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Abstract—The development of Blockchain-based mobile applications are impeded due to the resource limitations of mobile devices.
Computation offloading can be a viable solution. In this paper, we consider a two-layer computation offloading paradigm including
an edge computing service provider (ESP) and a cloud computing service provider (CSP). We formulate a multi-leader multi-follower
Stackelberg game to address the computing resource management problem in such a network, by jointly maximizing the profits of
each service provider (SP) and the payoffs of individual miners. We study two practical scenarios: a fixed-miner-number scenario for
permissioned blockchains and a dynamic-miner-number scenario for permissionless blockchains. For the fixed-miner-number scenario,
we discuss two different edge operation modes, i.e., the ESP is connected (to the CSP) or standalone, which form different miner
subgames based on whether each miner’s strategy set is mutually dependent. We propose two models: a hit/miss(H/M) model and
a capacity(Emax) model to characterize the resource limitation on the ESP side. The existence and uniqueness of Stackelberg
equilibrium (SE) in both modes are analyzed, according to which algorithms are proposed to achieve the corresponding SE(s).
For the dynamic-miner-number scenario, we focus on the impact of population uncertainty and find that the uncertainty inflates the
aggressiveness in the ESP resource purchasing. Numerical evaluations are presented to verify the proposed models.
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1 INTRODUCTION

CURRENTLY blockchain technology has been widely
adopted, ranging from cryptocurrency, financial ser-

vices, Internet of Things (IoT) to public and social ser-
vices. As a distributed ledger, blockchain records data
in the form of linked blocks secured by cryptography.
Consensus protocol is the core of blockchain, since
it regulates the maintenance for such an append-only
public ledger in a distributed fashion. Currently, most
blockchain applications are on top of a proof-of-work
(PoW) protocol. In a PoW-based blockchain network,
miners collect blocks of data, verify their integrity, and
append them to the blockchain. In order to add a block
to the blockchain, miners are required to solve a com-
putationally challenging PoW puzzle. The security and
reliability are thus ensured by this mechanism which
requires numerous trials and errors for a valid solu-
tion. The blockchain grows with the repetitive block-
appending processes, each of which is considered as one
mining round; meanwhile, the owner of the on-chain
block receives monetary rewards as the mining incentive.

The new trend on blockchain technology is using
blockchain in mobile app development. However, the
energy consumption and the computing power required
to perform PoW computation are prohibitively high
for mobile devices, thus hindering the practical usage
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Fig. 1: Mobile blockchain mining network: a multi-leader multi-
follower Stackelberg game among SPs and miners .

of blockchain in mobile environments. Offloading PoW
computation to the external machines has been proven
effective in overcoming the aforementioned limitations
and promoting mobile blockchain applications. Specifi-
cally, both an edge computing service provider (ESP) and a
cloud computing service provider (CSP) can provide com-
puting resources for mobile devices. While a CSP can
guarantee a good isolation among multiple computa-
tion offloading requests (i.e., there is no competition for
cloud computing resources) with a relatively cheap price,
significant network delays hamper the performance of
cloud computing. Due to the delay-sensitive nature of
mining, an ESP is considered as an efficient proximity
alternative with the capability of providing low-latency
service. However, mobile miners may have to compete
against each other for the limited and expensive edge
computing resources.

In this paper, we present a hierarchical computation
offloading paradigm consisting of two service providers
(SPs), i.e., a nearby ESP and a remote CSP, and a set
of miners in a mobile blockchain mining network. As
depicted in Fig. 1, each miner is willing to offload its
PoW computation to either of these two SPs or both
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Fig. 2: Different operation modes of the ESP.

of them. Once the ESP is overloaded with requests, it
responds differently according to its operation mode.
Specifically, two edge computing operation modes, i.e.,
the ESP connected to the CSP (Fig. 2(a)) and standalone
(Fig. 2(b)), have been implemented in practice. Conse-
quently, for an edge computing request which fails to be
satisfied by the ESP, it will be sent to the backup CSP in
the connected mode (characterized by the dotted line in
Fig. 2(a)), or will be rejected in the standalone mode char-
acterized by the dash line in Fig. 2(b)). In the standalone
mode, miners can resend those requests rejected by the
ESP to the CSP. However, the communication delay
will be considerably longer than that in the connected
mode where the ESP executes automatic transfers. In the
standalone mode, miners’ requests are mutually affected
and should be dedicated to avoid overloading the ESP.

We exploit game theory to analyze the complex in-
teractions among SPs and mobile miners. To solve the
price-based resource management problem, we leverage
a multi-leader multi-follower Stackelberg game, which
includes two subgames for the SPs (as leaders) and the
miners (as followers), respectively. In the SP subgame,
each SP has a privilege to set unit prices on its com-
puting resources by anticipating the miners’ responses.
In the miner subgame, the miners decide their requests
according to the observed unit prices. Moreover, we
investigate how edge operation modes will affect the
miner subgame. We consider two possible models to
describe the resource limitation on the ESP side. The
first one is a hit/miss(H/M) model, which defines a
fixed predicting rate with which a miner’s edge request
will be fully accepted or transferred to the CSP in the
connected mode(rejected in the standalone mode). In this
model, the miner subgame is formulated as a classical
Nash equilibrium problem (NEP). The second one is a
capacity model. In this model, the ESP’s capacity, defined
as Emax, is a common knowledge among all players. In
the capacity mode, due to the limited computing units at
the ESP side, whether a miner’s edge computing request

can be satisfied is affected by other miners’ requests.
Then, the miner subgame becomes a generalized Nash
equilibrium problem (GNEP) in the standalone mode.
GNEPs differ from NEPs in that, while in an NEP only
the players’ objective functions depend on the other
players’ strategies, in a GNEP both the objective func-
tions and the strategy sets depend on the other players’
strategies.

All previous studies assume that the miner number is
fixed as a common knowledge in the proposed games.
In practice, for permissionless blockchains where miners
can randomly join or leave, the miner number may
change. Thus, we also discuss the impact of population
uncertainty on the miners’ strategies by modeling the
miner number as a random variable. The major contri-
butions of this paper are as follows:
• We propose a Stackelberg game to solve a price-based

computing resource management problem in a mobile
blockchain mining network with two SPs.

• We study the proposed Stackelberg game in two prac-
tical edge operation modes, thereby formulating two
different miner subgames: an NEP in the H/M model
and a GNEP in the capacity model.

• We analyze the existence and uniqueness of Stackel-
berg equilibrium (SE) for both edge operation modes,
based on which algorithms are proposed to obtain SE
solutions.

• We consider a special case of homogeneous miners and
derive explicit-form expressions of the most profitable
price strategies for each SP and the optimal resource
requests for individual miners in each mode.

• We study the impacts of population uncertainty, which
incurs more resource requests at the ESP side.

• We extend our single-CSP single-ESP leader model to a
single-CSP multiple-ESP model, which is more in line
with the reality.

• We conduct testbed experiments to verify the practi-
cality of our proposed model and perform numerical
evaluation in a reinforcement learning framework to
validate our analysis. The achieved equilibria are con-
sistent with our theoretical results.

2 SYSTEM MODEL AND GAME FORMULATION

2.1 A Mobile Blockchain Mining Network
This paper focuses on a mobile blockchain mining net-
work. Corresponding notations are listed in Table 1. We
consider N end users, which we also call miners, and
two service providers. Fig. 1 depicts an overview of
this network. The SP side consists of a nearby ESP and
a remote CSP that make profits by contributing their
computing power sold by unit. One unit from the ESP
is functionally equivalent to one from the CSP. In the
proposed network, message transmission time is viewed
as communication delay. For simplicity, we assume com-
munication delay between the ESP and miners is negli-
gible as 0, while communication delay between the CSP
and the ESP/miners is the same as Davg . Besides, the
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TABLE 1: Summary of Notations.

