [0, ci]

ᵀ. Thus, the total com-
puting power of edge computing and that in the network are
reduced to E − ei and S − ei, respectively. Eq. (8) gives the
corresponding winning probability.

W 1−h
i = (1− β)ci/(S − ei). (8)



IV. FIXED MINER NUMBER SCENARIO

In the fixed miner number scenario, we assume that the
network contains a fixed set of miners. That is, the number of
miners is modeled as a constant, i.e., N =∆ n. We consider two
edge computing operation modes: connected and standalone.
We apply backward induction to analyze the subgame perfect
NE in each stage for both modes. In the connected mode,
the uniqueness of the SE is validated by identifying the best
response strategies of the miners. In the standalone mode, the
existence of the SE is proved by capitalizing on the variational
inequality theory. Then, we get the closed-form price and
resource allocation solutions to a special homogeneous-miner
case for both modes. Besides, we compare the profits at the
SP side and the miner side in these two modes

A. Connected Mode

In this mode, the ESP’s limited computing capability is
characterized by the ESP’s expected transfer rate (1− h).

1) Miner Subgame Equilibrium: Consequently, mi should
consider two possible results: (i) with a probability of h, its
request on the ESP is satisfied; (ii) with a probability of (1−h),
its request on the ESP is automatically transferred to the CSP
with a degraded service. Thus, Wi can reflect these two results
by applying the law of total expectation as shown in Eq. (9)

Wi = h ·Wh
i + (1− h) ·W 1−h

i (9)
= h · [(ei + ci)/S + β · (eiC − ciE)/ES]

+ (1− h) · (1− β)(ei + ci)/S

= (1− β)(ei + ci)/S + βhei/E,

then given the budget Bi, the OPMINER problem for mi can be
concreted as below.
Problem 1a (MINER SUBGAME: NEPMINER).

maximize Ui = R ·Wi − (Pe · ei + Pc · ci) , (10a)
subject to Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0, (10b)

where Wi = (1− β)(ei + ci)/S + βhei/E.

Thus, the existence and uniqueness of an NE of this miner
subgame is given by the following theorem.

Theorem 2. A unique Nash equilibrium exists in NEPMINER.
Proof. Denote the equivalent variational inequality (VI) prob-
lem [4] VI(K,F) ≡ NEP (X , U), where

F := (∇iUi)ni=1, X = ([ei, ci]
ᵀ)ni=1, U = (Ui)

n
i=1,

K := K1 ×K2 × · · · × Kn,
Ki := {(ei, ci)|Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0}.

(11)

Obviously, (i) Ki is closed and convex, ∀i and (ii) Ui is
continuously differentiable and convex w.r.t. [ei, ci]

ᵀ, ∀i, then
the VI problem has a non-empty solution set. The existence
of NE thus follows the sufficient conditions. Details and the
proof of its uniqueness can be found on our website.

As a rational player, each miner optimizes its utility by
solving the NEPMINER problem as follows. Using Lagrange’s

https://sites.temple.edu/suhanjiang/2019/01/12/supplementary-materials/

multipliers λ1, λ2, and λ3 for the constraints in Eq. (1d), the
optimization problem is thus converted to the form
Li = R · [(1− β)(ei + ci)/S + βhei/E]− (Pe · ei + Pc · ci)

− λ1(Pe · ei + Pc · ci −Bi) + λ2ei + λ3ci, (12)

and the complementary slackness conditions are

λ1(Pe · ei + Pc · ci −Bi) = 0,

λ2ei = 0, λ3ci = 0, λ1 > 0, λ2, λ3, ei, ci ≥ 0.
(13)

By the first-order optimality condition ∇Li = 0, it immedi-
ately follows that λ2 = λ3 = 0. Thus

ei=

√
hβE−iR

(1 + λ1)(Pe − Pc)
−E−i, (14)

ci=

√
R(1−β)(E−i+C−i)

(1+λ1)Pc
−

√
hβE−iR

(1+λ1)(Pe−Pc)
−C−i,

Bi = Peei + Pcci,where E−i=
∑

j 6=i
ej , C−i=

∑
j 6=i

cj .

