
Optimal Cloud Instance Acquisition via IaaS Cloud
Brokerage with Volume Discount

Ning Wang and Jie Wu
Center for Networked Computing, Temple University, USA

Email: {ning.wang, jiewu}@temple.edu

Abstract—Commercial cloud providers, e.g., Amazon EC2,
offer the volume discount for large instance reservation in a
time slot, and the majority of cloud jobs are delay-tolerant and
do not need to be processed intermittently. These two features
create an opportunity for the cloud brokerage service which
aggregates and schedules cloud users’ rental requests to earn
volume discounts from cloud providers and sell to cloud users at
a cheap price. A challenge for the broker is to properly schedule
delay-tolerant jobs in order to maximize the volume discount
amount over time. The scheduling idea is to generate several job
bundles so each job bundle can get discount. In this paper, we
discuss this problem from the homogeneous model first, where
each job has the same processing time and delay-tolerant time,
and we propose a dynamic programming approach. Then, we
extend the model into the heterogeneous model, where the job
processing time and the job deadline can be arbitrary values.
In the heterogeneous scenario, we prove that the proposed
problem is NP-hard even when the job processing time is unit.
Then, we propose a greedy approach which turns out to have
an approximation of O(lnn), where n is the total job number.
Extensive trace-driven experiments from Google cluster trace
demonstrates that our schemes achieve good performances.
Index Terms—Cloud computing, Infrastructure-as-a-Service
(IaaS), and scheduling.

I. INTRODUCTION

Cloud computing is a large-scale distributed computing
paradigm in which a pool of computing resources is available
to users. Nowadays, the availability of high-capacity networks,
low-cost computers, and storage devices have led to significant
growth in cloud computing. Cloud computing eliminates the
requirement for tenants, i.e., cloud users to plan ahead for
provisioning, and allows enterprises to start from the small and
increase resources only when there is a rise in service demand.
Infrastructure-as-a-Service (IaaS) service model and visualiza-
tion technologies are developed to provide resources to multiple
users, and users do not need to worry about configuration. The
users can specify the required software stack, e.g., operating
systems and applications; they package them all together into
Virtual Machines (VMs). There are several large-scale public
cloud providers like Amazon EC2 [1], Windows Azure [2], and
Google cloud platform [3].

As for the cloud rental pricing, cloud providers usually adopt
an hourly billing scheme even if the customers do not actually
utilize the allocated resources in the whole billing slot. The
pricing model can be briefly divided into two types: the pay-
as-you-use pricing model and the reservation model. In former
model, users pay cloud usage on-demand at a high price. In

1 2 3 4 5 6 Time

j1

j2

j4
j3

1

2

3

4

(a) First-fit

1 2 3 4 5 6 Time

j1

j2

j4
j3

1

2

3

4

(b) Optimal

Fig. 1. An illustration of scheduling with volume discount.

TABLE I
COMPARISON OF DIFFERENT MATCHMAKING STRATEGIES.

Time
arrival process deadline

job 1 1 1 7
job 2 2 2 3
job 3 3 3 6
job 4 6 1 7

the later model, the user can pre-pay at the discounted price to
reserve cloud resource. The drawback is that it is hard to pre-
estimate the usage, and thus there might exist waste. In addition,
to stimulate cloud users usage in the current market, many cloud
providers provide volume discount, i.e., the user will get an
extra discount when they reach a certain cloud usage. Amazon
EC2 [4] and Telecoms Cloud [5] use a three-tiered volume
discount model. Rackspace [6] provides a two-tiered volume
discount model. Azure [7] also has the volume discount, but
the detailed model is available upon request.

Due to the complexity of billing strategies in different cloud
providers, the demand for Cloud Services Brokerage (CSB)
appears. A cloud services brokerage is a third party company
that adds value to cloud services on behalf of cloud service
consumers. The cloud service brokerage market size is expected
to grow from USD 4.50 Billion in 2016 to USD 9.52 Billion by
2021 at an estimated Compound Annual Growth Rate (CAGR)
of 16.2% [8]. Some famous CSBs are IBM Cloud Brokerage
[9] and Appirio [10]. The current business model of CSB
includes aggregation and integration. However, the business
model for cloud brokerage is still evolving. Recent works
[11, 12] found that a cloud broker can help reduce the cost
of customers through temporal multiplexing of resources. By
temporal multiplexing, the broker takes advantage of providers
volume discount and save the user’s cost.

In this paper, we focus on the volume discount optimization
in cloud brokerage service. An illustration of the network model
is shown in Fig. 1, where there are four non-preemptive jobs

in total. The job arrival time, processing time, and the deadline
information are shown in Table I. If there is no broker service,
each user will schedule the job upon arrival as shown in Fig.
1(a). In the toy example, if we apply a simple two-tiered
volume discount policy, i.e., if the number of rental instances
at a particular time slot reaches two, the cloud rental gets
discounted, and Fig. 1(a) gets 2 discounted instances at time
slot 3. Through proper cloud scheduling, we can get a better
rental result as shown in Fig. 1(b). In Fig. 1(b), this schedule
gets six discounted instances at time slots 3, 4, and 6.

In this paper, we address the optimal non-preemptive job
schedule problem for cloud brokerage service. Specifically,
cloud broker receives a series of cloud jobs and knows the
corresponding processing time and the finishing deadline for
them. The cloud broker would like to minimize the total cloud
rental cost of all jobs by taking advantage of volume discount
under the deadline constraint. Therefore, each user pays less
and users are encouraged to submit more jobs to the cloud.
We formulate the problem as a Bundle Job Scheduling (BJS)
problem and discuss the volume discount function in a general
situation, i.e., a concave function.

We discuss the BJS problem in two scenarios. In the homo-
geneous model, where each job has the same processing time
and delay-tolerant level, we propose a dynamic programming
approach to find the optimal solution. Then, we extend the
model into a general heterogeneous case, where each job’s
processing time and delay-tolerant level can be arbitrary values.
In the heterogeneous setting, the BJS problem turns out to be
NP-hard even when the job processing time is united. Then, we
propose a series of greedy algorithms and one of the greedy
approaches is proved to have an approximation ratio of O(lnn),
where n is the number of jobs.