Symbol Description
Pe/Pc unit price set by the ESP/the CSP
Ce/Cc unit cost of the ESP/the CSP
Ve/Vc utility of the ESP/the CSP
1− h ESP’s expected transfer rate
Emax total computing capacity of the standalone ESP
Dc average delay the CSP
N total number of miners
mi the i-th miner

Ui/Wi/Bi mi’s utility/winning probability/budget
ei/ci number of ESP/CSP units requested by mi

ri mi’s request vector to the SPs, in the form of [ei, ci]ᵀ
r stacked request vectors of all miners

r−i stacked request vectors of all miners excluding mi’s
R blockchain mining reward
β discount rate caused by delay

ESP is assumed to have limited computing capability,
while the CSP owns unlimited computing power.

The end-user side is a network with N miners us-
ing different mobile devices. We differentiate them in
terms of available budget which gives an upper bound
on the amount of computing units they can afford.
Thus, different types of miners have different requests
on computing power. We employ a utility function to
describe each miner’s expected payoff, i.e., the difference
between its expected income and expected cost. The
SPs and the miners have bidirectional communications
for exchanging price and request information. Miners
receive prices from the SPs and transmit their requests
to them.

We consider two practical edge operation modes, i.e.,
connected to the CSP or standalone, differing in whether
or not the ESP would share loads with the CSP if it is
computationally overloaded. Based on these two modes,
we characterize the limited computing capability of the
ESP in two different ways. In connected mode, the
ESP’s computing limitation is captured by an expected
transfer rate, i.e., (1−h). That is, A request to the ESP
may automatically be transferred to the CSP with a
probability of(1−h)in expectation. As an empirical value,
(1−h) is common knowledge in the game. Instead, if
operating in standalone mode without load sharing, the
ESP is limited with Emax computing units and hence
rejects requests once overloaded.

2.2 SP-Miner Interaction: A Stackelberg Game
We focus on interactions between the SPs and the miners.
Each miner’s income depends all miners’ strategies and
its cost varies according to the prices set by each SP. In
fact, each SP decides its unit price by considering miners’
requests as well as the rival SP’s price. Game theory
provides a natural paradigm to model the interactions
between the SPs and the miners in this network. Each SP
sets the unit price and announces it to the miners. The
miners respond to the price by requesting an optimal
amount of computing units to the SPs. Since the SPs
act first and then the miners make their decision based
on the prices, the two events are sequential. Thus, we
model the interactions between the SPs and the miners
using a Stackelberg game. In our proposed game, the

SPs are the leaders and the consumers are the followers.
It is a multi-leader multi-follower Stackelberg game, two
stages of which can be described as follows.

In the first stage, the competition between the ESP and
the CSP forms a non-cooperative leader subgame, where
each SP optimizes its unit price (Pe/Pc) by predicting the
miners’ reactions as well as considering the other SP’s
price strategy. In the second stage, each miner, i.e., mi,
responds to the current prices, by sending request(s) to
the target SP(s), considering its budget Bi and requests
of other miners’. Since requests are generated for indi-
vidual utility maximization, a non-cooperative follower
subgame is also formed.

2.2.1 Miner Side Utility
Let ei and ci be mi’s requests on the ESP and the CSP,
respectively. Given the mining reward R, we define mi’s
optimization problem below.

Problem 1 (MINER SUBGAME: OPMINER).

maximize Ui = R ·Wi − (Pe · ei + Pc · ci), (1a)
subject to Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0. (1b)

where Wi represents mi’s expected winning probabil-
ity, an accurate definition and detailed explanations of
which will be given in Section 3. Each miner mi aims to
maximize its utility and constraint (1b) ensures that mi

is within its budget.

2.2.2 SP Side Utility
The objective of each SP is to optimize its profit by deter-
mining the corresponding unit price. The optimization
problem (including OPESP and OPCSP) at SP side is thus
defined as in Eq.(2a) and Eq.(2b) for the ESP and the
CSP, respectively.

Problem 2 (SP SUBGAME: OPSP).

maximize Ve = (Pe − Ce) · E where E =
∑N

i=1
ei (2a)

maximize Vc = (Pc − Cc) · C where C =
∑N

i=1
ci (2b)

2.2.3 Stackelberg Game
OPSP and OPMINER together form the proposed Stackel-
berg game. To achieve equilibrium in this game, where
neither the leaders (SPs) nor the followers (miners) have
incentives to deviate, we need to find its subgame perfect
Nash equilibria (NE) in both the leader stage and the fol-
lower stage, by applying backward induction. Formally,
the SE point(s) is defined as follows.

Definition 1. Let [E∗,C∗] and [P ∗e , P
∗
c ] denote the op-

timal resource request vector of all miners and the opti-
mal computing unit price vector of SPs, respectively. Let
[e∗i , c

∗
i ]
N
i=1 =[E∗,C∗], then the point (E∗,C∗, P ∗e , P ∗c ) is the

Stackelberg equilibrium if the following conditions hold:

Ve(P
∗
e ,E

∗) ≥ Ve(Pe,E∗),∀Pe, (3a)
Vc(P

∗
c ,C

∗) ≥ Vc(Pc,C∗),∀Pc, (3b)
Ui(e

∗
i , c
∗
i , P

∗
e ,P

∗
c ) ≥ Ui(ei, ci, P ∗e , P ∗c ),∀i. (3c)
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Fig. 3: Communication delay can cause temporary blockchain splits.

3 A MINER’S WINNING PROBABILITY

3.1 Parameter Analysis
As the core part of each miner mi’s utility, Wi is deter-
mined by multiple parameters. To win mining rewards,
mi has to be the first to solve its PoW puzzle and prop-
agate its block to reach consensus. The chance for mi to
find a PoW solution is positively correlated to its relative
computing power, which is the ratio of mi’s computing
power out of all computing power in the network. There
is a delay for a mined block to be known by the entire
network. During the delay period, another conflicting
block may be found and propagates in the network as
well. An earlier-mined block can be nullified since its
conflicting block may reach consensus faster. Generally,
delays may cause the occurrence of conflicting blocks,
and then lower the probability of a mined block being
accepted by the blockchain. Obviously, Wi is discounted
by delays. The relation between the probability of block
collision and the delay has been studied in Bitcoin [1],
a classic PoW-based blockchain application. Fig. 3(a)
provides its block collision probability density function
(PDF) with respect to the communication delay, which is
subject to an exponential distribution. Thereby, the dis-
count rate, i.e., the block collision cumulative distribution
function (CDF), is almost linear to the communication
delay, as shown in Fig. 3(b). In this paper, we assume that
the proposed network follows the same pattern of colli-
sion PDF and CDF as in Bitcoin. For simplicity, we ignore
the block propagation time among all miners. Thus, the
delay is from the communication time between a miner
and an SP. We denote mi’s winning probability will be
affected by the a delay discount function, denoting β.
Given the closeness of the ESP, we only consider the
miner communication delay to the CSP, denoting Dc that
incurs a discount rate of β (short for β(Dc)).