Solving Eq. (14) yields that

1 + λ1 =

[
(Pe−Pc)σ1

√
E−i+Pcσ2

√
E−i+C−i

Bi+PcC−i+PeE−i

]2

, (15)

where: σ2
1 = hβR/(Pe − Pc) and σ2

2 = (1− β)R/Pc. Hence
substituting Eq. (15) back into Eq. (14) gives the explicit form
of the solution to the NEPMINER problem, i.e., each miner’s
best response strategy. This naturally gives a distributed iter-
ative algorithm, allowing each miner to iteratively update its
strategy, given the strategies of other miners. When this unique
subgame NE is ensured, the algorithm’s convergence is also
guaranteed. The uniqueness of NE in NEPMINER is guaranteed
given that F defined in Eq. (11) is strictly monotone.

2) SP Subgame Equilibrium: The ESP’s and the CSP’s
problems can be rewritten as below:

Problem 2a (SP SUBGAME: NEPSP).

maximize Ve = (Pe − Ce) · E where E =
∑N

i=1
ei, (16a)

maximize Vc = (Pc − Cc) · C where C =
∑N

i=1
ci. (16b)

With the knowledge of the miners’ strategies, each SP
makes its decision by solving the NEPSP.

Theorem 3. A unique Nash equilibrium exists in NEPSP.

Based on the unique Nash equilibrium achieved among all
miners, each SP can optimize its strategy to achieve profit
maximization. According to [5], since each SP’s objective
function is continuous and concave, there exists a unique Nash
equilibrium among them.

3) Stackelberg Equilibrium: We take advantage of a classic
distributed algorithm (Algorithm 1) called Asynchronous Best-
response [6] to find the unique NE point in OPSP defined
in Problem 2, where an SP is engaged in a gradient ascent
process to maximize its utility. The solution’s uniqueness
further guarantees the global convergence and SE is achieved,
given that NE is found in the leader stage.



Algorithm 1 Best Response Algorithm

Output: j, j ∈ {e, c}
Input: Initialize k as 1 and randomly pick a feasible P (0)

j

1: for iteration k do
2: Receive the miners’ request vectors r(k−1)

3: Predict the strategy of the other SP

4: Decide P (k)
j = P

(k−1)
j +∆

∂Vj

(
Pj ,P

(k−1)
−j ,r(k−1)

)
∂Pj

5: if P (k)
j =P

(k−1)
j then Stop

6: else send P (k)
j to miners and set k ← k + 1

4) Homogeneous Miners with Identical Budgets: The solu-
tions to the NEPMINER are infeasible to express in a symbolic
manner. Fortunately, we are able to get the closed-form
computation offloading solutions for the NEPMINER in a special
case. We consider a homogeneous-miner case where each
miner is homogeneous with an identical budget B. We are
interested in finding an NE where miners decide on a mixed
request, buying computing units from both the ESP and the
CSP. Thus, constraint (10b) is modified as ei > 0, ci > 0.
The corresponding miner side optimization problem can be
rewritten as the NEPHOMOMINER problem in the following.

Problem 1b (MINER SUBGAME: NEPHOMOMINER).
maximize Ui = R ·Wi − (Pe · ei + Pc · ci) , (17a)
subject to Pe · ei + Pc · ci ≤ B, ei > 0, ci > 0, (17b)
where Wi = (ei + ci)/S + β · (eiC − ciE)/(ES).

We will provide the explicit-form expression or the pricing
strategy for the homogeneous-miner case defined above.

