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Abstract—Electric vehicle (EV) is a promising technological
tool for diminishing environmental impact caused by gasoline-
consumed transportation. Due to the limited battery capacity,
EVs need to be charged frequently in a static charging station and
thus waste large amounts of time being out of service. Research
previously conducted in this topic have proposed solutions for
deployment of charging lanes that can charge in-motion EVs.
However, they cannot guarantee that every EV can be operational
in their respective entire route. Meanwhile, we observe that
EVs have repetitive motions and may cyclically encounter with
each other which no prior research having been investigated.
In addition, the development on the circuit design of energy
transmit antennas can render EVs to be able to bi-directionally,
highly efficiently transfer energy between themselves. These two
observations enable us to distribute energy among EVs in a
collaborative and interactive manner. We consider the cases of
both loss-less and lossy energy transfer between EVs. In both
cases, we formulate the problem of minimizing the time needed
(or energy transferred) to reach a given energy distribution into
a series of linear programming problems. When compared with
a state-of-the-art algorithm, extensive simulation results show
that the proposed algorithms can reduce the balancing time and
energy loss by up to 70.60% and 36.59%, respectively.

I. INTRODUCTION

With environmental concern increasing, novel energy tech-
nologies like electric battery have been developed along with
the rapid evolution of electric vehicles (EVs) in the past few
decades. The utilization of EVs has the potential to reduce
greenhouse gases, which are largely caused by gasoline con-
sumption of petrol-based vehicles [1][2]. However, due to the
limitation of the battery capacity, EVs can only be operational
for restricted distance until being charged by wired stationary
chargers. In fact, by using traditional wired charging, EVs need
to be frequently charged in static charging stations, thus waste
large amounts of time being out of service.

To satisfy metropolitan transit demands, EVs must be
continuously operable without recharging downtime [3]. With
recent breakthroughs on wireless energy transfer [4] for in-
motion EV charging, we can use wireless energy transfer to
charge an EV when the EV is moving over a charging lane
installed in the road [5]. In this way, EVs can be continu-
ously operational. However, charging lanes are very expensive
and thus cannot be widely deployed. Yan et al. proposed
CatCharger [6] that solves the problem of deploying charging
lanes with as less deploying cost as possible. However, in
CatCharger, some EVs may visit charging lanes less frequently

than others, which may cause them receive less energy that
cannot enable them to work through the residual route. In this
case, these EVs must change their routes to visit more charging
lanes or stations, which is not desirable for metropolitan
transit.

We are motivated by the following question: instead of
relying on static charging stations or lanes, why not leverage
the contacts between EVs to transfer energy between them so
as to reach a desirable energy distribution? We have two key
observations that inspire our work.

First, the development on the circuit design of energy
transmit antennas can render an EV be able to bi-directionally,
and highly efficiently, transfer energy [7][8]. Therefore, an EV
becomes an energy transmitter as well as an energy receiver,
which enables it to share energy with other EVs.

Second, Liu and Wu [9] suggested that most real objects
have cyclic motion routines. For example, a factory produces
a fixed amount of products in fixed time points and an
EV is regulated to periodically transport these products to
another fixed spot. Therefore, it is reasonable to assume that
the movements of EVs have cyclic patterns. We use cyclic
mobispace to denote such a scenario where EVs have this
kind of predictable pattern. It is then feasible and reasonable
to transfer energy from EVs that visit charging lanes frequently
to those that visit charging lanes rarely.

These two observations enable us to distribute energy
among EVs in a collaborative and interactive manner. We
consider the cases of both loss-less and lossy energy transfer
between EVs. In both cases, we formulate the problem of
minimizing the time needed (or energy transferred) to reach a
given energy distribution into a series of linear programming
(LP) problems. We also show how to improve and generalize
the proposed solutions. Our main contributions are summa-
rized here:

• To the best of our knowledge, this is the first study of
collaborative interactive wireless charging in a cyclic mo-
bispace. We present a new problem statement regarding
energy interaction.

• We consider the cases of both loss-less and lossy energy
transfer between EVs and propose LP-based solutions to
find the minimum time needed (or energy transferred) to
reach a given energy distribution.
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Fig. 1: An example of cyclic mobispace

TABLE I: Cyclic encounters

Time EVs
5 v1, v3

30 v1, v3
34 v1, v2
39 v2, v3

• We evaluate our proposals using extensive simulations in
several traces, and the results show the advantages of the
proposed algorithms.

The rest of the paper is organized as follows: We first give
brief background that motivates our problem and introduce the
model in Section II. Then we present solutions for loss-less
and lossy energy transfer in Sections III and IV, respectively.
Extensions are discussed in Section V. Evaluation is given
in Section VI. We survey related work in Section VII and
conclude in Section VIII.

II. MODEL AND PROBLEM

A. Cyclic Mobispace

Human activities are usually cyclic [10][11], which makes
vehicles inclined to have cyclic or repetitive mobility, since
they are correlated with our activities and demands. We use
cyclic mobispace to denote a scenario where vehicles have
cyclic mobility and interaction patterns. More formally, a
cyclic mobispace is a Euclidean space where EVs move in
cyclic trajectories and thus interact with other EVs at fixed
time slots in each cycle.