The contributions of this paper are summarized as follows:
• To our best knowledge, we are the first to consider this

optimal non-preemptive job scheduling with discount in
cloud scheduling.

• In the homogeneous case, we propose a dynamic program-
ming approach to find the optimal solution.

• In the general heterogeneous case, we prove that the BJS
problem is NP-hard, and a heuristic algorithm with an
approximation ratio of O(lnn) is proposed.

• We verify the effectiveness of proposed approaches in
Google cluster data trace.

The remainder of the paper is organized as follows: The
related works are in Section II. The problem statement is intro-
duced in Section III. The corresponding dynamic programming
algorithm in the homogeneous model is provided in Section
IV. The NP-hardness of the BJS problem in the general case
and an approximation algorithm is presented in Section V. The
experimental results from real cloud traces are shown in Section
VII, and we conclude the paper in Section VIII.

II. RELATED WORKS

In this section, we briefly summarize the related works and
issues in cloud scheduling related problems.

TABLE II
AMAZON CLOUD VOLUME DISCOUNT STRATEGY [4]

Total Reserved Instances Upfront Discount Hourly Discount
Less than $ 500, 000 0% 0%
$ 500,000 to $ 4,000,000 5% 5 %
$ 4,000,000 to $ 10,000,000 10% 10%
$ More than $ 10,000,000 special discount special discount

1) Different Rental Approaches: In [13], the authors con-
sidered the optimal cloud rental problem under three different
reservation methods, i.e., on-demand rental, scheduled reserved
rental, and 1-year reserved rental, where the rental cost de-
creases at the cost of rental flexibility loss. A greedy solution
is proposed with offline demand. In [14], the authors only
considered two different reservation methods, on-demand and
reserved rental. However, they moved one step further by
proposing an online approach with a 2-competitive ratio. The
common assumption in these two papers is that jobs have to
be scheduled right away upon arrival. Therefore, there is no
scheduling issue.

2) Volume Discount in Cloud Services: The volume discount
is widely used in commercial cloud providers. Amazon EC2
[4], Telecoms Cloud [5], and Rackspace [6] use the tiered
discount model. The current tiered model in Amazon EC2 is
shown in Table II. Other companies do have volume discount,
but they do not provide the detailed strategy, such as Azure
[7]. In [15], they used a tiered discount policy for each
VM and formulated the cloud rental problem as a coalition
formation game among a set of cloud service. Users consider
their heterogeneous computing demands, rational selfishness,
and non-transferable utility to make the decision. In [11],
the authors proposed a general concave pricing model. The
difference between their job model and this paper is that the
job is non-preemptive in this paper, and improper scheduling
may lead to a bad influence on the future schedule.

3) Cloud Scheduling: The idea behind cloud scheduling
[16–20] is that the job might not be scheduled right away
upon arrival. It is reasonable to postpone some time under the
deadline constraint to reduce the cloud rental cost. The main
idea is the same as energy efficient scheduling. That is, we
would like to aggregate jobs into certain time slots which have
a high workload and stop at the other time slots. In [17], they
considered cloud rental reorganization problem to increase the
workload for each rental servers by shutting down some servers
with low utilization. However, there is a reorganization cost.
For energy efficient scheduling, this scheduling can reduce the
CPU energy cost. In [18, 19], authors discuss the speed scaling
technique under the preemptive job and non-preemptive job
model, respectively. In [20], authors consider the bandwidth
scaling in the data center network.

In this paper, we focus on the cloud scheduling problem to
maximize the volume discount for users. The different rental
approaches are not discussed in this paper, but the proposed
approach can be applied to different rental approaches.

0

Without discount

General volume discount

Tiered volume discount

2/)(21 xx � 2x1x

Fig. 2. An illustration of volume discount in the pricing strategies: there are
three pricing strategies, no volume discount, general concave pricing model,
and the common tiered pricing model

III. PROBLEM STATEMENT

In this section, we first discuss the volume discount model
and job model in cloud rental followed by the problem formu-
lation and discussion.

A. Cloud Rental Model

The commercial cloud providers are using a slot-based
pricing model, e.g., an hour or a day, even if the customers
do not actually utilize the allocated resources in the whole
billing slot. To simulate cloud users, many cloud providers,
such as Amazon EC2 [4], Telecoms Cloud [5], Rackspace [6],
and Azure [7] provide volume discount, i.e., cloud users can
rent cloud at a discounted rate when they reach a certain usage.
Though different cloud service providers may offer different
pricing strategies for volume discount, a pricing strategy C(·)
with volume discount can be modelled as a non-decreasing
concave function in general. There are two requirements for
any x1, x2, with x1 ≤ x2:
• C(x1) ≤ C(x2),
• C(x2)− C(x1+x2

2) ≤ C(x1+x2

2)− C(x1),
where the first requirement ensures that the more resource
that you rent, the more money that you need pay. This is
the basic reasonable requirement for the cloud rental, since
there is no reason to get more resource with less money. The
second requirement ensures that the more you rent, the less
unit price that you will get. Otherwise, the volume discount
is meaningless. An illustration of volume discount is shown in
Fig. 2. The tiered pricing model is a special case of the concave
function. Note that we focus on volume discount caused by a
large number of instance rental. Note that there are different
cloud reservation methods, e.g., pay-as-you-go and reserved
pricing, the detailed cloud reservation method is out of this
paper’s scope, and the volume discount can be applied into
any reservation method.