3.2 Expression of Individual Winning Probability
In this part, we will derive an expression of Wi under
the assumption that each miner mi’s request, denoted by
a vector ri = [ei, ci]

ᵀ, is fully satisfied at the SP side. Let
r =∆ {r1, r2, · · · , rN} and r−i represent the request profile
of all miners and all other miners except mi, respectively.
We denote E in Eq. (2a) and C in Eq. (2b) as the total
number of computing units requested on the ESP and the

CSP, respectively. S=E+C therefore represents the total
requested computing units in the network. The winning
probability, in the form of Wi = W e

i + W c
i , consists of

two parts, W e
i and W c

i , jointly contributed by the ESP
and the CSP, where W e

i and W c
i are functions of ri and

r−i given below:
W e
i (ri, r−i) = ei/S + ei

∑
j 6=i

βcj/ES, (4)

W c
i (ri, r−i) = ci/S − ci

∑
j 6=i

βej/ES. (5)

We begin with the analysis on W c
i .

• W c
i : ci/S represents the expected chance that mi mines

a cloud-solved block b. Now we discuss the probability
that b is discarded before it reaches consensus. With
a chance of β, a conflicting block b′ would be found
during the propagation time Dc. A cloud-solved b′ has
the same propagation time Dc and thus cannot beat b.
However, b will be discarded if b′ is found in the edge
and hence reaches consensus immediately. W c

i in Eq. (5)
characterizes the fact that, the probability of a successful
cloud mining is discounted by the chance that the mined
block is discarded due to any conflicting edge-solved
block. Here, ej/E approximates the rate that b′ is mined
in the edge by another miner mk. We don’t consider the
situation, where b′ is an edge-solved block for mi itself,
as a discount factor, since mi still wins.
• W e

i : mi’s winning probability of edge mining is the ad-
dition of (i) the chance that mi is the first to successfully
mine a block using its edge computing power, expressed
as ei/S and (ii) a summed chance that mi’s edge-solved
block surpasses a cloud-solved block mined by any other
miner mk. The expression is shown in Eq. (4).

We verify the validity of Wi as a probability mass
function.

Theorem 1. Wi = W e
i + W c

i is a valid probability mass
function to express the winning probability of individual
miners in a mobile blockchain mining network.

Proof. We present the full verification process by check-
ing that

∑N
i=1Wi = 1 holds.∑N

i=1
Wi =

∑N

i=1
(W e

i +W c
i )

=
∑N

i=1
[ei/S+ci/S]

+ β
∑N

i=1
[ei(C−ci)/ES + ci(E−ei)/ES]

= 1+β
∑N

i=1
(eiC−ciE)/ES = 1.

Thus, we are now ready to conclude that, the winning
probability we use is valid, hence our model as well.

3.3 User Requests and SP Responses
All above analysis is based on the assumption that mi’s
request ri is responded to by the ESP and the CSP as
what it expects, i.e., if ri is fully satisfied by the ESP
and the CSP as its original form [ei, ci]

ᵀ, the individual
winning probability on this condition is denoted by Wh

i

and shown in Eq. (6)
Wh
i = (ei + ci)/S + β(eiC − ciE)/ES. (6)
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However, this assumption cannot always hold when we
take the ESP’s capability into consideration. It is possible
that overall requests from the miner side are beyond
the ESP’s computing capability. We refine the individual
winning probability based on whether ei can be satisfied
by the ESP. Now we discuss how ri will be responded to
if ei is beyond the ESP’s capability, in connected mode
and in standalone mode, respectively. We denote the
corresponding winning probability by W 1−h

i .

3.3.1 Failure in connected mode

In this case, ei would be transferred from the ESP to the
CSP, and therefore, ri is degraded as [0, ei+ci]

ᵀ. The total
computing power in the network stays unchanged as S,
while E − ei and C + ei represent the actual resource
allocation by the ESP and the CSP, respectively. Eq. (7)
gives the winning probability.

W 1−h
i = (1− β)(ei + ci)/S. (7)

3.3.2 Failure in standalone mode

Since ei would be rejected by the ESP, ri is degraded
as [0, ci]

ᵀ. Thus, the total computing power of edge
computing and that in the network are reduced to E−ei
and S − ei, respectively. Eq. (8) gives the corresponding
winning probability.

W 1−h
i = (1− β)ci/(S − ei). (8)

4 FIXED MINER NUMBER SCENARIO

In the fixed miner number scenario, we assume that
the network contains a fixed set of miners. That is, the
number of miners is modeled as a constant, i.e., N =∆ n.
We consider two edge computing operation modes: con-
nected and standalone. We apply backward induction to
analyze the subgame perfect NE in each stage for both
modes. In the connected mode, the uniqueness of the SE
is validated by identifying the best response strategies of
the miners. In the standalone mode, the existence of the
SE is proved by capitalizing on the variational inequality
theory. Then, we get the closed-form price and resource
allocation solutions to a special homogeneous-miner case
for both modes. Besides, we compare the profits at the
SP side and the miner side in these two modes.

4.1 Connected Mode

In this mode, the ESP’s limited computing capability is
characterized by the ESP’s expected transfer rate (1−h).

4.1.1 Miner Subgame Equilibrium

Consequently, mi should consider two possible results:
(i) with a probability of h, its request on the ESP is
satisfied; (ii) with a probability of (1− h), its request on
the ESP is automatically transferred to the CSP with a

degraded service. Thus, Wi can reflect these two results
by applying the law of total expectation as below.

Wi = h ·Wh
i + (1− h) ·W 1−h

i (9)
= h · [(ei + ci)/S + β · (eiC − ciE)/ES]

+ (1− h) · (1− β)(ei + ci)/S

= (1− β)(ei + ci)/S + βhei/E,

then the OPMINER problem can be concreted as below.
Problem 1a (MINER SUBGAME: NEPMINER).

maximize Ui = R ·Wi − (Pe · ei + Pc · ci) , (10a)
subject to Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0, (10b)

where Wi = (1− β)(ei + ci)/S + βhei/E.

Thus, the existence and uniqueness of an NE of this
miner subgame is given by the following theorem.

Theorem 2. A unique Nash equilibrium exists in NEPMINER

in the connected mode.
Proof. Denote the equivalent variational inequality (VI)
problem VI(K,F) ≡ NEP (X , U), where

F := (∇iUi)ni=1, X = ([ei, ci]
ᵀ)ni=1, U = (Ui)

n
i=1,

K := K1 ×K2 × · · · × Kn,
Ki := {(ei, ci)|Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0}.

(11)

Obviously, (i) Ki is closed and convex, ∀i and (ii) Ui is
continuously differentiable and convex w.r.t. [ei, ci]

ᵀ, ∀i,
then the VI problem has a non-empty solution set. The
existence of NE thus follows the sufficient conditions.
Further details and the proof of its uniqueness can be
found in 4.1.2.

As a rational player, each miner optimizes its utility
by solving the NEPMINER problem as follows. Using
Lagrange’s multipliers λ1, λ2, and λ3 for the constraints
in Eq. (1e), the optimization problem is thus converted
to the form
Li = R · [(1− β)(ei + ci)/S + βhei/E]− (Pe · ei + Pc · ci)

− λ1(Pe · ei + Pc · ci −Bi) + λ2ei + λ3ci, (12)
and the complementary slackness conditions are

λ1(Pe · ei + Pc · ci −Bi) = 0,

λ2ei = 0, λ3ci = 0, λ1 > 0, λ2, λ3, ei, ci ≥ 0.
(13)

By the first-order optimality condition ∇Li = 0, it
immediately follows that λ2 = λ3 = 0. Thus

ei=

√
hβE−iR

(1 + λ1)(Pe − Pc)
−E−i, (14)

ci=

√
R(1−β)(E−i+C−i)

(1+λ1)Pc
−

√
hβE−iR

(1+λ1)(Pe−Pc)
−C−i,

Bi = Peei + Pcci,where E−i=
∑

j 6=i
ej , C−i=

∑
j 6=i

cj .