We denote by C the common motion cycle for all EVs.
For example, the common motion cycle C for buses is a day.
During each day, a bus is regulated to run in a fixed route
at fixed time, and its contacts with other buses can be easily
estimated. We divide time into small time slots of equal length.
For a pair of vehicles, if their distance is no larger than the
wireless charging distance at time slot t, they can interact with
each other and exchange energy in this time slot.

Fig. 1 is a sample of a cyclic mobispace. Table I shows the
encounters of the EVs in Fig 1 within one common motion
cycle. In this figure, the three nodes1 represent three EVs
which do cyclic motion in their trajectories drawn with the
dashed lines. As shown in this figure, vehicle v1 and v3
uniformly move in their triangular and circular trajectories
respectively with a cycle time of 25 time slots each, while
vehicle v2 uniformly runs along its rectangle trajectory with
a cycle time of 50 time slots. When the distance of the
EVs is within their wireless charging range, the two EVs
encounter each other and are capable of transmitting and
receiving energy with each other. For example, in Fig. 1,
at time slot 5, the distance between v1 and v3 is smaller
than the charging distance, so they can share and interact

1We will use node and EV interchangeably throughout the paper.
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Fig. 2: The time-space graph of Fig. 1

energy at this time slot. Meanwhile, since the EVs do periodic
motion along their trajectories, they repeat their movements
and encounter patterns in the common motion cycle, which is
the least common multiple of all cycles (e.g., C = 50 time
slots in Fig. 1).

We denote a cyclic mobispace by a time-space graph G =
(V, F,C), where V is the set of nodes representing EVs, F is
the set of edges which represents the interaction time slots in
a cycle C. Each edge e ∈ F is a tuple (vi, vj , tk) indicating
that EVs vi and vj have a contact at time slot tk.

We transform Fig. 1 into a time-space graph G shown in
Fig. 2, where each edge represents an encounter between two
corresponding vehicles. For example, v1 and v3 have two
edges labelled 5 and 30, which indicates these two EVs meet
at time slot 5 and 30 in one cycle.

B. Wireless Charging between EVs

Given a time-space graph G, each node represents an EV.
Whenever two EVs meet, they can interact by exchanging
energy between their respective battery cells bi-directionally.

We consider a set of n EVs V = {v1, ..., vn}. Obviously,
due to the nature wireless energy technology, any transfer of
energy ε induces energy loss. Similar to [7], we assume that
the energy loss function L(·) satisfies a linear law:

L (ε) = β · ε, (1)

where β ∈ (0, 1) is the wireless charging efficiency between
two vehicles. As the EVs may remain moving when they
encounter, the wireless charging efficiency keeps changing
likewise. To simplify our problem, we assume β remains stable
when EVs interact.

Therefore, if EVs vi and vj interact at the beginning of the
t-th time slot (denoted by t−) and vi is planned to transfer
energy ε to vj , the new energy levels of vi and vj at the end
of this time slot (denoted by t+) become

Et+ (i) = Et− (i)− ε
Et+ (j) = Et− (j) + (1− β) · ε

(2)

Whenever two vehicles interact, they can only transmit and
receive limited energy so that their energy after interaction is
neither too much to exceed the battery capacity nor too little
to support their respective remaining movements. To ensure
this, we introduce two energy thresholds: Emax and Emin;
whenever there is an energy transfer, we make sure that the
energy of either vehicle after interaction is between Emin and
Emax. In general, we set Emax to be the capacity of a battery



cell, and Emin to be the minimum energy that can support the
remaining movement of a vehicle until the next cycle.

C. Problem

We assume that the initial energy level of vehicle vi at the
beginning is E0(vi). In order to focus on the collaborative
interactive charging between EVs, we assume the initial energy
level of an EV represents the overall energy it can obtain from
charging stations or lanes during the time period of interest.

Definition 1: Energy distribution — The energy distribution
Dt of n EVs at time slot t is defined as the vector

[
Et(v1)∑
iEt(vi)

,
Et(v2)∑
iEt(vi)

, ...,
Et(vn)∑
iEt(vi)

]

.
Now we can present our problem:
Problem 1: Given a cycle mobispace denoted by G =

(V, F,C), and the initial energy level E0(v) of every EV v
in V , how can we get an interaction plan X to reach a given
energy distribution D = [d1, d2, ..., dn], where

∑
di = 1?

III. LOSS-LESS ENERGY TRANSFER

In this section, we focus on minimizing the time needed
to reach a given energy distribution in the case of loss-less
energy transfer, i.e., β = 0 in Eq. (1).

A. Formulation

When two EVs meet to reach a given energy distribution,
it is not enough to just take current contact into account.
Future contacts and energy thresholds should also be taken
into consideration. We use the example in Fig. 3 to illustrate
this. There are 4 EVs with Emin = 10 and Emax = 100.
The contacts in a common motion cycle C = 50 are shown
in this figure. Without loss of generality, we present several
examples throughout this paper to reach a uniform distribution
of energy, i.e., D = [ 1n ,

1
n , ...,

1
n ].

Capacity thresholds should be taken into consideration.
When v1 and v3 encounter with each other at time slot
9, although we know the final energy level of them is
90+18+90+90

4 = 72, we cannot directly let v1 transfer 18 units
of energy to v3, because v3 cannot store so much energy.