B. Job Model

In this paper, we assume that there are n delay-tolerant
jobs. The arrival times of job requests are arbitrary, and the
processing time for each job is deterministic and known to the
broker based on estimation. Therefore, for each job, we use
a three-tuple ji : {ai, pi, di} to uniquely model it, where ai
is the job arrival time, pi is the processing time, and di is

1 2 3 4 5 6 7 8 9 10 11 Time (hour)

j1

j2

j3

j4

1

2

3

4

0 1 1 3 2 3 0 0 0 0 0

a2 s2 d2

Fig. 3. An illustration of job model and there is a two-tiered discount model,
when volume in a time slot reaches 3, there is a volume discount.

the job deadline. Note that di − ai ≥ pi, and the extra time
provides a certain scheduling flexibility. The range [ai, di] is
called flexibility range in the following of this paper. We assume
the time can be discretized into slots according to the billing
cycles, and each job arrives and finishes at the beginning of a
time slot. This is reasonable, since in the real computation, the
cloud scheduler checks available jobs and schedule them in a
slotted manner. In any unit time slot, a job either is allocated
with no resource or uses allocated resource in the whole time
slot. Therefore, there is a corresponding starting time, si, and
finishing time, fi for job i, fi = si + pi. Note that we assume
that each job consumes the same workload to the cloud, e.g.,
a VM, and we consider the non-preemptive job processing
model, which means that job is executed until completion. In
the middle, the job processing cannot be interrupted.

C. Cloud Brokerage Service

If jobs are tolerant to a certain scheduling latency, which is
the common case, the cloud users can benefit from this me-
diation. The cloud brokerage service provides an intermediate
layer for cloud users and mediates the job requests in a manner
which benefits the most from the volume discounts provided by
the cloud provider and meets the job deadline at the same time.
The cloud provider benefits from the revenue boosted by the
brokerage. For the delay non-tolerant job, the cloud broker can
still pull multiple cloud services into a single user interface and
utilize different charging strategies to save user’s rental cost. In
this paper, we focus on the extra volume discount with cloud
brokerage scheduling.

An illustration of the job model and volume discount is
shown in Fig. 3, where there are 4 jobs in total, i.e., j1 :
{1, 3, 11}, j2 : {2, 3, 6}, j3 : {4, 3, 8}, and j4 : {6, 1, 9},
respectively. The scheduled starting times of jobs j1 to j4 are
2, 4, 4, and 6, respectively. Based on this assignment, we can
calculate the volume in each time slot, shown at the top of
the Fig. 3. Let us use a simple two-tiered price model in this
example, i.e., a discount price is granted when the volume in a
time slot is no smaller than three. As a result, when t = 4 and
6, we get a discounted cloud rental price. The total workload
with discount is 6. However, if we always schedule these four
jobs upon their arrival, you will find that there is no discounted
rental at all, which demonstrates the potential benefit of cloud
scheduling.

1 2 3 4 5 6 7 8 9 10 11 Time (hour)

j1

j2

j5

j3

j4

OPT[9,4,1]

OPT[7,4,1]

OPT[7,3,1]

Fig. 4. An illustration of dynamic programming in the homogeneous model,
where each job has the same processing time, scheduling flexibility but different
arrival times.

D. Problem Formulation

Based on the proposed job and cloud rental models, we
propose the Bundle Job Scheduling (BJS) problem for cloud
brokerage service, which can be mathematically formulated into
the following format:

min
T∑

t=1

C(Xt)

s.t.
di−pi∑
t=ai

xit = 1, xit = {0, 1}, ∀i,

Xt =

n∑
i=1

t∑
t′=t−pi

xit′ , ∀i, t,

ai ≤ xit ≤ di − pi, ∀i,

(1)

where t denotes the time slot. For each feasible assignment of
job i, A time slot or several time slots will be determined to
process the job and formulate a set. We use a decision value,
xit to denote the assignment decision of job i. That is, xit = 1
means that job i is scheduled to start processing at time slot
t. Otherwise, xit = 0 means that job i does not start at time
slot t. Therefore, the first constraint of Eq. 1 means that each
job can only be scheduled once. The second constraint of Eq. 1
refers to the accumulated number of jobs at a time t and we use
Xt to denote it. The third constraint is the decision feasibility
constraint. The objective of Eq. 1 is the overall cloud rental
cost of a scheduling, where C(·) is the volume-cost function.

E. Problem Discussion

To our best knowledge, the proposed BJS problem is unique
due to volume discount pricing. The proposed problem seems
to be similar to the machine scheduling problems [21, 22].
In machine scheduling problems, the targets are always to
minimize the makespan of all jobs, average latency of total jobs,
or the total tardiness, the total latency of finishing processing
after the due time. The major difference between the BJS
problem and machine scheduling problems is that machine
scheduling problems always want to schedule the jobs as soon
as possible and latency is important. However, as for the
BJS problem, it does not optimize the scheduling latency but
schedules jobs into a series of bundles to maximize the total
volume discount.

job i
job j

(a) before swap

job i
job j

(b) after swap

Fig. 5. An illustration of optimal substructure in homogeneous job model.

IV. HOMOGENEOUS JOB MODEL

In this section, we first discuss the BJS problem in the
homogeneous case, where all jobs have the same job processing
time and flexibility range, i.e., di − ai = dj − aj ,∀i, j. In the
homogeneous job model, the BJS problem can be optimally
solved by dynamic programming technique.

An illustration of the network model in the homogeneous
model is shown in Fig. 4, where the feasibility range is shown
as the dotted rectangle area. The actual scheduling is denoted
as a dark rectangle. First, jobs are sorted according to their
arrival times. Without loss of generality, let us assume that if
i < j, job i arrives no later than job j. Note that in this case,
we use p to denote the processing time of any job without loss
of generality.

Theorem 1. In the homogeneous job model, for two jobs i and
j (i < j), job i should be always scheduled first than job j
without losing the optimality.

Proof. If the accumulated job is too few or too many in every
time slot, the scheduling of jobs i and j are not important, since
in the former case, there is no discount at all. In the latter case,
the volume discount is already maximized. In the following of
the proof, we focus on the case, where adding one or two jobs
can further improve the volume discount in some time slots.
The total range where jobs i, j can influence can be divided into
three different time ranges according to jobs i, j’s arrival time
and deadline, that is, [si, sj], [sj , di], and [di, dj], respectively.
We will discuss the results of two schedule strategies in Figs.
5(a) and 5(b), to check if the proposed scheduling strategy can
increase the overall discounted workload maximally and we
will prove this case by case.