Theorem 4. The unique Nash equilibrium for miner mi in the
NEPHOMOMINER problem is given below

e∗i =
Bβh

(1− β + hβ)(Pe − Pc)
,

c∗i =
B [(1− β)(Pe − Pc)− Pcβh]

Pc(1− β + hβ)(Pe − Pc)
,

(18)

provided that the prices set by the ESP and the CSP satisfy
Pc <

1− β
1− β + hβ

Pe.

Proof. According to Eq. (14), we have E2 =
σ2

1

∑
j 6=i ej/(1 + λ1) and S2 = σ2

2

∑
j 6=i (ej + cj)/(1 + λ1)

for each miner mi, which will yield E2/S2 =
σ2

1(E − ei)/[σ2
2(S − ei − ci)]. Then, we calculate the

summation of this expression for all the miners:
E/S = σ2

1/σ
2
2 = [hβ/(1− β)] · Pc/(Pe − Pc). In order

to get a mixed strategy, E/S > 1 must hold, i.e., Eq.(4)
holds. Since all miners are homogeneous, their best
response strategies are identical as well, i.e., E = Nei and
S = N(ei + ci). By substituting these two equations into
Eq. (15), we obtain the NE for miner mi in Eq.(18).

Corollary 1. If the budget B is sufficiently large, the explicit

solution to the NEPHOMOMINER problem is shown in Eq.(19)
e∗i =

βhR(N − 1)

N2(Pe − Pc)
,

c∗i =
R(N − 1) [(1− β)Pe − Pc]

N2Pc(Pe − Pc)
.

(19)

Now, we start to analyze the SP optimization problem,
which can be rewritten as follows.

Problem 2b (SP SUBGAME: NEPSPHOMOMINER).

maximize Ve=(Pe−Ce)Ne∗i , Vc=(Pc−Cc)Nc∗i , (20a)

subject to Pc <
1− β

1− (1− h)β
Pe, (20b)

where e∗i=
Bβh

(1−β+hβ)(Pe−Pc)
, c∗i=

B [(1−β)(Pe−Pc)−Pcβh]

Pc(1−β+hβ)(Pe−Pc)
.

Theorem 5. The unique Nash equilibrium for the SPs in the
NEPSPHOMOMINER problem is given below:

P ∗e = p̄,

P ∗c =
Ccp̄(1− β)− p̄

√
Cchβ(p̄− Cc)(1− β)

[1− β(1− h)]Cc − βhPe
,

(21)

where p̄ is the solution to ∂Ve/∂Pe = 0.

Proof. We start with the optimal P ∗c by analyzing the con-
vexity of Vc. We calculate the first derivative of Vc and
find that it is a concave function. Thus, the CSP’s optimal
price value is the solution to ∂Vc/∂Pc = 0 where Pc <
Pe(1 − β)/[1 − (1 − h)β] and P ∗c is shown in Eq. (21),
as is a function dependent on Pe set by the ESP. Given the
response strategy of the CSP, the ESP can optimize his payoff
by maximizing the re-written Ve, which is given below:

Ve =
NBβh

(1− β + hβ)(Pe − P ∗c )
· (Pe − Ce). (22)

We calculate the second derivative of Ve and find that
∂2Ve/∂P

2
e ≤ 0 holds for any valid Pe value. Thus, the ESP

has his dominant strategy P ∗e = p̄. In this situation, NE is
achieved in the leader stage. We analyze P ∗e and P ∗c and find
that they only depend on their own operating costs Ce, Cc,
and the network delay penalty factor β.

B. Standalone Mode

In standalone mode, the ESP only has a total of Emax
computing units, where Emax is a common knowledge in this
game. It has to reject some requests when overloaded. Thus,
the aggregate requests from all miners should be no more than
Emax in order to avoid being rejected.

1) Subgame Equilibrium: In standalone mode, given other
miners’ requests r−i, mi should ensure that ei can be sat-
isfied by the ESP. Mathematically, this can be written as
E =

∑n
k=1 ek ≤ Emax. Under this constraint, its winning

probability is expressed in Eq. (23).
Wi = (ei + ci)/S + β(eiC − ciE)/ES. (23)

Now, we reformulate the OPMINER problem in the following.