Future contacts should be considered. To reach a uniform
energy distribution in Fig. 3, all of v1, v3, and v4 should
transfer (directly or indirectly) their respective energy to v2,
because only E0(v2) is below the average energy level, which
is 72. Since there is no direct contact between v1 and v2, v1
has to rely on v3 to indirectly transfer its energy to v2. Hence,
when v1 and v3 encounter with each other at time slot 9, a
simple idea is to let v1 transfer energy to v3. However, in
the optimal solution, which is shown in Table III, the energy
transfer happens in the opposite direction.

These findings prohibit us from designing a combinatorial
algorithm. Hence, we resort to linear programming.

We use Xt(i, j) to denote the amount of energy transferred
from vehicle vi to vehicle vj at the t-th time slot. All these
Xt(i, j)s constitute an interaction plan X . Note that since
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Fig. 3: A 4-node example used in the
rest of the paper

TABLE II: Initial energy levels

EV E0(vi)
v1 90
v2 18
v3 90
v4 90

wireless energy transfer only happens when two vehicles meet,
we know

Xt(i, j) = 0, ∀(vi, vj , t) /∈ F. (3)

The energy level of vehicle vi at the end of time t is its
initial energy plus the energy that is received from other EVs
minus the energy that is transmitted to other EVs. Et(vi) can
be denoted as:

Et(vi) = E0(vi) +
∑

t′∈[0,t]
(vj ,vi,t

′)∈F

Xt′(j, i)−
∑

t′∈[0,t]
(vi,vj ,t

′)∈F

Xt′(i, j). (4)

Our goal in this loss-less case is to minimize the number
of time slots needed to reach the energy distribution D =
[d1, d2, ..., dn], where

∑
di = 1. Denote by T the number of

time slots needed. We can formulate this problem as follows:

[Loss-Less Problem, LLP]

min T (5a)
s.t. Emin ≤ Et(vi) ≤ Emax, ∀t ∈ [0, T ] ,∀vi ∈ V (5b)

ET (vi) = di
∑
vi∈V

E0(vi), ∀vi ∈ V (5c)

Xt(i, j) ≥ 0, ∀t ∈ [0, T ] ,∀(vi, vj , t) ∈ F (5d)

Eq. (5b) indicates the energy restriction for every vehicle at
every time slot; Eq. (5c) ensures that the energy distribution at
time slot T is the designed energy distribution D. However,
this optimization problem is not a standard linear program-
ming (LP), which can be easily solved using well-developed
methods.

In the following, we propose to transform LLP into a series
of LP problems (the number of which is bounded) to find the
minimum time T .

B. Solution

We introduce LAL (shown in Alg. 1) to solve this problem.
The input variable B is a parameter we introduced to restrict
the searching space in LAL, in order to avoid our algorithm
from infinite searching loop. The BinaryFindT algorithm re-
ferred in LAL is shown as Alg. 2.

The key observation that enables us to develop LAL is that
LLP with a fixed T is a standard LP problem. Based on this,
we propose to employ a binary search to find the minimum T
by checking whether Eq. (6) has a feasible solution. Given a
fixed T , Eq. (6) can be solved efficiently using lpsolve [12].



Algorithm 1 LP-based Algorithm for LLP (LAL)
Input: time-space graph G(V, F,C), initial energy levels

E0(vi), Emin, Emax, B
Output: T , X
1: T ← C, cnt← 0
2: if LLP(T , Emin) has a feasible solution then .

lpsolve [12]
3: (T,X)← BinaryFindT(T , Emin, cnt)
4: else
5: while cnt < B do
6: T ← 2T , Emin ← 2Emin, cnt← cnt+ 1
7: if LLP(T , Emin) has a feasible solution then
8: (T,X)← BinaryFindT(T , Emin, cnt)
9: if cnt ≥ B then

10: return cannot reach the given distribution
11: return T , X

LAL starts by checking whether Eq. (6) has a feasible
interaction plan when T is equal to C, the common motion
cycle (line 2). If yes, we use a binary search (Alg. 2) to find
the minimum T between 0 and C that makes Eq. (6) have a
feasible interaction plan. Otherwise, we check whether Eq. (6)
with T = 2C has a feasible interaction plan, and either use
Alg. 2 to search between C and 2C, or continue increase T .
In this algorithm, we need to pay attention to three issues.

[LLP(T ,Emin)]

min 0 (6a)
s.t. Emin ≤ Et(vi) ≤ Emax, ∀t ∈ [0, T ] ,∀vi ∈ V (6b)

ET (vi) = di
∑
vi∈V

E0(vi), ∀vi ∈ V (6c)

Xt(i, j) ≥ 0, ∀t ∈ [0, T ] ,∀(vi, vj , t) ∈ F (6d)

First, in LAL, if we cannot find a feasible interaction
plan with current T , we will double it (line 6 in Alg. 1).
Correspondingly, the minimum energy needed for an EV to
support its movements is also increased, so we double Emin

every time we double T (line 6 in Alg. 1).
Second, we constrain the searching space in LAL by param-

eter B. We currently set B to be 3, i.e., we search the optimal
value of T within the range between 0 and 23C = 8C. When
the counter cnt increases to B, i.e., LLP cannot have a feasible
interaction plan that needs time within 2BC, we report that
LLP cannot reach the given distribution (lines 9-10 in Alg. 1).