For the range [si, sj], since job j’s arrival time is later than
that of job i’s arrival time and same as the deadline, job j cannot
be scheduled at that range. Therefore, if adding one more
job can increase the accumulated volume discount, we should
schedule job i first into range [si, sj]. If fi ≤ sj , scheduling
job i first does not generate more volume discount in [sj , fi].
However, if fi > sj , after job i scheduled, the workload of time
slots in [sj , fi] increases, which may lead to a better schedule
decision for job j. Therefore, job i should be scheduled first.
If adding one more job can increase the accumulated volume
discount most in the range [sj , di], we can use jobs i and j
to cover this range with no difference. However, if we jointly
consider the second-most discount workload increase in ranges
[si, sj] or [di, dj], the job i (job j) should be scheduled in
[si, sj]([di, dj]). In each case, job i will be scheduled first.
If adding one more job can increase the accumulated volume
discount in range [di, dj], we can prove that changing the

Stage

1 i-1 T0 i

...

...

...

...

... ...

...

...

...

...

Fig. 6. An illustration of dynamic programming in a general case.

scheduling sequence can improve the possible volume discount
in the same way, since the schedule in 5(b) can increase the
volume discount in range [di, dj].

Based on the Theorem 1, we can sort all jobs based on their
arrival times. Without lose of generality, we can denote jobs
based on their arrival time, i.e., the j1 is the first arrived job.
After that, we gradually find the optimal solution up to time
slot i with first j jobs, as shown in Fig. 4. To simplify the
following description, we define the overlapping set as follows:
for each job, its overlapping set is a set of previous jobs which
can be scheduled together with the current job. For example,
j3 ’s overlapping set is O3 = {j1, j2, j3}, j4’s overlapping set
is O4 = {j2, j3, j4, j5}, and j5 ’s overlapping set is O5 =
{j3, j4, j5}, respectively.

We will discuss the detailed dynamic programming technique
in the BJS problem. To make the dynamic programming
procedure easy to follow, we gradually discuss the dynamic
programming solution from the most simple case, i.e., united
processing time, to the general case, i.e., arbitrary processing
time. Let us denote the state, the optimal solution up to time
slot i and first j jobs as OPT [i, j]. Initially, all states are ∞,
except OPT [0, 0], which equals to 0. If the workload of each
job is 1,

OPT [i, j] = min
j′∈Oi

{OPT [i− 1, j′ − 1] + C[j′, j]}, (2)

where C[j′, j] is the cost to schedule jobs from j′ to j together.
Note that when j′ equals to j, it represents that the job j is
scheduled alone. Therefore, all the intermediate jobs can be
scheduled as well, i.e., all the jobs from j′ to j are scheduled
at time slot i. There is no combination issue in such case, and
Eq. 2 can be applied into different cost models.

Then, we extend to the case where the processing time of
each job is 2 time slots. We define the state OPT [i, j, k], which
is the optimal solution upto time slot i, ends up with the job j.
This means that the job j finishes at time slot i, and the number
of jobs finished at time slot i is k. Therefore, the optimal state
updating procedure is as follows:

OPT [i, j, k] = min{OPT [i′, j−k−k′, k′] +C[j−k−k′, j]}
(3)

The i and i′ represent the finishing time of jobs i and i′. The
i′ can be any time within p of the time slot i. Similar, the k′

determines the workload situation at time slot i′. The k is up
bounded by the size of job j’s overlapping set.

Algorithm 1 Dynamic Programming Algorithm

Input: Job information and rental cost function
Output: The scheduling result X .

1: Sort the jobs according to the arrival time.
2: Initialize OPT [i, j, · · ·] = ∞ except OPT [0, 0, · · ·] = 0,
cmin =∞.

3: for Each time slot i with first j jobs do
4: Find job j’s overlapping job set.
5: for All job j’s overlapping job set do
6: Calculate the optimal state updating as Eq. 5.
7: if OPT [i, n, kn−p+2, · · · , ki] < cmin then
8: Update X .

Let us calculate the optimal states, when we add j5, as shown
in Fig. 4. The smallest i is 9 in this example, otherwise, we
cannot find a feasible schedule for j5. In this case, i′ can be
i−1 and i−2, that is, i′ can be 8 or 7. The j′ can be any jobs
that have overlap with feasible range with the job j. In Fig. 4,
j′ can be 3, 4, and 5, where j′ = 3 means that jobs 3, 4, and
5 are scheduled together. A state updating example is shown
below,

OPT [9, 5, 1] = min{OPT [8, 4, 0] + C[5, 5],

OPT [7, 4, 0] + C[5, 5], OPT [7, 4, 1] + C[5, 5]

OPT [7, 4, 2] + C[5, 5], OPT [7, 3]}
OPT [9, 5, 2] = min{OPT [8, 3, 0] + C[4, 5],

OPT [8, 3, 1] + C[4, 5]}
(4)

In Eq. 4, we ignore the infeasible states in the data update. The
feasibility can be check in O(n). In addition, we only consider
the perfect overlapping in the cost calculation, since the non-
perfect overlapping case can be regarded as that we only add
one job each time.

Based on the aforementioned discussion, we can extend it to
a general case where the job length can be arbitrary p. Let us
denote the state in this case is OPT [i, j, ki−p+2, · · · , ki], where
{ki−p, ki−p+1, · · · , ki} is the workload at that left p time slots
before current time slot i. Therefore,

OPT [i, j, ki−p+2, · · · , ki]
= min{OPT [i′, j − ki − k′i−p+1, · · · , k′i]
+ C[j − ki − k′i, j]},

(5)

where the intermediate state is updated by reducing the last ki+
k′i jobs. Though we can solve the problem in the general case
as shown in Fig. 6, the dynamic programming presented above
is computationally intractable. This is because calculating all
states results in exponential time complexity. Also, to store all
these states, the space complexity is exponential upto O(qp+1),
where q is the size of maximum overlapping set size. This
is known as the curse of dimensionality suffered by all high-
dimensional dynamic programming. To update the Eq. 5, one
has to compute for all states. However, since a state space is

defined in a high-dimensional spacerecall that it is defined as a
p + 1-tuple, there exists exponentially many such states. Each
job has different processing time, the time complexity further
increases due to the feasibility checking.