Algorithm 2 Price Bargaining

Input: Choose any feasible starting point Pe, Pc
1: for each miner i do
2: Receive Pe, Pc
3: Predict the optimal requests of other miners
4: Decide its computing request [ei, ci]

T

5: Send ei to the ESP and send ci to the CSP
6: for each operator j, j ∈ {e, c} do
7: Receive the optimal requests of miners
8: Store the current prices P

′

j and P
′

−j ,
9: Increase and decrease the price with a small step ∆

10: if Vj
(
P
′

j , P
′

−j

)
≤ Vj

(
P
′

j+∆, P
′

−j

)
and

11: Vj

(
P
′

j−∆, P
′

−j

)
≤ Vj

(
P
′

j+∆, P
′

−j

)
12: then Pj = P

′

j + ∆

13: else if Vj
(
P
′

j , P
′

−j

)
≤ Vj

(
P
′

j−∆, P
′

−j

)
and

14: Vj

(
P
′

j+∆, P
′

−j

)
≤ Vj

(
P
′

j −∆, P
′

−j

)
15: then Pj = P

′

j −∆

16: else Pj = P
′

j

17: Send Pj to miners

Problem 1c (MINER SUBGAME: GNEPMINER).

maximize Ui = R ·Wi − (Pe · ei + Pc · ci) , (24a)
subject to E ≤ Emax, (24b)

Pe · ei + Pc · ci ≤ Bi, ei, ci ≥ 0, (24c)

where Wi = (ei + ci)/S + β · (eiC − ciE)/ES. Constraint
(24b) ensures that mi’s request to the ESP can be satisfied.

Since all miners’ requests are mutually dependent, the
GNEPMINER problem is a Generalized Nash Equilibrium Prob-
lem (GNEP). In GNEPMINER, the dependence of each miner’s
strategy set on the other miners’ strategies is represented by the
(linear) constraint (24b), which includes each miners’ request
ei to the ESP. More specifically, since the miners all share
a jointly convex shared constraint (JCSC), this subgame is
known as a jointly convex game.

2) Existence of Stackelberg equilibria: Similar with the
proof for NEPMINER NE in Theorem 3, the existence of
GNEPMINER NE is easily followed by capitalizing on the
variational inequality theory.
Theorem 6. Given a price set {Pe, Pc} from the SP side, there
exists at least one Nash equilibrium for the non-cooperative
subgame at miner side in standalone mode.

In general, a GNEP could have infinite solutions. Namely,
there are multiple NEs in the follower stage, and thus there is
no efficient algorithm to obtain the global optimal pricing and
computation offloading strategy for the proposed Stackelberg
game. Here, we provide a distributed algorithm which first
computes a unique variational solution to the GNEPMINER

problem and then finds the corresponding solution to the SP
SUBGAME: GNEPSP problem (defined in the below) based on
the computed miner Nash equilibrium.
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Fig. 3: A toy example for population dynamics of moblie miners.

TABLE II: Optimal requests of homogeneous miners with sufficiently large
budgets where γ = (N − 1)R/N .

Mode E∗ C∗ S∗

Connected γβ
Pe−Pc

h γ
[
(1−β)Pe−Pc
Pc(Pe−Pc)

+
β(1−h)
Pe−Pc

]
γ(1−β)
Pc

Standalone γβ
Pe−Pc

γ
(1−β)Pe−Pc
Pc(Pe−Pc)

γ(1−β)
Pc

Problem 2c (SP SUBGAME: GNEPSP).

maximize Ve=(Pe−Ce)·E, Vc=(Pc−Cc)·C, (25a)
subject to E = Emax. (25b)

Both SPs can achieve their own equilibrium price by apply-
ing Algorithm 2, where they only adjust the price towards a
utility improvement direction. Note, there is no guarantee that
the produced SE is a global optima.

