LightDefender: Protecting PIN Input using Ambient Light Sensor

Jiacheng Shang and Jie Wu Center for Networked Computing Dept. of Computer and Info. Sciences Temple University

Personal Identification Number (PIN)

- A numeric or alpha-numeric password used in the process of authenticating a user accessing a system
- Applications

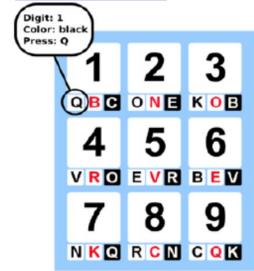
PIN Security

- Context related PINs
 - E.g. birthday data
 - Largely decreasing the randomness
- Shoulder-surfing attack
 - Using eyes or cameras
- Side-channel attacks
 - Acoustic signal [1]
 - Motion sensor [2]

[1] KeyListener: Inferring Keystrokes on QWERTY Keyboard of Touch Screen through Acoustic Signals, INFOCOM 2019
[2] WristSpy: Snooping Passcodes in Mobile Payment Using Wrist-worn Wearables, INFOCOM 2019

Existing solutions

- Challenge-response-based
 - User is given a random challenge
 - Input the correct response that is calculated using the PIN
 - Attackers can observe the challenge
 - The attacker can gather useful information by repeating the challenge procedure

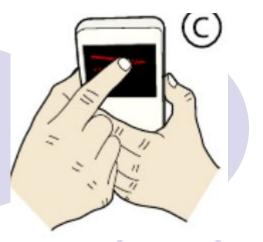


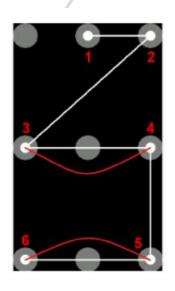
Existing solutions

- Enhanced Challenge-response-based
 - Preventing attackers from observing challenges
 - Using secure secondary channel
 - Low usability
 - High learning cost

Existing solutions

- Indirect-input-based
 - Inputting PIN on a secondary interface
 - Altering original interaction methods of PIN input
- Input-behavior-based
 - Leveraging biometrics in input behavior
 - Only considering limited features in the time domain





Attack Model

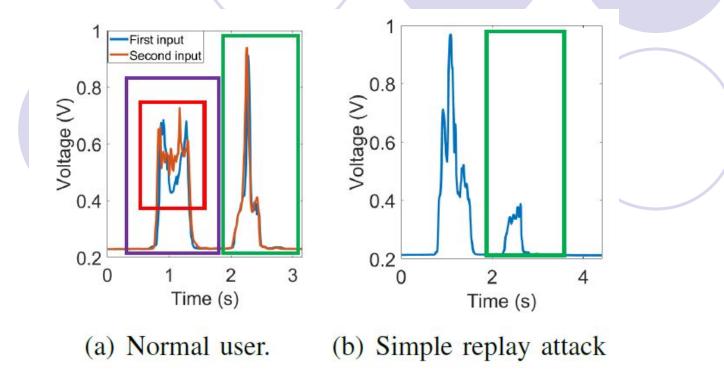
- Attackers aim to break PIN-based systems
- The capabilities of the attackers are
 - Simple PIN replay attack
 - Attackers only know the victim's PIN
 - Strong PIN replay attack
 - Attackers only know the victim's PIN
 - Attackers can also observe and imitate victim's PIN input behavior

Research Goal and Insights

- Objective
 - Do not alter original interaction method of PIN input
 - Can effectively defend against shoulder-surfing attacks
- Basic idea
 - Embedding a light sensor on the PIN pad
 - PIN input will impact the amount of received light
 - Checking whether the newly detected light signal match well with those of the normal user

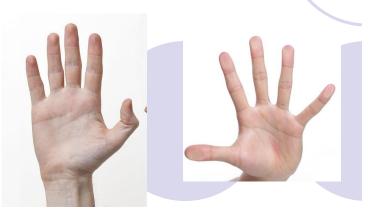
Research Goal and Insights

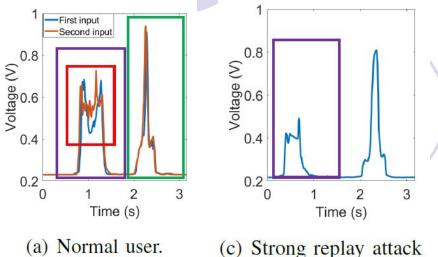
- Insights against simple PIN replay attacks
 - Different users have different input behaviors for the same PIN