V. HETEROGENEOUS JOB MODEL

In this section, we discuss the solution in the general case,
where jobs are heterogeneous, i.e., each job has an arbitrary
arrival time, processing time, and deadline, and the BJS prob-
lem is proved to be NP-hard in the general heterogeneous
case. Therefore, we propose two heuristic approaches, and the
theoretical analysis is also provided.

A. NP-hardness proof

Theorem 2. The proposed BJS problem is NP-hard in hetero-
geneous model.

Proof. The proposed BJS problem is a combinatorial optimiza-
tion. We prove the BJS problem is NP-hard by first proving that
the BJS problem belongs to NP class because that for a given
scheduling, H , we can verify if all constraints are satisfied
simultaneously in polynomial time. Now we show its NP-hard
by a reduction of the weighted mutually exclusive maximum
set cover [23].

The weighted mutually exclusive maximum set cover prob-
lem is as follows: given a ground set U of n elements, a
collection S of m subsets of U , we try to find a sub-collection
S′ of S with the minimum number of subsets such that (1)
no two subsets in S′ are overlapped and (2) the number of
elements of the union of all subsets in S′ is the maximum.
If we assign each subset in F a weight (a real number) and
further require that the weight of S′, i.e. the weighted sum of
subsets in S′ is minimized.

The reduction from a special case of BJS problem to the
mutually exclusive maximum set cover problem is as follows:
In a special case of BJS problem, all jobs have the same
weight and can be finished in one time-slot. For each time slot,
each possible schedule is a set, whose weight is schedule cost.
Clearly, each job cannot be scheduled multiple times, which is
the mutually exclusive requirement in the weighted mutually
exclusive maximum set cover problem. or each time slot, there
is a set for each job itself, we can always assign it S′ without
avoiding constraint (1). Therefore, the maximum number of the
union of all subsets in S′ is the size of U .

The insight of the proof is that in general case jobs have
different feasible processing ranges. A job’s schedule might
have an influence on some jobs which arrives in the distant
future, and its influence cannot be limited, such as Theorem
1 in Section IV. An example is shown in Fig. 3, where job
j2’s schedule can influence the job j4’s schedule. Furthermore,
different jobs schedule orders lead to different results like jobs
j2 and j3, and it is hard to control the optimality. In this
section, we propose the following greedy approach, which has
an approximation bound.

To solve the BJS problem, we first propose a heuristic
solution, called Most-Overlap (MO) Algorithm. The idea is that

Algorithm 2 Most Overlapping (MO) Algorithm

Input: Job information and rental cost function
Output: The scheduling result X .

1: for i from 1 to T do
2: Calculate the feasible jobs set s.
3: |S| is the unassigned jobs, s? is the current maximum

candidate set.
4: while |S| > 0 do
5: initialize |s?| = 0.
6: for i from 1 to T do
7: if |si| > |s?| then
8: s? = si.
9: Remove s? in each time slot’s candidate set.

10: Update X and |S|.

Algorithm 3 Most Efficient (ME) Algorithm

Input: Job information and rental cost function
Output: The scheduling result X .

1: for i from 1 to T do
2: Calculate the feasible jobs set s.
3: |S| is the unassigned jobs, s? is the current maximum

candidate set.
4: while |S| > 0 do
5: θmin = ∞, s? = φ
6: for i from 1 to T do
7: Find all combination in si with a total number of N .
8: for j from 1 to N do
9: Calculate the cost by assigning each combination at

i as ci.
10: if ci/

∑
ji∈si |ji| ≤ θmin then

11: θmin = ci/
∑

ji∈si |ji|, s
? = si

12: Remove s? in each time slot’s candidate set.
13: Update X and |S|.

we iterate the whole time slots to find a time slot, which has
the most number of feasible jobs and schedule job at that time.
Once we find that time slot, we schedule all feasible jobs in
that time slot. We keep doing until all jobs are scheduled. The
MO Algorithm is shown in Algorithm 2. In line 4, while there
is an unassigned job, the MO algorithm will iterate all time
slots as in line 6. In line 7, if we find a time slot which can
schedule more unassigned jobs than the current best solution,
the MO algorithm will update the current solution.

In Fig. 7(b), the MO algorithm finds the time slot 3 at the first
round, since it has the maximum size of 3. Therefore, the job
j1, j2, j3 will be scheduled at time slot 3. After that, job j4 is the
only left, and it will be scheduled at one of its feasible time. One
drawback of MO algorithm is that scheduling two many jobs in
one time slot will reduce the volume discount opportunity for
later arrival jobs. In Fig. 7(b), if job j2 or job j3 is scheduled
later together with job j4, we can further increase the volume
discount. Another drawback is due to the heterogeneous job

1 2 3 4 5 6 Time (hour)

j1

j2

j3

j4

(a) First-fit algorithm

1 2 3 4 5 6 Time (hour)

j2

j4

j3

j1

(b) MO algorithm

1 2 3 4 5 6 Time (hour)

j1

j2

j4

j3

(c) ME algorithm

Fig. 7. An illustration of proposed algorithms, where there is a two-tiered volume discount model, when the volume reaches 2 in a time slot.

length, a good overlapping in the current time slot may not
be a good overlapping in the following time slot. This problem
becomes significant when some job has a long processing time,
In Fig. 7(b), only a half of job j3 get volume discount. The time
complexity of the MO algorithm is O(nT), since in the worst
case, MO algorithm will have n rounds and each round it will
check T times.