Third, in the binary search phase (lines 7-13 in Alg. 2),
when will the algorithm stop searching? Our problem is
different from a traditional binary search. We know two EVs
can exchange energy only when there is a contact (i.e., an
edge in the time-space graph denoting the cyclic mobisapce).
Therefore, although we search T in the range of [0, 2BC], the
final value of T must be in the form of

T = kC + t,

Algorithm 2 BinaryFindT
Input: T , Emin, cnt
Output: T , X
1: th ← T
2: if cnt = 0 then
3: tl ← 0
4: else
5: tl ← 2cnt−1 · C
6: tm ← (th + tl)/2
7: while (vi, vj , t) ∈ F and tl < t < th do
8: if LLP(tm, Emin) has a feasible solution (T ′, X ′) then
9: T ← T ′, X ← X ′ . Save results

10: th ← tm
11: else
12: tl ← tm
13: tm ← (th + tl)/2

14: return T , X

TABLE III: Interation plan for Fig. 3 using LAL

Time Interaction Transmitted
energy

Energy levels
(v1, v2, v3, v4)

0 (90, 18, 90, 90)
9 v3 → v1 8 (98, 18, 82, 90)

20 v4 → v3 18 (98, 18, 100, 72)
37 v3 → v2 54 (98, 72, 46, 72)
59 v1 → v3 26 (72, 72, 72, 72)

where

k ∈ {0, 1, 2, ..., 2B − 1}, and t ∈ {t|∃(vi, vj , t) ∈ F}.

Hence, when there is no edge that occurs between the current
search range [tl, th], we do not need to continue searching
(line 7 in Alg. 2).

C. Example

For example, Table III is the energy interaction plan of
Fig. 3 using LAL when D = [ 1n ,

1
n , ...,

1
n ]. In general, each

of v1, v3 and v4 needs to transmit 18 units energy to v2.
However, v1 can only interact with v3 at time slot 9 when
v3 can only store 10 more units energy (since Emax = 100).
Therefore, it is infeasible to distribute the energy evenly among
nodes within only one cycle. When we expand the graph to
two cycles, v1 has one more opportunity to interact with v3
at time slot 59. Hence, v1 can transfer 18 units energy to v3
within these two encounters2.

D. Summary

For the running time of LAL, in the worst case, we need to
solve the LLP(T,Emin) problem B times until we get the first
feasible solution. Then we have to run BinaryFindT(T , Emin,
B − 1) with T ∈ [2B−1C, 2BC] to search for the minimum
time needed. Therefore, we have to solve the linear program-
ming problem B+log(2BC−2B−1C) = B+log(2B−1C) =
2B − 1 + logC times in the worst case.

2Note that, the optimal solution shown in Table III obtained by LAL makes
v3 transfer 8 units energy to v1 at time slot 9 and v1 transfer 26 units energy
to v3 at time slot 59.



As we mentioned before, we use the lpsolve tool to solve
the linear programming problem. lpsolve is a free linear
programming solver based on the revised simplex method [12].
Although linear programming may require an exponential
number of steps in the worst case, in theory LP can be solved
within a polynomial time [13]. Denote by O(f(x)) the time
complexity of solving a LP problem with an input of size x
in binary format, then the overall time complexity of LAL is
O((2B + logC)f(x)).

In this section, we formulate the collaborative interactive
wireless charging problem in the loss-free case and design an
LP-based solution LAL.

IV. LOSSY ENERGY TRANSFER

In this section, we consider a more general case, where
every transfer of energy ε induces non-zero energy loss βε,
0 < β < 1.

A. Formulation

Energy loss complicates the problem in three aspects.
First, when EVs interact with each other to collaboratively

reach a given energy distribution, energy loss happens. Mini-
mizing the time needed to reach an given energy distribution
may increase energy loss. Hence, in contrast to minimizing
the number of time slots, we seek to minimize the energy loss
in this section. Note that energy loss is always proportional to
energy transferred. Our goal is equivalent to minimizing the
energy transferred to reach a given energy distribution.

Second, energy loss makes the overall energy of all EVs
decrease. Unlike the loss-less case where we know the final
energy level of each EV before we run our algorithm, in this
lossy case, we cannot know the final energy level of each EV
until we find an exact interaction plan.

Third, when two EVs have a contact, energy can be trans-
ferred in two directions in the loss-less case. However, in the
lossy case, to minimize the energy loss, energy should be only
transferred in one of the two directions.