Research Goal and Insights

- Insights against strong PIN replay attacks
 - Biological differences exist among hands of different people



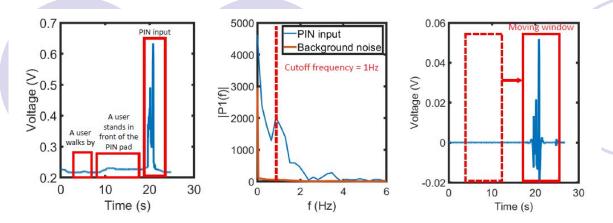


Challenges

- Detecting PIN input from raw light intensity signal
- Extracting useful features from detect PIN input
- Selecting proper classification model to determine whether PIN input is from the normal user

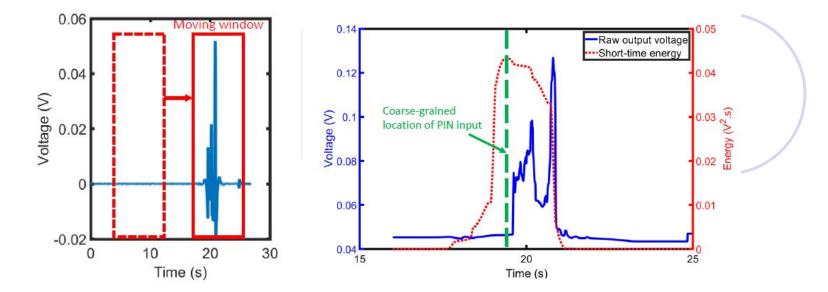
Detecting PIN input

- PIN input generates much larger variance to raw light signal compared with environmental noise
- The influence of PIN input lies at low frequency

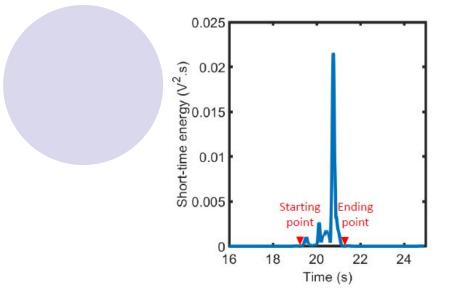


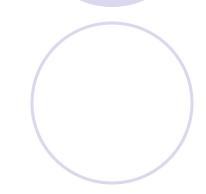
(a) The raw output volt- (b) Fast Fourier trans- (c) The output signal of age signal. form of the raw signal. high-pass filter.

- Detecting PIN input
 - Detecting the starting point by studying the short-time energy of light signal



- Detecting PIN input
 - The ending point can be detected using a threshold
 - Threshold: average light intensity value in the environment





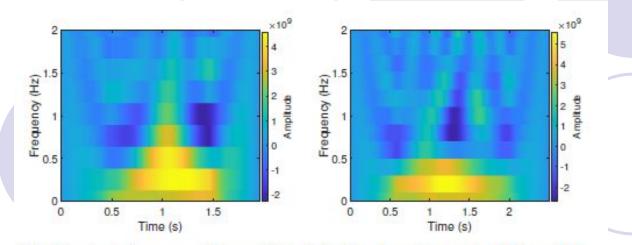
- Feature extraction
 - 34 different features in time, frequency, and time-frequency domains

Domain	Features	
Time	Maximum, average amplitude, peak-to-peak distance, variance, root-mean-square (RMS) level, average dynamic time wrapping (DTW) distances	
Frequency (fast Fourier transform)	Skewness, kurtosis, mean value, median value, variance, and peak-to-peak distance	

- Feature extraction
 - 34 different features in time, frequency, and time-frequency domains

Domain	Features
Time-frequency	Maximal overlap discrete wavelet transform: mean value, peak-to-peak distances, RMS, and variance
	Wigner-Ville distribution location of the minimal amplitude and its amplitude value, and standard deviation of the energy distribution for each frequency frame under 2 Hz