A nature improvement of MO algorithm is to schedule all
jobs based on their overlapping situation. Specifically, each job
tries all its possible assignments and finds the time slots which
overlap with other jobs’ flexibility range most. Therefore, we
do not only consider the overlapping situation for a job in a
time slot but the overlapping situation for a job in its flexibility
range. Here, we propose the idea of scheduling set, where
multiple jobs can be scheduled at the same time in a scheduling
set. First, we calculate all possible schedule combinations in a
time slot. If multiple jobs’ schedule overlaps at a particular
time, there is a set whose elements are the set of jobs and its
cost/weight is the corresponding cloud rental cost. Note that if
a job’s schedule does not overlap with other jobs, there is a set
which has only one element.

The idea of the Most-Efficient (ME) Algorithm approach is
that we calculate all feasible job scheduling combination at each
time slot and evaluate jobs greedily based on average cost. The
idea of the greedy algorithm is that we give each set a price θ,
the price is the normalized cost of the set, i.e., ci

|s| . After that
each time we select the most cost-effective set in the remaining
set and update the corresponding job schedule. In line 4, while
there is an unassigned job, the ME algorithm will iterate all time
slots as in line 6. In line 7, we will calculate all the combination
in that slot. In lines 8 to 11, we find a set of jobs which can
add to the current scheduling in a most-efficient manner.

An example to illustrate the ME algorithm is shown in Fig.
7(c). In this example, we assume that there is a 2-tiered pricing
model, where the original cost for a unit workload is 1, and if
the workload of a time slot is larger or equal to 2, the cost for a
unit workload is 0.5. We calculate the possible job combination
for each time slot. At the round 1, the job set {j2, j4} at time
slot 7 will be scheduled first due to the highest cost-efficient
ratio, i.e., 0.5 × 2/2 = 0.5. At the round 2, since the job
set {j1, j3} is the lowest average cost in this example, i.e.,
(0.5× 2 + 1× 1)/3 = 0.67. From Fig. 7(c), the ME algorithm
overcomes the drawback of the MO algorithm, scheduling two
many jobs in the same time slot by considering all combination

of jobs. Therefore, there is a performance-complexity trade-off.
The time complexity of ME algorithm is O(n2nT) in the worst
case, where the MO algorithm will have n rounds at most, and
each round it will check T times. Each checking can be O(2n)
in the worst case. However, considering that the jobs do not
arrive at the same time, the real performance of ME will be
much better.

Theorem 3. The proposed ME algorithm achieves a lnn
approximation ratio in unit length.

Proof. For explanation convenience, let us assume that jobs
are selected according to the order of j1, j2, · · · , jn, the cost
of optimal solution is OPT , and the set of jobs schedules are
{s?1, s?2, · · · , s?l }, s?i ∈ S. Let us assume that I := {1 ≤ i ≤
l|s?i ∩ X̄ 6= φ}, which are available sets that can be added to
solution in the optimal solution but not in the greedy solution.
According to the definition of OPT and greedy character of ME
algorithm,

OPT =
∑

1≤i≤l

c(s?i) ≥
∑
i∈l

|s?i −X|
c(s?i)

|s?i −X|

=
∑
i∈L
|s?i −X|θ(jk) ≥ |X̄|θ(jk)|

≥ (n− k + 1)θ(jk),

(6)

where θ(jk) is the amortized cost for each unit of workload
of jk. The first and the second inequality in Eq. 6 is due to
the fact that s?i may have overlap with the result of the ME
algorithm, X . The last inequality is due to the fact that each
time at least one job will be added to the solution set.

Since the overall cost of ME approach is
∑

1≤i≤n θ(ji),
based on the Eq. 6,∑

1≤i≤n

θ(ji) =
∑
s∈X

∑
t∈S−X

θ(ji)

≤
∑

1≤i≤n

1

i
OPT = lnnOPT

(7)

Therefore, we prove that the ME algorithm has an approxima-
tion ratio of lnn in united length.

When the job length is more than 1, due to the property
of concave rental cost function, the BJS problem has the
submodular property, and thus there is a O(lnn) approximation
ratio for the ME algorithm based on [24].

(a) Job length distribution (b) Demand distribution (c) Sample user demand

Fig. 8. An illustration of job information in Google cluster dataset.

VI. PERFORMANCE EVALUATION

In this section, we demonstrate the effectiveness of proposed
algorithms by using the real Internet trace.

A. Trace Introduction

In the second set of experiments, we conduct simulations
based on Google cluster data [25], which has been widely
used to perform cloud computing related experiments [11, 14].
This data contains a large number of job records coming from
933 users. It is recorded for a 29-day duration in May 2011
on a cluster of 11k physical machines. The comprised data
size is over 40GB. In the experiment, we consider the jobs
with explicit computational jobs which can be processed in a
deterministic duration given the precise processing power of
the machine used. To align with our problem, we preprocessed
the data to eliminate the jobs that arrive before the trace
collection and jobs that are not naturally finished. This leaves
us with 385, 359 job records coming from 389 users. In Google
cluster data, the job event status, submit, schedule, evict, fail,
finish, etc, is provided for each job. The processing length of
each job can be calculated through job event status. The job
requests submitted by different users exhibit different patterns
in term of job length and demand arrival distribution. Times in
usage measurements are treated slightly differently because the
maximum measurement length is 300 seconds. We apply the
same start-time offset to these times as we do for events inside
the trace window; this is enough to ensure a clear separation
between events before the trace and other events.

B. Experiment Setting

We conduct experiments by using the following setting: the
arrival time of a job is the timestamp when we find a job status
0. The job length is calculated based on time difference between
the scheduling starting time and job finish time, which can
also be retrieved from the job status. Note that the time is
discretized to different levels in the experiments, specifically,
we use [1, 5, 10] minutes. We refer the method from [11] to
generate the deadline, which is,

di = pi · (1 + ρ) + ai (8)

where we choose ρ from {1, 5, 10, 20}. The value ρ represents
the flexibility level of job scheduling. In order to reduce the
computational complexity, we arbitrarily choose 5 to 20 users

and schedule their jobs in experiments. As for the cloud cost
rental model, we propose three different setting, the two-tiered
model, three-tiered model, and a concave function, f(x) =

√
x.