In the light of these issues, we now present the problem
formulation. When two EVs interact at time slot t and vehicle
vi transfer Xt(i, j) energy to vj , the energy level of vehicle
vi decreases by Xt(i, j) while the energy level of vehicle vj
only increases by (1− β)Xt(i, j). Therefore, the energy level
of vehicle vi at the end of time t is:

Et(vi) = E0(vi)

+ (1− β)
∑

t′∈[0,t]
(vj ,vi,t

′)∈F

Xt′(j, i)−
∑

t′∈[0,t]
(vi,vj ,t

′)∈F

Xt′(i, j). (7)

Because of the energy loss, the available energy in the
network decreases when there is an energy transfer between
EVs. Hence, the total energy level of n EVs at time slot t is:∑

vi∈V
Et(vi) =

∑
vi∈V

E0(vi)− β
∑

t′∈[0,t]
(vi,vj ,t

′)∈F

Xt′(i, j). (8)

Our goal in this lossy case is to minimize energy loss to
reach the given energy distribution D = [d1, d2, ..., dn], where

TABLE IV: Interaction plan for Fig. 3 by simply solving LYP(C,Emin)

Time Interaction Transmitted
energy

Energy level
(v1, v2, v3, v4)

0 (90, 18, 90, 90)
9 v1 → v3 46.15 (43.85, 18, 126.92, 90)
9 v3 → v1 26.92 (65.39, 18, 100, 90)
37 v3 → v2 34.62 (65.39, 45.7, 65.38, 90)
42 v4 → v2 24.62 (65.39, 65.39, 65.38, 65.38)

∑
di = 1. We assume that the time needed to reach the given

energy distribution is bounded by T . We can formulate this
problem as follows:

[LossY Problem, LYP(T ,Emin)]

min β
∑

t∈[0,T ]
(vi,vj ,t)∈F

Xt(i, j) (9a)

s.t. Emin ≤ Et(vi) ≤ Emax, ∀t ∈ [0, T ] ,∀vi ∈ V (9b)

ET (vi) = di
∑
vi∈V

ET (vi), ∀vi ∈ V (9c)

Xt(i, j) ≥ 0, ∀t ∈ [0, T ] ,∀(vi, vj , t) ∈ F (9d)

B. Solution

Given a fixed T , LYP(T ,Emin) is a standard LP problem
and can be solved efficiently3. However, we find that if T is not
set to a proper value, solving LYP(T ,Emin) may return some
unreasonable interaction plan. We use the following example
to better explain this.

Table IV is the interaction plan of Fig. 3 by simply solving
LYP(C,Emin) when D = [ 1n ,

1
n , ...,

1
n ]. In order to transmit

enough energy from v1 to v3, the energy is transmit bi-
directionally. This is unreasonable for two reasons. First, extra
energy transfer induces extra energy loss; second, the energy
level of v3 is temporarily beyond Emax. This situation occurs
when the given time-space graph cannot distribute energy
evenly within the given time (which is C in this Table).

The main reason for such unreasonable interaction plan is
that the final energy level of each EV in the given distribution
changes, when there is an energy transfer between two EVs;
therefore, to reach the given energy distribution, two EVs in
a contact can intentionally transfer energy to each other to
quickly arrive at the given distribution. This motivates us to
propose LAY as shown in Algorithm 3.

LAY starts by checking whether Eq. (9) has an effective
interaction plan when T is equal to C, the common motion
cycle (line 2 in Alg. 3). If yes, we return the interaction plan.
Otherwise, we check whether Eq. (9) with T = 2C has an
effective interaction plan, and then use BinaryFindT2 to find
the minimum T between C and 2C or continue increasing
T . In this procedure, there are a few issues we would like to
explain as follows.

First, what is an effective interaction plan? In an interaction
plan for the lossy case, if there is an edge (vi, vj , t) ∈ F

3As we mentioned in Section III, Emin is proportional to T . For example,
when T increases from C to 2C, Emin doubles as well.



Algorithm 3 LP-based Algorithm for LYP (LAY)
Input: time-space graph G(V, F,C), initial energy levels

E0(vi), Emin, Emax, B
Output: T , X
1: T ← C, cnt← 0
2: if LYP(T , Emin) has an effective3 solution then
3: return T , X
4: else
5: while cnt < B do
6: T ← 2T , Emin ← 2Emin, cnt← cnt+ 1
7: if LYP(T , Emin) has an effective solution then
8: (T,X)← BinaryFindT2(T , Emin, cnt)
9: if cnt ≥ B then

10: return cannot reach the given distribution
11: return T , X

such that Xt(vi, vj) > 0 and Xt(vj , vi) > 0, we say it is
ineffective; otherwise, it is an effective interaction plan.

Second, what is the difference between BinaryFindT and
BinaryFindT2? If we change line 8 of BinaryFindT (Alg. 2)
to “FYP(tm, Emin) has an effective solution (T ′, X ′)”, then
we have BinaryFindT2.

Third, if LYP(T,Emin) has an effective interaction plan
with T = C, we just return the result. (Remember that in
Algorithm 2, we continue to find the minimum T between 0
and C using BinaryFindT.) This is because, in the lossy case,
our primary goal is to minimize the amount of energy loss;
thus, if the time needed to reach the given energy distribution
is not large (i.e., T ≤ C), we would not try to optimize it.
However, if the time is larger than C we still optimize it using
BinaryFindT2.

C. Example and Summary

Table V shows the energy interaction plan returned by LAY
on the example in Fig. 3 while D = [ 1n ,

1
n , ...,

1
n ]. As shown

in Table IV, we cannot have an effective solution within one
cycle. Hence, we increase T and try to find an effective
solution with T = 2C, and so forth. Once we find an effective
interaction plan (bi-directional energy transfer does not exist),
although minimizing energy cost is our primary concern,
reducing time is another important objective. Therefore, we
use BinaryFindT2(T , Emin, cnt) to minimize T . Table V gives
the final interaction of our algorithm which presents a good
tradeoff between energy loss and time.