3) Homogeneous Miners with Sufficiently Large Budgets:
In the standalone mode, we also consider a special case where
all miners are considered with a large amount of budgets
in that their optimization problem is never constrained by
the lack of sufficient budgets. Since the analysis is quite
similar as is in the connected mode, we just list our results
in Table II, which is compared to the corresponding results
in the connected mode. From Table II, we find that the total
requested units at the miners’ side remain unchanged, while
the standalone mode encourages more purchases from the ESP.
The numerical results provided in Section VI also show that
the ESP’s equilibrium prices in the standalone mode is higher
compared to those in the connected mode. Thus, we conclude
that the ESP in the standalone mode gains more profits if
miners have large budgets. However, the explicit solution for
small budget cases is still an open problem in the standalone
mode.

V. DYNAMIC MINER NUMBER SCENARIO

Obviously, in the above analysis, we assume the miner num-
ber N is common knowledge in the proposed games. In prac-
tice, this scenario is applicable to permissioned blockchains,
where miners are pre-selected by a central authority or consor-
tium. However, most blockchains are permissionless, in which
anyone can participate in or retreat from the mining process, so
the previous scenario may not be suitable. For such situations,
we consider a more general scenario by introducing popu-
lation uncertainty. Games with population uncertainty relax
the assumption that the exact number of players is common



knowledge. Thus, we model the miner number, N , as a random
variable. In particular, N follows a Gaussian distribution with
mean µ and variance σ2. We have N ∼ N (µ, σ2) where
N = k with probability P (k) = Φ(k) − Φ(k − 1). Fig. 3
gives a toy example where the number of miner can be fit to
a Gaussian distribution with µ = 10 and σ2 = 4.

In this scenario, we only consider standalone mode and
derive the miner utility function Ui as below.
Ui(µ, σ

2) = 0.5 · Uhi + 0.5 · U1−h
i (26)

Uhi = Pe · ei + Pc · ci −R ·Wh
i

U1−h
i = Pe · ei + Pc · ci −R ·W 1−h

i

Wh
i =
∑u

k=l
P (k) [(ei+ci)/Sk+β(eiCk−ciEk)/(SkEk)]

W 1−h
i = (1−β)(ei+ci)/Sµ

Sk = Ek+Ck, Ek =
∑k

j=1
ej , Ck =

∑k

j=1
cj ,∀k ∈ [l, u]

Thus, the OPMINER problem in this scenario can be refor-
mulated as in Eq. (27).

Problem 1d (MINER SUBGAME: OPDYNAMICMINER).

maximize Ui(µ, σ
2) (27a)

subject to Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0 (27b)

Problem 2d (SP SUBGAME: OPSP).

maximize Ve=(Pe−Ce)·E, Vc=(Pc−Cc)·C (28)

The objective function presented in Eq. (27) is so complex
that it is infeasible to express its equilibrium expression in
a symbolic manner. However, we still can find equilibria in
the network by utilizing a modified version of Algorithm 2
(where miners will apply the new objective function). As
experimental results will later show in Section VI, we find that
with an identical Pe, the uncertainty incurred by the dynamic
population renders miners more aggressive to buy computing
units from the ESP, even beyond its capability Emax.

VI. SIMULATION

A. Miner Subgame Equilibrium

We start with a small mobile blockchain mining network
with only 5 miners with budgets Bi, ∀i ∈ [1, 5]. Our
experiments evaluate how the corresponding miner subgame
Nash equilibrium is influenced if the parameter values change.