Solving Eq. (14) yields that

1 + λ1 =

[
(Pe−Pc)σ1

√
E−i+Pcσ2

√
E−i+C−i

Bi+PcC−i+PeE−i

]2

, (15)
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where: σ2
1 = hβR/(Pe − Pc) and σ2

2 = (1− β)R/Pc.
Hence substituting Eq. (15) back into Eq. (14) gives the
explicit form of the solution to the NEPMINER problem,
i.e., each miner’s best response strategy. This naturally
gives a distributed iterative algorithm, allowing each
miner to iteratively update its strategy, given the strate-
gies of other miners. When this unique subgame NE is
ensured, the algorithm’s convergence is also guaranteed.
The uniqueness of NE in NEPMINER is guaranteed given
that F defined in Eq. (17) is strictly monotone.

4.1.2 Proof of Theorem 2
Given the well-formed formulas defined in Problem 1a,
we provide full explanations and details for Theorem 2.

First we recap the problem as follows:

Problem 1a (MINER SUB-GAME: NEPMINER).

maximize Ui = R ·Wi − (Pe · ei + Pc · ci) , (16a)
subject to Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0, (16b)

where Wi = (1− β)(ei + ci)/S + βhei/E.

W.T.S.: A unique Nash equilibrium exists in NEPMINER.

Proof. First we show the existence of NE.
Claim 1: There is at least one NE for Problem 1e.

We leverage variational inequality (VI) theory by re-
formulating the NEP, i.e., NE(s) exist if the equivalent VI
problem has a nonempty solution set. Denote VI(K,F) ≡
NEP (X , U), where

F := (∇iUi)ni=1, X = ([ei, ci]
ᵀ)ni=1, U = (Ui)

n
i=1,

K := K1 ×K2 × · · · × Kn,
Ki := {(ei, ci)|Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0}.

(17)

Since Ki is closed and bounded, ∀i, then the compactness
of K immediately follows. The convexity of K is trivial
by the linearity. Then it suffices to show that Ui is con-
tinously differentiable and convex w.r.t. [ei, ci]

ᵀ ∈ Ki,∀i.
Denote Hi for the Hessian matrix of Ui as below.

H :=

[
U iee U iec
U ice U icc

]
, (18)

where
U iee =

∂2Ui
∂e2
i

, U iec =
∂2Ui
∂ei∂ci

, U ice =
∂2Ui
∂ci∂ei

, U icc =
∂2Ui
∂c2i

.

We provide the explicit-form expressions of the Hessian
elements as follows:
U iee =− (R(1− β)/S2 + βh/E2) · (R(1− β)/S2 + βh/E2)

+ (R(1− β)/S + 2βh/E − Pe) · (βh/E3 −R(1− β)/S3),

U iec =R(1− β)/S · (R(1− β)/S2 + βh/E2)

+ 2(R(1− β)/S + βh/E − Pe)R(1− β)/S3

− (R(1− β)/S2 − 2R(1− β)/S3 · ci),
U ice =(−R(1− β)/S2 −R(1− β)/S3 · ei)

+ (−R(1− β)/S3 + 2R(1− β)/S3 · ci),
U icc =2R(1− β)/S3 · ei − 2(R(1− β)/S2 −R(1− β)/S3 · ci).
Since det(H) = U iee · U icc − U iec · U ice > 0, ∀[ei, ci]ᵀ ∈ Ki,

and the positive definiteness holds for any i. There-
fore VI(K,F) is equivalent with NEP (X , U) and has

a nonempty solution set, we thus prove that Claim 1 is
legitimate. Then we finish the proof for the uniqueness
of NE.

Claim 2: There is at most one NE for Problem 1e.
To show the uniqueness of the NE point, we first

introduce the matrices Jlow, defined as

[Jlow]ij := inf
x∈K

{
|∇2

iiUi|, if i = j,
− 1

2 (|∇2
ijUi|+ |∇2

jiUj |), else. (21)

We prove the uniqueness of NE solution by showing
that Jlow is a strictly copositive matrix. We first give the
explicit-form expression of ∇2

iiUi and ∇2
ijUi as follows:

∇2
iiUi =U iee + U icc (22a)

=R[−8(1−β)(S−ei−ci)/S3]−2β(E−ei)/E3,

∇2
ijUi =∇2

jiUj (22b)

=R(1− β)[1− 2(S − ei − ci)]/S2 + hβ(2ei − E)/E3.

W.L.O.G. we show that the second-order Jlow is strictly
copositive, the uniqueness of the solution to generalized
cases can be simply proved using induction, due to the
repetitive pattern of the objective function Ui. Thus, Jlow
can be written into the form:

Jlow =

[
a11 a12

a12 a22

]
, (23)

a11 = inf
(e1,c1)∈K

|∇2
11U1|, a22 = inf

(e2,c2)∈K
|∇2

22U2|, (24)

a12 = (−1

2
)

(e2,c2)∈K
inf

(e1,c1)∈K
(|∇2

12U1|+ |∇2
21U2|). (25)

Then it suffices to show that a11, a22 ≥ 0 and a12 +√
a11a22 > 0, where the non-negativity of the first two

terms are trivial.

a12 +
√
a11a22 =

(e2,c2)∈K
inf

(e1,c1)∈K
R(1− β)[1− 2(S − ei − ci)]/S2

+ hβ(2ei − E)/E3

− 8(1− β)

√∏
i=1,2

(S − ei − ci)/S3 > 0.

Then Jlow is strictly copositive as shown above. Since we
have shown that F is continuously differentiable with
the derivatives bounded on K (as the derivatives are
all linear on the compact solution space K), F is strictly
monotone. Therefore NEP has at most one solution.

We conclude our proof since the uniqueness of NE
immediately follows combining Claim 1 and Claim 2.

4.1.3 SP Subgame Equilibrium
With the knowledge of the miners’ strategies, each SP
makes its decision by solving the NEPSP defined below.

Problem 2a (SP SUBGAME: NEPSP).

maximize Ve = (Pe − Ce) · E whereE =
∑n

i=1
ei, (26a)

maximize Vc = (Pc − Cc) · C whereC =
∑n

i=1
ci. (26b)
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4.1.4 Stackelberg Equilibrium in Connected Mode
We take advantage of a distributed algorithm called
Asynchronous Best-response, as is shown in Algorithm
1, to find the unique NE point in OPSP defined in
Problem 2. The solution’s uniqueness further guarantees
the global convergence and SE is achieved, given that
NE is found in the leader stage.

4.2 Homogeneous Miners with Identical Budgets
The solutions to the NEPMINER are infeasible to express
in a symbolic manner. Fortunately, we are able to get
the closed-form computation offloading solutions for the
NEPMINER in a special case. We consider a homogeneous-
miner case where each miner is homogeneous with an
identical budget B. We are interested in finding an
NE where miners decide on a mixed request, buying
computing units from both the ESP and the CSP. Thus,
constraint (16b) is modified as ei > 0, ci > 0. The
corresponding miner side optimization problem can be
rewritten as the NEPHOMOMINER problem in the following.

Problem 1b (MINER SUBGAME: NEPHOMOMINER).

maximize Ui = R ·Wi − (Pe · ei + Pc · ci) , (27a)
subject to Pe · ei + Pc · ci ≤ B, ei > 0, ci > 0, (27b)

where Wi = (ei + ci)/S + β · (eiC − ciE)/(ES).

We will provide the explicit-form expression or the
pricing strategy for the homogeneous-miner case defined
above in Problem (1d).