We conduct three different settings in the experiments: (1) the
number of users, (2) the different ρ value, and (3) the different
time discretized levels. We refer the pricing scheme of Amazon
and Rackspace to get a three-tiered volume discount model and
two-tiered volume discount model, respectively. Note that in
the Google cluster trace, we do not have that many tasks in
a particular time: therefore, we reduce the discount threshold
accordingly in the experiments. The experiments in each setting
are repeated for 100 times.

C. Algorithm Comparison

We compare the performance of the proposed algorithm
under different topology settings. (1) Most-Overlapping (MO)
algorithm, which we explained in Section V. (2) Most Efficient
(ME) algorithm, which we explained in Section V. (3) First-
fit (FF) algorithm, which simply assigns jobs when they arrive
and is the current cloud scheduling method. (4) Random (RD)
algorithm, which randomly selects a matching for a user. RD
algorithm is a baseline approach.

D. Results Analysis

Fig. 8 presents the trace analysis results from Google cluster
dataset. Specifically, Fig. 8(a) show the job length distribution
follows the exponential distribution, and the majority of job
can be finished within 10 minutes. In Fig. 8(a), the job’s length
is rounded based on 1 min, 2 min, and 5 min. As for the job
arrival pattern, the results are shown in Figs. 8(b) and 8(c). Fig.
8(b) shows the job arrival is not uniform, and it is not practical
to use the period scheduling scheme for cloud rental request
optimization. Fig. 8(c) shows that the cloud request pattern of
five random users in 600 hours. The results show that the user
demand pattern is devised and thus demonstrates the necessity
of cloud scheduling to utilize the different demand pattern for
different users to earn volume discount.

Fig. 9 gives the performance results where a two-tiered
pricing model is applied in the different setting. In Figs. 9(a)
and 9(b), we can find that the ME algorithm always achieves
the lowest cloud rental cost, followed by the MO algorithm, the
FF and RD algorithms have a similar performance. Particularly,
when the amount of cloud user increases, the number of

5 10 15 20
user number (n)

5

10

15

20

25

30
co

st

FF
RD
MO
ME

(a) ρ = 2

5 10 15 20
flexibility level

15

20

25

30

co
st

FF
RD
MO
ME

(b) n = 10

5 10 15
user (n)

0

5

10

15

20

co
st

1 min
2 min
5 min

(c) ρ = 2
Fig. 9. The performance result in two-tiered pricing model.

5 10 15 20
user number (n)

5

10

15

20

25

30

co
st

FF
RD
MO
ME

(a) ρ = 2

5 10 15 20
flexibility level

10

15

20
co

st FF
RD
MO
ME

(b) n = 10

5 10 15
user (n)

0

5

10

15

20

co
st

1 min
2 min
5 min

(c) ρ = 2
Fig. 10. The performance result in three-tiered pricing model.

cloud rental cost increase for all four algorithms. The bad
performance of FF and RD algorithms demonstrate that always
scheduling job upon arrival or scheduling job randomly has
a low chance to take advantage of volume discount and thus
leads to the high rental cost. The MO algorithm achieves a
much better performance compared with FF and RD algorithms
by scheduling jobs together. However, since the MO algorithm
considers the limited number of job combination, its perfor-
mance is worse than the ME algorithm, the ME algorithm
reduces the cost about a half compared with the RD algorithm,
and 20% cost compared with the MO algorithm at the cost of
higher complexity.

Fig. 9(b) shows that along with the flexibility level increase,
the cloud rental cost for FF and RD algorithm increases because
there is a smaller chance for jobs to overlap. The random
property of the RR algorithm leads to the highest cost. The FF
algorithm’s performance is better due to the uneven task arrival
distribution. These two algorithms do not take advantage of the
job scheduling flexibility. For MO and ME algorithms, they can
utilize the flexibility to reduce the cloud rental cost. In Fig. 9(b),
the MO and ME reduce about 20% and 25% cloud rental cost
on average, respectively, compared with the the FF algorithm.
Since in the experiments, we discrete time into time slots and
we would like to check the different discretized schemes. Fig.
9(c) show that the coarse-grained discretized scheme has the
higher cost due to inefficient overlapping information.

Fig. 10 show the performance results of four algorithms in a
three-tiered pricing model. The results in Figs. 10(a), 10(b), and
11(a) show that the proposed ME algorithm always leads to the
lowest cost in different settings. The MO algorithm has the very
similar performance compared with the ME algorithm, i.e., 5%

higher cost, but it has a lower time complexity. Therefore, there
is a trade-off in the algorithm selection in real applications.
When the flexibility level is high, i.e., ρ = 20, the ME and
MO algorithm roughly reduce a half of the overall rental cost.
One interesting result is that if we compare the performance in
Figs. 9(b) and 10(b), we can find that in the three-tiered volume
discount pricing model, the FF and RD algorithms cannot take
advantage of it at all, and their performances remain the same.
However, for the MO and ME algorithms, they further reduce
the cost in multiple-tiered volume discount model. In Fig. 9(b),
when ρ = 20, the cost is reduced by 17% on average. In Fig.
10(b), when ρ = 20, the cost is reduced by 36% on average.

Fig. 11 shows the performance results of four algorithms in
a general concave function. The result is similar to the three-
tiered cost model as shown in Fig. 11(a). The MO algorithm
achieves a closer performance compared with the ME algorithm
in the general concave model than its performance in the 2-
tiered model may due to the reason that in 2-tiered model,
there is no volume discount at all for time slots which do not
reach the threshold. However, in the general concave function, it
becomes easier to get some volume discount, even the discount
is limited. From Fig. 11(b), we can get the result that the rental
cost decreases with the flexibility level increase.

Figs. 9(c), 10(c), and 11(c) show the performance results of
the ME algorithm in different setting in terms of different length
granularity, and we find that the coarse-grained discretized
scheme has an influence about the scheduling accuracy. The
ME algorithm achieves the worst performance in the coarse-
grained discretization. Another result is that the fine-grained
discretization improves more performance when we have a
general concave pricing model.