1) Influences from SP side: We first consider the different
prices at SP side. Assuming a homogeneous-miner case in the
connected mode, where Bi = 200, ∀i ∈ [1, 5] holds, Fig.
4 obviously reflects that, if the CSP’s price Pc unilaterally
increases, miners tend to buy more units from the ESP, leading
to more revenue at the ESP side. Similarly, from Fig. 4, we
can also conclude that the blockchain fork rate β caused by
the CSP’s communication delay also has a negative effect
on the number of total units sold by the CSP as well as
his total revenue. However, from Fig. 5(c), we find the total
revenue at the SP side remains almost unchanged no matter
how prices and communication delay change. In the same
miner configuration, we analyze the impact of edge operation

modes. If the ESP operates in the standalone mode, we
see its computing capability is positively related to miners’
requests, which can be easily followed in Fig. 6. From this
figure, we can conclude that, miners are discouraged from
buying units from an ESP working in the connected mode.
We see a cross in the Fig. 6. This explains the CSP’s optimal
prices under different communication delays. The longer the
communication delay, the lower the optimal price.

2) Influences at miner side: Miners also mutually affect
each other in this mining network. Fig. 7 shows the changes
on all the miners’ utilities when their budget of Bi varies
from 20 to 200. mi’s requests to the ESP and the CSP keep
increasing and its utility follows a similar trend. However, we
can see that mi’s total requests to both SPs are similar even
with different communication delays at the CSP side.

B. SP Subgame

We also study how communication delay and edge oper-
ation modes as well as the SP’s operating costs affect their
equilibrium prices. Fig. 8 depicts the equilibrium prices of the
SPs. The ESP’s prices increase linearly as its unit operating
cost increases. In both modes, the ESP charges a higher price,
because it has less power available and its communication
delay is shorter in the proposed network. However, its advan-
tage will be shaded if the communication delay at the CSP
side decreases. Besides, the ESP’s computation limitation also
poses an upper bound on its profits. We also discover that
the standalone mode allows the ESP a higher price while it
decreases the CSP’s price and its profits.

According to numerous experiments, we find that the total
amounts of sold-out computing units are always approximately
equal, if we allow a sufficiently large budget and a fixed
number of miners. Besides, we can see that the SP-side
welfare is bounded by the total miner budgets in the beginning.
However, as the budgets increase to a certain degree, the
total welfare of these two SPs are positively related to the
blockchain mining reward.

C. Population Uncertainty

In Section V, we consider the miner number as a variable
subject to a specific Gaussian distribution. To capture the
dynamics of the miner number, we use a reinforcement learn-
ing (RL) framework to allow miners to learn the population
uncertainty and hence improve their strategies. We conduct our
simulation within a small mining network of 5 homogeneous
miners. We define a time period T as adding 50 blocks.
During T , prices from these two SPs are fixed and the
miner number changes subject to N (µ, σ2 ). The reason why
we choose T = 50 in our all experiments is that miners’
strategies converge after at most 50 blocks added even in
such an unstable-population mining network. Once the miners’
behavior converges, both the ESP and the CSP update their
pricing strategies adaptively. These two steps repeat until a
fixed point for both sides is reached. We also apply such a
process to a fixed number scenario where N = µ.



4 4.2 4.4 4.6 4.8
Price set by the CSP: P

c

0

40

80

120

160

200

T
ot

al
 u

ni
ts

 s
ol

d 
by

 th
e 

E
SP

 

 =0.02
=0.04
=0.06
=0.08

(a) Miners’ requests to the ESP.

4 4.2 4.4 4.6 4.8
Price set by the CSP: P

c

140

150

160

170

180

190

200

T
ot

al
 u

ni
ts

 s
ol

d 
by

 th
e 

C
SP

 

 =0.02
=0.04
=0.06
=0.08

(b) Miners’ requests to the CSP.

4 4.2 4.4 4.6 4.8
Price set by the CSP: P

c

0

40

80

120

160

200

T
ot

al
 u

ni
ts

 s
ol

d 
by

 th
e 

SP
s 

 =0.02
=0.04
=0.06
=0.08

(c) Miners’ requests to the SPs
Fig. 4: Homogeneous miners with identical budgets and Pe = 5.
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(c) A miner’s utility.
Fig. 5: Homogeneous miners with identical budgets and Pe = 5.
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Fig. 6: Connected Vs Standalone.