Theorem 3. The unique Nash equilibrium for miner mi in
the NEPHOMOMINER problem is given below{

e∗i = Bβh
(1−β+hβ)(Pe−Pc) ,

c∗i = B[(1−β)(Pe−Pc)−Pcβh]
Pc(1−β+hβ)(Pe−Pc) ,

(28)

provided that the prices set by the ESP and the CSP satisfy
Pc <

1−β
1−β+hβPe.

Proof. According to (13), we have E2 =
σ2

1

∑
j 6=i ej/(1 + λ1) and S2 = σ2

2

∑
j 6=i (ej + cj)/(1 + λ1)

for each miner mi, which will yield E2/S2 =
σ2

1(E − ei)/[σ2
2(S − ei − ci)]. Then, we calculate the

summation of this expression for all the miners:
E/S = σ2

1/σ
2
2 = [hβ/(1− β)] · Pc/(Pe − Pc). In order to

get a mixed strategy, E/S > 1 must hold, i.e., Eq.(38)
holds. Since all miners are homogeneous, their best
response strategies are identical as well, i.e., E = nei and
S = n(ei + ci). By substituting these two equations into
Eq. (15), we obtain the NE for miner mi in Eq.(28).

Corollary 1. If the budget B is sufficiently large, the explicit
solution to the NEPHOMOMINER problem is shown in Eq.(41){

e∗i = βhR(N−1)
N2(Pe−Pc) ,

c∗i = R(N−1)[(1−β)Pe−Pc]
N2Pc(Pe−Pc) .

(29)

Now, we start to analyze the SP optimization problem,
which can be rewritten as follows.

Algorithm 1 Asynchronous Best-Response Algorithm

Output: j, j ∈ {e, c}
Input: Initialize k as 1 and randomly pick a feasible P (0)

j

1: for iteration k do
2: Receive the miners’ request vectors r(k−1)

3: Predict the strategy of the other SP

4: Decide P (k)
j = P

(k−1)
j +∆

∂Vj

(
Pj ,P

(k−1)
−j ,r(k−1)

)
∂Pj

5: if P (k)
j =P

(k−1)
j then Stop

6: else send P
(k)
j to miners and set k ← k + 1

Problem 2b (SP SUBGAME: NEPSPHOMOMINER).

maximize Ve=(Pe−Ce)·e∗i , Vc=(Pc−Cc)·c∗i , (30a)

subject to Pc <
1− β

1− (1− h)β
Pe, (30b)

where e∗i=
Bβh

(1−β+hβ)(Pe−Pc) , c∗i=
B[(1−β)(Pe−Pc)−Pcβh]
Pc(1−β+hβ)(Pe−Pc) .

Theorem 4. The unique Nash equilibrium for the SPs in the
NEPSPHOMOMINER problem is given below:{

P ∗e = p̄,

P ∗c =
Ccp̄(1−β)−p̄

√
Cchβ(p̄−Cc)(1−β)

[1−β(1−h)]Cc−βhPe
,

(31)

where p̄ is the solution to ∂Ve/∂Pe = 0.

Proof. We start with the optimal P ∗c by analyzing the
convexity of Vc. We calculate the first derivative of Vc and
find that it is a concave function. Thus, the CSP’s optimal
price value is the solution to ∂Vc/∂Pc = 0 where Pc <
Pe(1− β)/[1− (1− h)β] and P ∗c is shown in Eq. (31), as
is a function dependent on Pe set by the ESP. Given the
response strategy of the CSP, the ESP can optimize his
payoff by maximizing the re-written Ve as below:

Ve =
NBβh

(1− β + hβ)(Pe − P ∗c )
· (Pe − Ce). (32)

We calculate the second derivative of Ve and find that
∂2Ve/∂P

2
e ≤ 0 holds for any valid Pe value. Thus, the

ESP has his dominant strategy P ∗e = p̄. In this situation,
NE is achieved in the leader stage. We analyze P ∗e and P ∗c
and find that they only depend on their own operating
costs Ce, Cc, and the network delay penalty factor β.

4.3 Standalone Mode

Similar to the Connected mode, we can model the miner
subgame as a Nash equilibrium game using based on the
hit/miss rate in the standalone mode. The difference is
the winning probability. With a probability of h, miner
mi will be fully satisfied by both the CSP and the ESP.
Then, the corresponding winning probability Wh

i is the
same as what shows in Eq. (6). However, with a proba-
bility of 1 − h, miner mi’s edge request can be rejected.
In this case, his winning probability W 1−h

i is shown in
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Algorithm 2 Price Bargaining

Input: Choose any feasible starting point Pe, Pc
1: for each miner i do
2: Receive Pe, Pc
3: Predict the optimal requests of other miners
4: Decide its computing request [ei, ci]

T

5: Send ei to the ESP and send ci to the CSP
6: for each operator j, j ∈ {e, c} do
7: Receive the optimal requests of miners
8: Store the current prices P

′

j and P
′

−j ,
9: Increase decrease the price with a step ∆

10: if Vj
(
P
′

j , P
′

−j

)
≤ Vj

(
P
′

j+∆, P
′

−j

)
and

11: Vj

(
P
′

j−∆, P
′

−j

)
≤ Vj

(
P
′

j+∆, P
′

−j

)
12: then Pj = P

′

j + ∆

13: else if Vj
(
P
′

j , P
′

−j

)
≤ Vj

(
P
′

j−∆, P
′

−j

)
and

14: Vj

(
P
′

j+∆, P
′

−j

)
≤ Vj

(
P
′

j −∆, P
′

−j

)
15: then Pj = P

′

j −∆

16: else Pj = P
′

j

17: Send Pj to miners

Eq. (8). Thus, Wi should reflect these two results by
applying the law of total expectation as below.

Wi = h ·Wh
i + (1− h) ·W 1−h

i (33)
= h · [(ei + ci)/S + β · (eiC − ciE)/ES]

+ (1− h) · (1− β)ci/(S − ei)
The NEPMINER in the standalone mode is the same as
Problem 1b except applying the new winning probability
using Eq. (33).

Theorem 5. A unique Nash equilibrium exists in NEPMINER

in the standalone mode.

The proof of Theorem 5 is quite similar as what we
show in section 5.1.2, which we decide to skip here. In
this case, there is no explicit expression under the homo-
geneous miner assumption, given the complex winning
probability function.

There also exists another way to model the limitation
of the edge computing resource in the standalone mode.
It is more likely for miners to know the ESP’s capacity
in the standalone mode. Thus, we assume the ESP’s
capacity Emax is a common knowledge in this case.
Then, it has to reject some requests when overloaded.
Thus, the aggregate requests from all miners should be
no more than Emax to avoid being rejected.

4.3.1 Subgame Equilibrium
In standalone mode, given other miners’ requests r−i,
mi should ensure that ei can be satisfied by the ESP.
Mathematically, this can be written as E =

∑n
k=1 ek ≤

Emax. Under this constraint, its winning probability is
expressed in Eq. (34).

Wi = (ei + ci)/S + β(eiC − ciE)/ES. (34)

Now, we reformulate the OPMINER problem in the below.

Problem 1c (MINER SUBGAME: GNEPMINER).

maximize Ui = R ·Wi − (Pe · ei + Pc · ci) , (35a)
subject to E ≤ Emax, (35b)

Pe · ei + Pc · ci ≤ Bi, ei, ci ≥ 0, (35c)

where Wi = (ei + ci)/S + β · (eiC − ciE)/ES.