As a brief summary of this section, we formulate the
collaborative interactive wireless charging problem in the lossy
case and design an LP-based solution LAY.

V. DISCUSSION

In the current design of BinaryFindT, it searches a given
range in a traditional binary search manner. We present here
two alternatives that improve the original BinaryFindT.

3In an interaction plan for the lossy case, if there is an edge (vi, vj , t) ∈ F
such that Xt(vi, vj) > 0 and Xt(vj , vi) > 0, we say it is ineffective;
otherwise, it is an effective interaction plan.

TABLE V: Interaction plan for Fig. 3 using LAY

Time Interaction Transmitted
energy

Energy level
(v1, v2, v3, v4)

0 (90, 18, 90, 90)
9 v1 → v3 12.5 (77.5, 18, 100, 90)
37 v3 → v2 40 (77, 50, 60, 90)
42 v4 → v2 22.22 (77, 67.78, 60, 67.78)
59 v1 → v3 9.72 (67.78, 67.78, 67.78, 67.78)

First, in BinaryFindT as shown in Alg. 2, we actually search
for a precise edge that provides the least time to reach the given
energy distribution. In our present algorithm, we simply halve
the search range. However, in some cases, the encounters of
EVs may distribute unevenly in a cycle. When we halve the
search range [tl, th], the subrange we are going to search may
contain more than half of the edges in [tl, th]. If this happens,
we cannot arrive at the final result quickly, because the search
range is not halved after each iteration.

We provide an alternative method for this issue: denote by
[tl, th] the current range to be searched, then we

• sort the edges in {(vi, vj , t)|tl ≤ t ≤ th} in descending
order of t;

• set tm to t′ such that

|{(vi, vj , t)|tl ≤ t ≤ t′}| = |{(vi, vj , t)|t′ ≤ t ≤ th}|,

that is, partition {(vi, vj , t)|tl ≤ t ≤ th} into two equal-
size subsets by t′.

Second, we can take advantage of the interaction plan to
further reduce the searching range. Denote the current range
by [tl, th] to be searched. By inspecting the interaction plan,
we find there is t′ such that

Xt(vi, vj) = 0, ∀(vi, vj , t) ∈ F,∀t ∈ [t′, th]

That is to say, no energy exchange happens between t′ and
th. Therefore, it is not necessary to search within the range
between t′ and th, and we successfully reduce the original
range [tl, th] to [tl, t

′].
For example, as shown in Table IV, when LLP(T , Emin)

cannot give a feasible interaction in one cycle, we set T = 2C.
We find LLP(2T , 2Emin) has a feasible solution, then we
use BinaryFindT to search for the minimum time needed.
By the original design of BinaryFindT, we then have to
solve LLP(1.5T , 1.5Emin), and so forth. However, after we
carefully checking the returned interaction plan, we find that
after t′ = 59, there is no energy exchange. Thus, we quickly
reduce the search range to [50, 59]. Since there is no edge with
a timestamp between 50 and 59, we know the minimum time
needed to reach a uniform distribution is exactly 59.

VI. PERFORMANCE EVALUATION

In this section, we evaluate our protocols in the context of
another algorithm using two traces: random trace and synthetic
bus trace under different settings and reveal insights of the
performance.
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Fig. 4: Random trace

A. Simulation Setup
We conduct several simulations using MATLAB R2014a.

Since there currently are no existing works that focus on
collaborative interactive charging in a cyclic mobispace, we
use a heuristic algorithm Poa [7] for comparison. Poa is an
interaction protocol that provides the direction and quantity of
each energy transfer by every agent locally estimating the total
energy of the whole agents without any previously provided
information. Since the purpose of Poa is to make energy
balanced in the network of mobile agents, we set the final
energy distribution D to be [ 1n ,

1
n , ...,

1
n ] in our experiments.

Obviously, Poa cannot make use of the cyclic information of
EVs, which makes it hard to reach an absolute balanced energy
distribution as our algorithm does. For comparison purposes,
we use the standard deviation σ as the parameter to monitor
the distance between the energy level of EVs using Poa and
the absolute balanced energy distribution.

B. Random Trace and Results
We simulate random time-space graphs with different num-

ber of EVs with initial energy levels generated in a uniform
distribution. The common motion cycle C is 50 time slots.
We set the maximum energy level of EVs Emax = 100 units
and the minimum energy level Emin = 10% × Emax. The
bound coefficient B for iterative binary searching is set to be
4. For statistical smoothness, we repeat our experiments 100
times at each setting and depict the average result of each set of

simulations. To compare with Poa, when the standard deviation
σ is less than 5, we consider the energy distribution obtained
by Poa almost reaches the balanced energy distribution.

The results of the random trace are depicted as Fig. 4 and
the details of analysis are shown as follows:

1) Balancing time: In this section, the time when the
energy of EVs distributes evenly (almost evenly by Poa) in
the network is called balancing time.