In Fig. 9, all unfilled points are the results produced by
the RL framework, while all lines are computed using our
proposed model. The results of our model are anastomotic
with the learned strategies. In Fig. 9(a), we conclude that the
uncertainty caused by the miner number renders each miner
to buy more units from the ESP, making the total requests
sometimes can exceed the ESP’s capability. Besides, we also
find the variance also affects a miner’s request to the ESP, i.e.,
a larger variance leads to a more ESP-prone miner, according
to Fig. 9(b), where N (5, 0.25) represents a normal distribution
of which the mean is 5 and the variance is 0.25.

VII. RELATED WORK

1) Mobile Blockchain Applications: There exist two dif-
ferent categories of research in the field of blockchain ap-
plications in wireless networks. The first category focuses
on blockchain protocols [7, 8] to eliminate overhead while
maintaining most of blockchain’s security and privacy. These
research works are beneficial for secure and decentralized
data communication in wireless networks. Instead of designing
and implementing light-weight blockchain-based protocols,
the second category [9–12] investigates pricing and resource
management schemes for supporting blockchain applications
in a mobile environment. The focus here is on the mining
under the PoW consensus [1], which results in the competition
among miners to receive a mining reward. Due to limited
computing resources of their mobile terminals, miners offload
the PoW computations to local edge servers [9, 10]. In this

paper, we also study the problem of pricing and computation
offloading in mobile blockchain mining under the PoW con-
sensus. However, we consider a more complicated assumption
in which miners can perform a two-layer computation offload-
ing to either/both of the ESP and the CSP.

2) Stackelberg Game in Offloading Mechanism: Stackel-
berg Game is a widely-used model in the field of offloading
mechanisms. A large body of existing literature [13–20] fo-
cuses on minimizing offloading users’ computation overhead
in terms of energy and latency. To this end, researchers have
developed distributed decision making methodologies. In the
field of mobile blockchain mining offloading [9, 10], there are
few works and most of them are in the single-leader scenario
where mobile miners only offload their computation to an
SP, e.g. fog. In our paper, we consider a multi-leader multi-
follower Stackelberg game to jointly maximize the profit of the
SPs and the individual utilities of mobile miners. We assume
a resource-limited edge layer working in either stand-alone or
connected operation mode with the cloud layer.

3) Reinforcement Learning in Incomplete Information
Game: Although analysis in game theory always assumes
the observable strategies of other players, it is more realis-
tic that the miner’s action is the private information which
is unobservable by others. In addition to applying game-
theoretical analysis on the proposed game, we also develop a
reinforcement learning framework [21–24] in our evaluation,
allowing all players to select their best response strategies
and update their beliefs about unobservable actions of others
through repeated interactions with each other in a stochastic
environment. This framework confirms our proposed model.

VIII. CONCLUSION

In this paper, we have proposed a Stackelberg game between
the SPs for optimal price strategies and among the mobile min-
ers for optimal computation offloading requests. Two practical
edge computing operation modes are investigated, i.e., the ESP
is connected to the CSP or standalone. First, we characterize
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Fig. 7: mi’s budget B1 varies from 20 to 200, with 5 miners in total.
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Fig. 9: Miner number: fixed vs dynamic.

the miner number as a constant in both modes. We discuss
the existence and the uniqueness of Stackelberg equilibrium
in the proposed games and provide algorithms to achieve
SE point(s). Our analysis indicates that the connected mode
discourages miners from buying computing resources from the
ESP. Then, we study the impact of a dynamic miner number.
Interestingly, we find that uncertainty incurred by the dynamic
population renders miners more aggressive to buy computing
resources from the ESP. Numerical experiments based on a
reinforcement learning framework have been conducted to
further confirm our analysis.
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