Constraint (35b) ensures that mi’s request to the ESP
can be satisfied. Since all miners’ requests are mutually
dependent, the GNEPMINER problem is a Generalized
Nash Equilibrium Problem (GNEP). In GNEPMINER, the
dependence of each miner’s strategy set on the other
miners’ strategies is represented by the (linear) constraint
(35b), which includes each miners’ request ei to the ESP.
More specifically, since the miners all share a jointly
convex shared constraint (JCSC), this subgame is known
as a jointly convex game. GNEPMINER can be considered
as a special case of NEPMINER, where h = 1 and (1−h) = 0
due to the given constraint (35b).

4.3.2 Existence of Stackelberg equilibria
Similar with the proof for NEPMINER NE in Theorem 2,
the existence of GNEPMINER NE is easily followed by
capitalizing on the variational inequality theory.
Theorem 6. Given a price set {Pe, Pc} from the SP side,
there exists at least one Nash equilibrium for the non-
cooperative subgame at miner side in standalone mode.

In general, a GNEP could have infinite solutions.
Namely, there are multiple NEs in the follower stage, and
thus there is no efficient algorithm to obtain the global
optimal pricing and computation offloading strategy for
the proposed Stackelberg game. Here, we provide a
distributed algorithm which first computes a unique
variational solution to the GNEPMINER problem and then
finds the corresponding solution to the SP SUBGAME:
GNEPSP problem (defined later) based on the computed
miner Nash equilibrium. Note, there is no guarantee that
the SE produced by Algorithm 2 is a global optima.

Problem 2c (SP SUBGAME: GNEPSP).
maximize Ve=(Pe−Ce)·E, Vc=(Pc−Cc)·C, (36a)
subject to E = Emax. (36b)

4.3.3 Homogeneous Miners with Sufficient Budgets
In standalone mode, solutions to the GNEPMINER are
infeasible to express in a symbolic manner. Fortunately,
we are able to get the closed-form computation offload-
ing solutions for the GNEPMINER in a special case. We
consider a homogeneous-miner case where each miner is
homogeneous with an identical budget B. We assume B
is quite large so that each miner’s cost under optimal re-
quest is affordable. Under this assumption, the constraint
(35c) on budget GNEPMINER can be removed. We are
interested in finding a Nash equilibrium where miners
decide a mixed request, buying computing units from
the ESP and the CSP. Thus, constraint (35c) is modified as



9

xi > 0, yi > 0. The corresponding miner side optimiza-
tion problem can be rewritten as the GNEPHOMOMINER

problem in the following.

Problem 1d (MINER SUB-GAME: GNEPHOMOMINER).

maximize Ui = R ·Wi − (Pe · xi + Pc · yi) (37a)

where Wi =
xi + yi
S

+ β · xiC − yiE
SE

subject to E ≤ Emax (37b)
xi > 0, yi > 0 (37c)

To achieve such an equilibrium in the follower level,
the prices set by the ESP and the CSP matters. Then,
the Eq. (38) gives the relation between Pe and Pc under
which all miners will yield mixed requests.{

Pc < (1− β)Pe

Pc < Pe − βR(N−1)
NEmax

(38)

Given Pe and Pc satisfying the Eq. (38), we compute
the explicit expression of a miner’s request in Nash
equilibrium, as is shown in Eq. (39).{

x = βR(N−1)
N2(Pe−Pc)

y = R(N−1)[(1−β)Pe−Pc]
N2Pc(Pe−Pc)

where Nx ≤ Emax (39)

There is a special case where all computing units of the
ESP are sold out, i.e., n · x = Emax, by setting dedicate
Pe if the following holds:{

Pe − βR(N−1)
EmaxN

< Pc <
R(N−1)(1−β)

NEmax

Pe <
R(N−1)
NEmax

.
(40)

Then the corresponding equilibrium request of each
homogeneous miner is captured by Eq.(41){

x = Emax

N

y = R(N−1)(1−β)
N2Pc

− Emax

N

(41)

Given the NE point at miner side, utilities of the ESP
and the CSP can be rewritten as follows:

Ve =
R(N − 1)β

N
· Pe − Ce
Pe − Pc

(42)

Vc =
R(N − 1)β

N
· Pc − Cc

Pc
· Pe(1− β)− Pc

(Pe − Pc)
(43)

Thus, the optimization problems for the ESP and the CSP
are in the below.

Problem 2d (SP SUBGAME: GNEPSPHOMOMINER).

maximize Ve=(Pe−Ce)·E, Vc=(Pc−Cc)·C, (44a)
subject to E = Emax. (44b)

The Nash equilibrium in the leader level can be cap-
tured by the following equation.Pe = βR(N−1)h

N2[(Pe−Pc)h+Pe(1−h)]

Pc =
CcPe(1−β)−Pe

√
Ccβ(Pe−Cc)(1−β)

Cc−βPe

(45)
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Fig. 4: A toy example for population dynamics of moblie miners.
TABLE 2: Optimal requests of homogeneous miners with sufficiently
large budgets where γ = (N − 1)R/N .

Mode E∗ C∗ S∗

Connected γβ
Pe−Pc

h γ
[
(1−β)Pe−Pc
Pc(Pe−Pc)

+
β(1−h)
Pe−Pc

]
γ(1−β)
Pc

Standalone γβ
Pe−Pc

γ
(1−β)Pe−Pc
Pc(Pe−Pc)

γ(1−β)
Pc

4.4 Comparison of Two Modes
We sum up the main results by comparing these two
modes in a homogeneous-miner case. The explicit ex-
pressions of all miners’ requests in equilibrium are sum-
marized in Table 2, where γ = (N−1)R

N . As can be explic-
itly seen in Table 2, the amount of all miners’ requests
is identical in these two modes, given the same pricing
of the CSP. Thus, the total requested computing units is
only related to Pc. That is, pricing of the CSP decides
the upper bound of the P2P network computing power.
Since h ≤ 1, the ESP would sell more units in standalone
mode than in connected mode. Thus, connected mode
maximizes the profits of the CSP and also lowers the
cost at miner side, while standalone mode maximizes
the ESP. The numerical results provided in Section 6 also
show that the ESP’s equilibrium prices in the standalone
mode is higher compared to those in the connected
mode. Thus, we conclude that the ESP in the standalone
mode gains more profits.

5 DYNAMIC MINER NUMBER SCENARIO

Obviously, in the above analysis, we assume the miner
number N is common knowledge in the proposed
games. In practice, this scenario is applicable to per-
missioned blockchains, where miners are pre-selected
by a central authority or consortium. However, most
blockchains are permissionless, in which anyone can
participate in or retreat from the mining process, so
the previous scenario may not be suitable. For such
situations, we consider a more general scenario by intro-
ducing population uncertainty. Games with population
uncertainty relax the assumption that the exact number
of players is common knowledge. Thus, we model the
miner number, N , as a random variable. In particular,
N follows a Gaussian distribution with mean µ and
variance σ2. We have N ∼ N (µ, σ2) where N = k
with probability P (k) = Φ(k) − Φ(k − 1). Fig. 4 gives
a toy example where the number of miner can be fit to
a Gaussian distribution with µ = 10 and σ2 = 4.
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4 4.2 4.4 4.6 4.8
Price set by the CSP: P

c

140

150

160

170

180

190

200

T
ot

al
 u

ni
ts

 s
ol

d 
by

 th
e 

C
SP

 

 =0.02
=0.04
=0.06
=0.08

(b) Miners’ requests to the CSP.
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(c) Miners’ requests to the SPs

Fig. 5: Homogeneous miners with identical budgets and Pe = 5.
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(b) The CSP’s revenue.
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(c) Total revenue at SP side.

Fig. 6: Homogeneous miners with identical budgets and Pe = 5.