Fig. 4(a), (b) show the balancing time in the random trace
which respectively compared LAL and LAY with Poa when
β = 0 and β = 0.2. As shown in these figures, although we
allow approximate energy balance for Poa, our algorithms have
overwhelming superiority in both lossless and lossy cases.
Both LAL and LAY can return an optimal interaction plan in
about one common motion cycle, while Poa needs to use over
two cycles to reach the approximate energy balance. When the
number of EVs increases, the balancing time of all algorithms
increases as well, which is reasonable because it is hard to
arrive a uniform energy distribution among a larger number
of nodes in random trace.

In addition, the balancing time of LAL is usually smaller
than that of LAY. As we mentioned in Section IV, if we
have an effective interaction plan when T = C, to minimize
the energy loss, LAY will not keep searching for a smaller
balancing time, while LAL does.

Fig. 4(c) shows the impact of the energy loss factor β on
balancing time. When β increases, it has little influence on
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Fig. 5: Synthetic bus trace

the balancing time of LAY but greatly affects the balancing
time of Poa, which indicates that the proposed LAY has better
tolerance for balancing time than Poa.

2) Energy loss: In this section, the total energy loss due
to energy transfer from the beginning to the balancing time is
called energy loss.

Fig. 4(d), (e) show the energy loss with varying numbers
of EVs and β in random trace, respectively. In Fig. 4(d), the
increasing rate of energy loss in LAY is smaller than that of
Poa. In Fig. 4(e), although LAY costs less amount of energy
loss compared with Poa, the increasing rate of LAY is larger
than that of Poa. There are two reasons for this phenomenon:
first, LAY not only minimizes energy loss, but also minimizes
balancing time when the balancing time is larger than one
cycle; second, the time-space graphs in random trace have
more randomness which is not totally suitable in our problem
(compared with synthetic bus trace shown in section VI-C
which has more desirable results).

3) Running time: Fig. 4(f) shows the running time of LAL,
LAY, and Poa with varying number of EVs. Since LAL and
LAY rely on solving a series of linear programming problems
to reach the uniform energy distribution, their running time is
much higher than that of Poa. However, the problem we deal
with is not an online problem, and the result we obtain can
be used for multiple times or a very long period of time as
long as the cyclic mobispace remains unchanged. Therefore,
sacrificing running time for less energy loss or less balancing
time is reasonable.

C. Synthetic Bus Trace and Results

We generate synthetic bus traces based on the realistic
metropolitan bus routes in Nanjing, China. Each bus travels a
route from the beginning station to the ending station. In order
to imitate the periodical mobility of the cyclic mobispace,
when one bus reaches the ending station, it immediately reverts
to the beginning station along its route. Therefore, the motion
cycle of a bus is the round trip time on its route. We assume the
cost each bus takes to travel between two consecutive stations
is 5 minutes and each bus stays at each station for 1 minute.
When several buses stay in the same station at the same time
slot, they can interact and exchange energy between them. We
randomly select 25, 50, 70, 100 bus routes and assign motion
cycles to these buses on their routes according to the number
of stations on that route. The motion cycles for different routes
are distributed from 240 minutes to 300 minutes. We set the
common motion cycle C as 300 minutes. When a bus finishes
a round trip on its route but it takes the time less than the
common motion cycle, the bus needs to wait in its beginning
station for the rest time of the common motion cycle.

We set Emax = 1000 units and Emin = 10% × Emax.
The bound coefficient B is 4. We generate the initial energy
levels of the buses in a uniform distribution and repeat the
experiments 100 times at each setting. The standard deviation
threshold σ for Poa is set as 50.

Intuitively speaking, the outcome of synthetic bus trace
shown as Fig. 5 is better than that of random trace shown as



Fig. 4. This is because synthetic bus trace is generated from
realistic bus routes, while random trace is randomly generated
with little realistic information. Obviously, the synthetic bus
trace is more appropriate to simulate actual cyclic human
activities and interactions in reality where our algorithms
perform better in synthetic bus trace than in random trace.

The details of the results of synthetic bus trace depicted in
Fig. 5 are analyzed as follows:

1) Balancing time: Fig. 5(a), (b) show the balancing time
in synthetic bus trace which respectively compared LAL
and LAY with Poa when β = 0 and β = 0.2. With the
increasing number of buses, the results of balancing time in our
algorithms remain stable as about one common cycle, which
represent the optimal results. Meanwhile, the balancing time of
Poa is over three times than the common cycle when there are
25 buses whenever β = 0 or β = 0.2 and gradually declines
along with the increasing number of buses. The result of Poa

still remains a certain distance from our algorithms. In reality,
the more buses we add, the more frequently these buses can
encounter in the stations along their routes. In Fig. 5 (b), LAY
reduces the balancing time by up to 70.60% compared with
Poa.

Fig. 5(c) shows the impact of β on LAY and Poa. Appar-
ently, the result of LAY remains stable, which indicates that
LAY is rarely influenced by β while the result of Poa increases
drastically along with the increasing β. This result shows that
LAY has a much batter tolerance on balancing time than Poa.

2) Energy loss: Fig. 5(d) shows the energy loss of LAY
and Poa when β = 0.2. Although two algorithms have similar
energy loss when there are 25 buses, as the number of buses
increases, the energy loss using Poa grows almost linearly
while the energy loss of LAY gradually tends to be slow
and flat. This indicates our algorithm has great superiority in
reducing energy loss. When the number of buses is 100, LAY
reduces the energy loss by up to 36.59% compared with Poa.