5 10 15 20
user number (n)

10

15

20

25

30

co
st

FF
RD
MO
ME

(a) ρ = 2

5 10 15 20
flexibility level

10

15

20

25

co
st

FF
RD
MO
ME

(b) n = 10

5 10 15
user (n)

0

10

20

30

co
st

1 min
2 min
5 min

(c) ρ = 2
Fig. 11. The performance result in

√
x pricing model.

VII. CONCLUSION

In this paper, we consider a cloud brokerage service schedule
optimization by considering the volume discount in cloud rental
the discount by reserving a large pool of instances in a time
slot. Considering the fact that there is schedule flexibility, a
job does not need to be scheduled at its arrival but within the
deadline. Therefore, a problem is to properly schedule jobs in
order to maximize the price discount amount. The idea behind
the schedule is to generate several job bundles so that each job
bundle has a discounted price. In this paper, we propose a gen-
eral non-decreasing concave pricing model. Then, we discuss
this problem from the homogeneous model, where each job
has the same schedule range, finishing deadline minus arrival
time and propose a dynamic programming approach. Then, we
extend the model into a general case: the proposed problem
turns out to be NP-hard even when the job processing time is
unit. Then, we propose a greedy approach which turns out to be
O(lnn), where n is the number of jobs. Extensive trace-driven
experiments from Google cluster traces demonstrates that our
schemes achieve good performances.

VIII. ACKNOWLEDGEMENT

This research was supported in part by NSF grants CNS
1757533, CNS1629746, CNS 1564128, CNS 1449860, CNS
1461932, CNS 1460971, and IIP 1439672.

REFERENCES

[1] https://aws.amazon.com/ec2/
[2] https://azure.microsoft.com/
[3] https://cloud.google.com/
[4] “Amazon ec2 pricing.”

https://aws.amazon.com/ec2/pricing/reserved-instances/pricing/
[5] “Telecoms cloud volume discount.”

https://www.telecomscloud.com/volume-discounts/
[6] “Rackspace pricing.” https://www.rackspace.com/en-

us/cloud/servers/discounts
[7] “Microsoft azure pricing.” https://azure.microsoft.com/en-

us/community/partners/get-started/
[8] “Cloud services brokerage market.”

https://www.marketsandmarkets.com/Market-Reports/cloud-
brokerage-market-771.html

[9] “Ibm cloud brokerage.” https://www.ibm.com/us-
en/marketplace/cloud-brokerage-cam/resources#product-header-
top

[10] “Appirio cloud brokerage.” https://appirio.com/

[11] R. Zhang, K. Wu, M. Li, and J. Wang, “Online resource
scheduling under concave pricing for cloud computing,” IEEE
Transactions on Parallel and Distributed Systems, vol. 27, no. 4,
pp. 1131–1145, 2016.

[12] W. Wang, D. Niu, B. Li, and B. Liang, “Dynamic cloud resource
reservation via cloud brokerage,” in Proceedings of the IEEE
ICDCS, 2013.

[13] Q. Wang, M. M. Tan, X. Tang, and W. Cai, “Minimizing cost in
iaas clouds via scheduled instance reservation,” in Proceedings
of the IEEE ICDCS, 2017.

[14] W. Wang, B. Li, and B. Liang, “To reserve or not to reserve:
Optimal online multi-instance acquisition in iaas clouds.” in
Proceedings of the USENIX ICAC, 2013, pp. 13–22.

[15] J. Wang, X. Xiao, J. Wang, K. Lu, X. Deng, and A. A. Gumaste,
“When group-buying meets cloud computing,” in Proceedings of
the IEEE INFOCOM, 2016.

[16] N. Wang and J. Wu, “Maximizing the user’s benefit in the mobile
cloud computing,” in Proceedings of the ACM MobiCom S3,
2016.

[17] C. Tian, Y. Wang, Y. Luo, H. Jiang, W. Liu, J. Wu, and H. Yin,
“Minimizing content reorganization and tolerating imperfect
workload prediction for cloud-based video-on-demand services,”
IEEE Transactions on Services Computing, vol. 9, no. 6, pp.
926–939, 2016.

[18] L. L. Andrew, A. Wierman, and A. Tang, “Optimal speed
scaling under arbitrary power functions,” ACM SIGMETRICS
Performance Evaluation Review, vol. 37, no. 2, pp. 39–41, 2009.

[19] A. Antoniadis and C.-C. Huang, “Non-preemptive speed scaling,”
Journal of Scheduling, vol. 16, no. 4, pp. 385–394, 2013.

[20] D. Li, C. Chen, J. Guan, Y. Zhang, J. Zhu, and R. Yu, “Dcloud:
deadline-aware resource allocation for cloud computing jobs,”
IEEE Transactions on Parallel and Distributed Systems, vol. 27,
no. 8, pp. 2248–2260, 2016.

[21] J. K. Lenstra, A. R. Kan, and P. Brucker, “Complexity of machine
scheduling problems,” vol. 1, pp. 343–362, 1977.

[22] E. Mokotoff, “Parallel machine scheduling problems: A survey,”
Asia-Pacific Journal of Operational Research, vol. 18, no. 2, p.
193, 2001.

[23] S. Lu, G. Mandava, G. Yan, and X. Lu, “An exact algorithm for
finding cancer driver somatic genome alterations: the weighted
mutually exclusive maximum set cover problem,” Algorithms for
Molecular Biology, vol. 11, no. 1, p. 11, 2016.

[24] P.-J. Wan, D.-Z. Du, P. Pardalos, and W. Wu, “Greedy approxi-
mations for minimum submodular cover with submodular cost,”
Computational Optimization and Applications, vol. 45, no. 2, pp.
463–474, 2010.

[25] J. Wilkes, “More Google cluster data,”
Google research blog, Nov. 2011, posted at
http://googleresearch.blogspot.com/2011/11/more-google-
cluster-data.html.