In this scenario, we only consider standalone mode
and derive the miner utility function Ui as below.

Ui(µ, σ
2) = 0.5 · Uhi + 0.5 · U1−h

i (46)

Uhi = Pe · ei + Pc · ci −R ·Wh
i

U1−h
i = Pe · ei + Pc · ci −R ·W 1−h

i

Wh
i =
∑u

k=l
P (k) [(ei+ci)/Sk+β(eiCk−ciEk)/(SkEk)]

W 1−h
i = (1−β)(ei+ci)/Sµ

Sk = Ek+Ck, Ek =
∑k

j=1
ej ,

Cn =
∑k

j=1
cj ,∀k ∈ [l, u]

Thus, the OPMINER problem in this scenario can be
reformulated as in Eq. (47).

Problem 1e (MINER SUBGAME: OPDYNAMICMINER).

maximize Ui(µ, σ
2) (47a)

subject to Pe · ei + Pc · ci ≤ Bi, ei ≥ 0, ci ≥ 0 (47b)

Problem 2e (SP SUBGAME: OPSP).

maximize Ve=(Pe−Ce)·E, Vc=(Pc−Cc)·C (48)

The objective function presented in Eq. (47) is so
complex that it is infeasible to express its equilibrium
expression in a symbolic manner. Therefore, we use
numerical analysis to find equilibria in the network. As
numerical results will later show in Section 6, we find
that with an identical Pe, the uncertainty incurred by
the dynamic population renders miners more aggressive
to buy computing units from the ESP, even beyond its
capability Emax. Besides, given the same price Pc from
the CSP, we find, in expectation, the total computing
units requested by the network are identical with that
requested by a network with exactly µ miners.

Miner x y Times of Winning Probability
m1 5 10 116 16.1%
m2 12 5 141 19.6%
m3 9 9 143 19.9%
m4 1 20 158 21.9%
m5 18 1 162 22.5%

TABLE 3: Miner power, actual winning times, and the corresponding
winning probability

6 SIMULATION

In this section, we first conduct testbed experiments to
verify the practicality of our proposed winning proba-
bility function. Then, numerical examples are provided
to examine how miners figure out their optimal requests
based on the prices of the SPs and how the SPs optimize
their unit prices based on their available power and
the miners’ budgets. We assume the blockchain mining
reward R is fixed as 5000. And we assume that, in con-
nected mode, the ESP’s expected transfer rate 1−h = 0.1
is a common knowledge among miners, and in stan-
dalone mode, the ESP’s resource capacity Emax = 800
is also known by all miners. The communication delay
Dc between the CSP and miners implicitly implies the
value of blockchain fork rate β, as β is linear with Dc.
When we mention the prices set by the SPs, no matter
whether they are optimized or not, Pe > Ce and Pc > Cc
always hold.

6.1 Practicality of Winning Probability Function
The most important part is to validate whether our
proposed winning probability function is in line with
the reality since it is the basis of our paper. To confirm
its practicality, we show the show successful PoW-based
blockchain mining using our own devices to serving as
the CSP and the ESP. We assume there are 5 miners in
total and Table 3 shows their mining power (the values
of x and y just reflect the ratio rather than the exact
assigned computing power). The detailed simulation is
described as below. We implement a Bitcoin mining
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Pc 4 4.2 4.4 4.6 4.8
Connected (3, 38) (5, 33) (7, 32) (10, 26) (16, 20)
Standalone (3, 38) (4, 36) (5, 34) (8, 28) (12, 24)

TABLE 4: H/M model: Connected Vs Standalone

algorithm in python. We start 10 processes running this
algorithm in parallel. Each miner is bound with two
processes and the computing power are allocated to each
process according to Table 3. To model the CSP, we set a
waiting time so that the communication for the value
broadcast among all processes will be delayed in 10
seconds if a qualified value is found by a certain CSP
process. We run the simulation for 720 times (roughly as
Bitcoin mining in 5 days) and show how many times a
miner wins in Table 3. We calculate each miner’s actual
winning probability. For each winning probability, we
apply it into Eq. (4) and Eq. (5) and get a value of β.
The calculated values of β are quite close to 0.07.

Based on the data provided in the above, we can
conclude it is feasible for miners using our proposed
function to estimate his winning probability for com-
puting offloading. On this basis, we further conduct
experiments to confirm our theoretical analysis.

6.2 Miner Subgame Equilibrium
Our experiments evaluate how the corresponding miner
subgame Nash equilibrium is influenced if the pa-
rameter values change. We start with a small mobile
blockchain mining network with only 5 miners with
budgets Bi, ∀i ∈ [1, 5].

6.2.1 Influences from SP side
We first consider the different prices at SP side. Assum-
ing a homogeneous-miner case in the connected mode,
where Bi = 200, ∀i ∈ [1, 5] holds, Fig. 5 obviously
reflects that, if the CSP’s price Pc unilaterally increases,
miners tend to buy more units from the ESP, leading
to more revenue at the ESP side. Similarly, from Fig.
5, we can also conclude that the blockchain fork rate
β caused by the CSP’s communication delay also has
a negative effect on the number of total units sold by
the CSP as well as his total revenue. However, from Fig.
6(c), we find the total revenue at the SP side remains
almost unchanged no matter how prices and communi-
cation delay change.In the same miner configuration, we
analyze the impact of edge operation modes. If the ESP
operates in the standalone mode, we see its computing
capability is positively related to miners’ requests, which
can be easily followed in Table 4. From this table, we can
conclude that, miners are discouraged from buying units
from an ESP working in the standalone mode.

6.2.2 Influences at miner side
Miners also mutually affect each other in this mining
network. Fig. 7 shows the changes on all the miners’
utilities when their budget of Bi varies from 20 to 200.
mi’s requests to the ESP and the CSP keep increasing
and its utility follows a similar trend. However, we can
see that m1’s total requests to both SPs are similar even
with different communication delays at the CSP side.

6.3 SP Subgame

We also study how communication delay and edge
operation modes as well as the SP’s operating costs affect
their equilibrium prices. Fig. 8 depicts the equilibrium
prices of the SPs. The ESP’s prices increase linearly as
its unit operating cost increases. In both modes, the ESP
charges a higher price, because it has less power avail-
able and its communication delay is 0 in the proposed
network. However, its advantage will be shaded if the
communication delay at the CSP side decreases. Besides,
the ESP’s computation limitation also poses an upper
bound on its profits. We also discover that the standalone
mode allows the ESP a higher price while it decreases
the CSP’s price and its profits.

According to numerous experiments, we find that the
total amounts of sold-out computing units are always
approximately equal, if we allow a sufficiently large
budget and a fixed number of miners. Besides, we can
see that the SP-side welfare is bounded by the total
miner budgets in the beginning. However, as the budgets
increase to a certain degree, the total welfare of these two
SPs are positively related to the mining reward.

6.4 Population Uncertainty

In Section 5,we consider the miner number as a variable
subject to a specific Gaussian distribution. To capture the
dynamics of the miner number, we use a reinforcement
learning (RL) framework to allow miners to learn the
population uncertainty and hence improve their strate-
gies. We conduct our simulation within a small mining
network of 5 homogeneous miners. We define a time
period T as adding 50 blocks. During T , prices from
these two SPs are fixed and the miner number changes
subject to N (µ, σ2 ). The reason why we choose T = 50
in our all experiments is that miners’ strategies converge
after at most 50 blocks added even in such an unstable-
population mining network. Once the miners’ behavior
converges, both the ESP and the CSP update their pricing
strategies adaptively. These two steps repeat until a fixed
point for both sides is reached. We also apply such a
process to a fixed number scenario where N = µ.