Fig. 5(e) shows the impact of β on energy loss. Apparently,
β which indicates the wireless charging efficiency significantly
influences energy loss of both LAY and Poa. With the increas-
ing of β, the energy loss of LAY and Poa both increases almost
linearly. Interestingly, no matter how β changes, the energy
loss of LAY always remains a stable number of energy less
than that of Poa.

3) Running time: As mentioned in section VI-B, although
our algorithms need more time to complete, running time is
not a vital consideration in our problem.

D. An Example of LAL and LAY on 10 EVs

Fig. 6 and Fig. 7 show the energy level of each EV over time
using LAL and LAY, respectively. We make three interesting
observations.
• First, obviously the overall energy trend of each EV is

approaching the final average energy level. Over half
of the lines in the figures are between their initial en-
ergy level and the final average energy level, while a
small part of EVs have drastic energy variations between
[Emin, Emax]. This phenomenon indicates that a small
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Fig. 6: Energy level of each EV
over time using LAL (10 EVs are
represented by 10 different colors)
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Fig. 7: Energy level of each EV
over time using LAY (10 EVs are
represented by 10 different colors)

part of the EVs are energy carriers and transporters that
redistribute the energy within the cyclic mobispace.

• Second, some lines in Fig. 6 are more sharp than some
lines in Fig. 7. Since LAL does not need to worry
about energy loss, the energy in LAL can be transferred
whenever necessary. But as LAY needs to minimize
energy loss, the energy in LAY need to be used carefully,
which results in smoother lines in LAY.

• Third, LAL reaches the uniform energy distribution more
quickly than LAY. For example, the balancing time in
Fig. 6 is 34, while it is 45 in Fig. 7. This indicates that
LAL provides a lower bound of the balancing time.

E. Summary

In this section, we evaluate LAL and LAY with simulations
compared with Poa. While the balancing time using Poa raises
when the number of nodes increases or the wireless charging
efficiency β increases, the balancing time of LAL or LAY
changes little. Meanwhile, LAY costs less energy to reach
the uniform energy distribution compared with Poa. Although
our algorithms runs more slowly than Poa, we consider it
worthwhile, because once we obtain an optimal interaction
plan, the plan can be used as long as the network does not
change.

VII. RELATED WORK

Wireless energy transfer is a promising technology, which
have been lately investigated both in static sensor networks
and in mobile agent networks. Some of these works employ
static or mobile chargers to periodically replenish recharge-
able static sensors such as RFID tags with the purpose of
optimizing charging quality [14], minimizing total charging
delay [15],charging itinerary selection [16], etc. Although the



proposed solutions are marvelous, they all assume that the
nodes to be charged are fixed in location and ignore the cases
of mobile agent network.

There are also a large amount of works focusing on wire-
less charging in networks where agents are mobile. Jang el
al. formulated an optimization problem to deploy wireless
charging lanes to support in-motion buses with the minimum
cost [5]. Yan el al. investigated the problem of how to deploy
charging lanes in a metropolitan road network to minimize
the deployment cost [6]. Nikoletseas el al. proposed an inter-
active wireless charging for energy balance [7]. Chen el al.
focused on charging path optimization and charger scheduling
problems [17]. Different from these works, our work focus
on how to distribute energy to reach a given distribution D
using the techniques of bi-directional energy transfer while the
movement of each EV is cyclic.

VIII. CONCLUSIONS AND FUTURE WORK

With the development of wireless charging techniques, in-
motion EVs can be charged along their moving trajectories
and consequently remain operational. Previous works mainly
focus on how to deploy wireless charging lanes, but they
cannot guarantee that every EV can be operational in their
respective entire route. In this paper, we allows EVs to receive
energy from not only charging stations/lanes but also other
EVs, which results in a collaborative and interactive energy
distribution framework. To the best of our knowledge, we
are the first to propose the notion of collaborative interactive
wireless charging. We give a new problem formulation and
consider it in cases of both loss-less and lossy for which we
design two algorithms LAL and LAY. Extensive simulation
results show that, compared with a state-of-the-art algorithm,
the proposed algorithms can reduce the balancing time and
energy loss by up to 70.60% and 36.59%, respectively.

There are a number of research directions we plan to
investigate in our future work. First, we did not consider the
deployment of charging lanes which is related to the uneven
initial energy distribution. Therefore, the problem on how to
deploy charging lanes in a cyclic mobispace to enable every
EV keep operational with the minimum cost is an important
work we intend to do. Second, in reality, the amount and
efficiency of the energy interaction is not as idealistic as we
assumed. On the one hand, we implicitly assumed that any
amount of energy transfer can be finished when there is a
contact between two EVs. But in reality, two EVs can only
exchange a small amount of energy that depends on their
meeting time. On the other hand, as the EVs keep moving
when they encounter, the efficiency which is largely affected
by the distance would be dynamic in the real world. Thus, we
are also going to investigate the energy distribution problem
with these constraints. Third, we assumed the motions of EVs
are purely cyclic. But there are inevitable fluctuations in speed,
congestion, etc in real world, which make the cyclic mobispace
change. Consequently, how to adjust to the new mobispace is
worth exploring.
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