- Feature extraction
 - Example: Wigner-Ville distribution

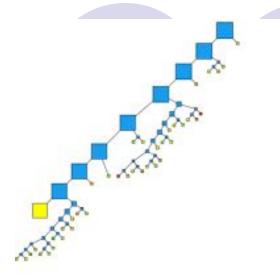


(b) The low-frequency Wigner-Ville (c) The low-frequency Wigner-Ville distribution of the victim. distribution of the strong attacker.

$$WVD_G(t,f) = \sum_{k=-n}^{n} G(t+\frac{k}{2})G^*(t-\frac{k}{2})e^{\frac{-j2\pi fk}{n}},$$
 (3)

Classification

- Binary classifier based on Multiple Additive Regression Tree
 - Robust to various types of features with different scales and units
 - Features extracted from different domains may not be totally independent of each other

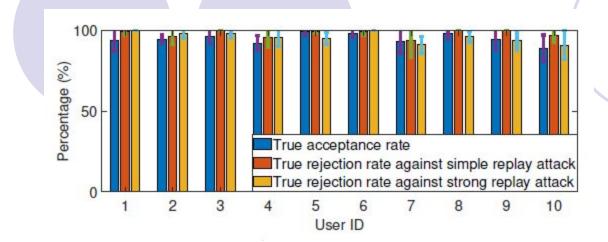


 $F_m(\mathbf{x}) = F_{m-1}(\mathbf{x}) + b_m h(\mathbf{x}; \mathbf{a})$

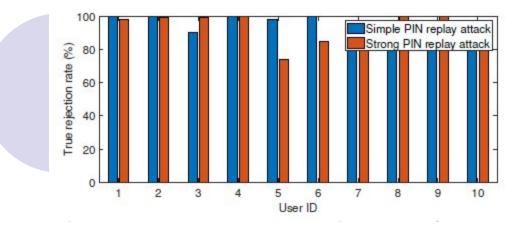
Prototype

- Five components
 - A prototype PIN pad (made by cardboard)
 - An LDR-based ambient light sensor
 - An analog-to-digital converter
 - A light source (WORKRITE ERGONOMIC VERANO LED array)
 - A data sink and processing center (Raspberry Pi 3 b+)

- Overall performance (with attackers' data)
 - Average true acceptance rate of 95% for legitimate users
 - Average true rejection rate of 98% for simple attackers
 - Average true rejection rate of 96% for strong attackers

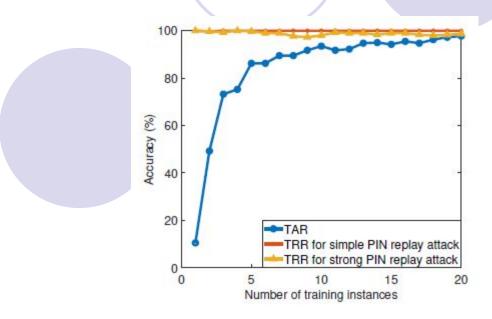


- Overall performance (without attackers' data)
 - Average true rejection rate of 96.8% for simple attackers
 - Average true rejection rate of 93.6% for strong attackers

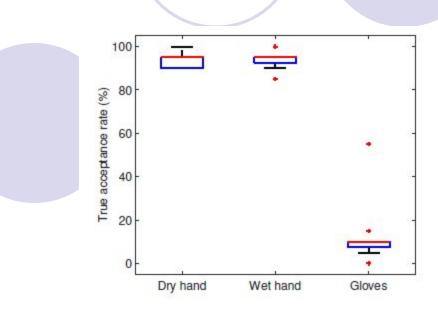


Impact of training dataset size

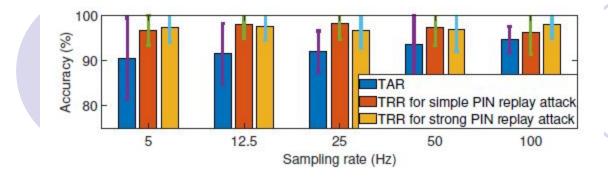
• High performance when only 10 instances are available



- Impact of hand conditions
 - Work well without gloves



- Impact of sampling rates
 - High performance when sampling rate is only 12.5Hz



Conclusion

- Propose a new system to defend against PIN replay attacks by leveraging the biometrics in the received light intensity that is influenced by PIN input
- Experimental results show that LightDefender can achieve an average true acceptance rate of 95% for normal users and correctly reject two types of PIN replay attacker with average true rejection rates of at least 93.6%