In Fig. 9, all unfilled points are the results produced
by the RL framework, while all lines are computed
using our proposed model. The results of our model
are anastomotic with the learned strategies. In Fig. 9(a),
we conclude that the uncertainty caused by the miner
number renders each miner to buy more units from the
ESP, making the total requests sometimes can exceed the
ESP’s capability. Besides, we also find the variance also
affects a miner’s request to the ESP, i.e., a larger variance
leads to a more ESP-prone miner, according to Fig. 9(b),
where N (5, 0.25) represents a normal distribution of
which the mean is 5 and the variance is 0.25.
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(a) A miner’s request to the ESP.
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(b) A miner’s request to the CSP.
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(c) A miner’s request to the both SPs.

Fig. 7: mi’s budget B1 varies from 20 to 200, with 5 miners in total.
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Fig. 8: The CSP’s unit cost is 0.5, while the ESP’s unit cost changes.

7 EXTENDED LEADER STAGE WITH SINGLE
CSP AND MULTIPLE ESPS

Our previous discussion focuses on a simplified leader
setting with a single ESP. In reality, instead of being
under control in a certain place, edge resources should
be deployed dispersedly and pervasively in order to
provide mobile users with low-latency services. In this
section, we extend our base model by considering multi-
ple ESPs independently deploying their own edge com-
puting data centers. There are M ESPs in total and each
is denoted as ESPp. Each ESPp has its own resource
capacity Ekmax and unit price P pe . We assume that each
miner mi has a preferred ESPp to which mi always
sends requests. When ESPp is overloaded, it may have
two choices. If there exists some ESPq that has idle
resources and is willing to help ESPp by offering an
assisting price, denoting P qpe , which is lower than P pe ,
then ESPp can send mi’s request to ESPq by paying
ESPq P qpe for each unit, so that mi still enjoys zero-
delay service while ESPp also earns money with the unit
profit of P pe − P qpe . Otherwise, ESPp will transfer mi’s
request to the CSP in the connected mode, or reject mi’s
request in the standalone mode. (It is possible that ESPp
may turn to several ESPs for help.) In this case, edge
computing resources can be fully utilized and miners
have high chance to access to high-speed services.

We can consider that ESPs pool their resources to-
gether to jointly serve N miners. Thus, those M ESPs
forms a coalition. To keep the coalition stable, the assist-
ing price between any mutual-assisting pair is quite im-
portant. Instead of calculating P pe −P qpe for each mutual-
assisting pair ESPq and ESPp, we apply cooperative
game theory to distribute total revenues among all ESPs.
On the premise that the ESP set is not partitioned, the
Shapley value is popularly used as a fair distribution of
the grand coalition’s worth to individual ESPs.

8 RELATED WORK

8.1 Mobile Blockchain Applications
There exist two different categories of research in the
field of blockchain applications in wireless networks.
The first category focuses on blockchain protocols [4–
9] to eliminate overhead while maintaining most of
blockchain’s security and privacy. These research works
are beneficial for secure and decentralized data commu-
nication in wireless networks. Instead of designing and
implementing light-weight blockchain-based protocols,
the second category [10–16] investigates pricing and re-
source management schemes for supporting blockchain
applications in a mobile environment. The focus here
is on the mining under the PoW consensus [1], which
results in the competition among miners to receive a
mining reward. Due to limited computing resources of
their mobile terminals, miners offload the PoW computa-
tions to local edge servers [10, 11]. In this paper, we also
study the problem of pricing and computation offloading
in mobile blockchain mining under the PoW consensus.
However, we consider a more complicated assumption
in which miners can perform a two-layer computation
offloading to either/both of the ESP and the CSP.

8.2 Cloud Computing and Edge Computing
Cloud computing is becoming the platform of choice for
a number of applications due to the advantages of high
computing power, low service cost, high scalability, ac-
cessibility, and availability. Meanwhile, the success of the
Internet of Things and rich cloud services have helped
create the need for edge computing, in which data
processing occurs in part at the network edge, rather
than completely in the cloud. Edge computing could
address concerns such as latency, mobile devices’ lim-
ited battery life, bandwidth costs, security, and privacy.
Computation offloading happens in both CC [17, 18] and
EC [19, 20], which concerns what/when/how to offload
users’ workload from their devices to the edge servers or
the cloud. One common use case on the EC exploitation
is for IoT purposes [21–23].

8.3 Stackelberg Game in Offloading Mechanism
Stackelberg Game is a widely-used model in the field
of offloading mechanisms. A large body of existing lit-
erature [24–31] focuses on minimizing offloading users’
computation overhead in terms of energy and latency.
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To this end, researchers have developed distributed
decision making methodologies. In the field of mobile
blockchain mining offloading [10, 11, 32], there are few
works and most of them are in the single-leader scenario
where mobile miners only offload their computation to
an SP, e.g. fog. In our paper, we consider a multi-leader
multi-follower Stackelberg game to jointly maximize the
profit of the SPs and the individual utilities of mo-
bile miners. We assume a resource-limited edge layer
working in either stand-alone or connected operation
mode with the cloud layer. In this paper, we study the
miner subgame as an N -player Nash game. In reality,
the number of miners is large, and modeling interac-
tions between SPs and individual miners is difficult.
Meanwhile, the miner set is also not fixed in the real-
world, indicating that the value of N as well as the
mining power in the entire network changes over time.
To efficiently find the optimal prices for SPs, we can
apply the mean field game theory and reduce a large
number of miners to a single mean-field miner. We
consider this extension as one of our future works.

8.4 Reinforcement Learning in Incomplete Informa-
tion Game
Although analysis in game theory always assumes the
observable strategies of other players [33,34], in real-
ity, it is more realistic that a player’s action is the
private information which is unobservable or partially
observable by others. Meanwhile, each player’s utility
function combined with constraints also cannot be fully
observed by others. Given this incomplete information
setting, analyzing and finding the equilibrium in a game
becomes more difficult. Reinforcement learning [35-40]
is a technique that allows a player to learn behavior
through trial-and-error interactions with other players.
During the learning process, a player builds his own
belief on the actions of other players’ and refines his
strategies simultaneously. In our proposed game, leaders
(the CSP and the ESP) can estimate the total budgets
of all miners, and followers (miners) can probe other
miners’ strategies as well as the ESP’s capacity through
the learning properties of their interactions. In addition
to applying game-theoretical analysis on the proposed
game, we also develop a reinforcement learning frame-
work in our evaluation, allowing all players to select
their best response strategies and update their beliefs
about unobservable actions of others through repeated
interactions with each other in a stochastic environment.
This framework confirms our proposed model.

9 CONCLUSION
In this paper, we have proposed a Stackelberg game
between the SPs for optimal price strategies and among
the mobile miners for optimal computation offloading
requests. We propose two models: a hit/miss model
and a capacity(Emax) model to characterize the resource
limitation on the ESP side. Two practical edge computing
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Fig. 9: Miner number: fixed vs dynamic.

operation modes are investigated, i.e., the ESP is con-
nected to the CSP or standalone. First, we characterize
the miner number as a constant in both modes. We
discuss the existence and the uniqueness of Stackelberg
equilibrium in the proposed games and provide algo-
rithms to achieve SE point(s). Our analysis indicates that
the connected mode discourages miners from buying
computing resources from the ESP. Then, we study the
impact of a dynamic miner number. Interestingly, we
find that uncertainty incurred by the dynamic popula-
tion renders miners more aggressive to buy computing
resources from the ESP. Numerical experiments based
on a reinforcement learning framework have been con-
ducted to further confirm our analysis.
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