
Data Utility Maximization When Leveraging
Crowdsensing in Machine Learning

Juan Li†,‡, Jie Wu‡, and Yanmin Zhu†,1
†Department of Computer Science and Engineering, Shanghai Jiao Tong University

‡ Department of Computer and Information Sciences, Temple University

Abstract—With the increasingly wide adoption of crowdsensing
services, we can leverage the crowd to obtain labeled data
instances for training machine learning models. In this paper,
we focus on the critical problem that which data instances
should be collected to maximize the performance of the trained
model under the budget limit. Solving this problem is nontrivial
because of the unclear relationship between the performance of
the trained model and the data collection process, NP-hardness
of the problem and the online arrival of workers. To overcome
these challenges, we first propose a crowdsensing framework
with multiple rounds of data collecting and model training.
The framework is based on the stream-based batch-mode active
learning. According to the framework, we come up with a novel
data utility model to measure the contribution of a data batch
to the performance of the learning model. The data utility
model combines uncertainty and weighted density to measure
the contribution of one instance. Finally, we propose an online
algorithm to select a data batch in each round. The algorithm
achieves fairness, computational efficiency and a competitive ratio
0.1218 when the ratio of the largest contribution of one data
instance to the optimal offline total data utility is infinite. Through
evaluations based on a real data set, we demonstrate the efficiency
of our data utility model and our online algorithm.

Index Terms—Crowdsensing, Machine learning, Data utility,
Active learning, Budget constraint, Various cost, Online, Secre-
tary problem.

I. INTRODUCTION

Because of the explosive increase in the number of mobile
devices embedded with rich sensors, crowdsensing over mo-
bile devices has become an appealing paradigm for collecting
sensing data to train machine learning models [1] [2]. A
crowdsensing system typically consists of a data collector and
many workers (such as smartphone users). By recruiting many
cheap workers, the data collector is able to collect sensing data
for model training with a small cost.

For example, the government wants to learn how much time
people in a specific city would spend on different activities,
such as waling, jumping, running, sitting and standing. It
can reflect the health condition of people in this city. The
government has a large set of activity data Q collected by a
background thread run on smartphones [3]. An activity data
instance includes gyroscope data and accelerator data, which
record information about human activities. The government
needs labels (activity types) of Q to train a machine learning
model which can perform human activity recognition on Q.
Then the government can analyze the time that people spend

1. Corresponding author

on each activity. However, sensor data cannot be recognized
by humans. Therefore, the government collects a new set of
labeled activity data (much smaller than Q) from cheap work-
ers. By the small set of labeled activity data, the government
can train a machine learning model and use it to analyze Q.

When leveraging crowdsensing in machine learning, the
data collector aims to train a learning model with the highest
performance (accuracy, F1-score and so on). However, the
budget is often limited. Data instances have different contri-
butions to model training and different costs. It is a critical
problem that which data instances should be collected to
maximize the performance of the trained model under a fixed
budget.

Challenges. It faces several major challenges to solve this
problem. First, we have to consider the online setting. Due to
the limited storage space on mobile devices, a worker cannot
hold all data until selection decisions are made at the end
time of the data collection process. The offline version of
our problem is NP-hard. Online arrivals of workers make this
problem even more complex.

Second, bridging the gap between the performance of the
trained model and the process of selecting data is nontrivial.
An explicit relationship between an instance and its contribu-
tion to the performance of the model is unknown for now.

Our approach. In response to the challenges mentioned
above, we first propose our crowdsensing framework with
multiple rounds of data collecting and model training. In each
round, we select a batch of data instances online, enlarge the
training set and update the learning model. To formulate the
relationship between the performance of the learning model
and the data collection process, we come up with a novel data
utility model. It combines uncertainty and weighted density
to measure the contribution of an instance. We next construct
our data utility maximization problem for each round. This
problem is NP-hard even in the offline scenario. Finally, we
propose a multi-stage online algorithm to solve the data utility
maximization problem. In each stage, the algorithm selects
data instances according to their marginal utility constrictions
per cost. If it reaches the threshold, the data is selected. The
threshold is updated at the end of each stage by an offline
algorithm. We find the optimal parameters (the piecewise point
r and shrinkage factor δ′) by optimizing the competitive ratio.
The achieved competitive ratio is 0.1218 when the upper
bound of the ratio between the utility contribution of an
instance and the offline optimal data utility is infinitely large.

Unlabeled

Data

Training

Data Set

Training Model

Machine Learning

Model

Collecting Labeled

 Data Instances

Enlarging

Training Set

Workers

Fig. 1. The multi-round crowdsensing framework.

II. System Model and Problem Formulation

A. System Model

We first introduce the system model. A crowdsensing sys-
tem consists of a data collector and many workers (e.g.,
smartphone users). The data collector has an unlabeled data
set Q and needs a machine learning model to perform analysis
on Q. The data collector needs to collect a set of labeled
data from workers to train the machine learning model. To
bootstrap the data collection process, a small set of labeled
data serves as the initial training set D, and an initial machine
learning model f(·) is trained with D. The data collector has
a limited budget B. The total cost of accepted instances should
not exceed B. The objective of the data collector is to collect
a set of labeled data under the budget limit B to achieve the
highest performance of the final trained model.

B. Crowdsensing Framework

We next introduce our crowdsensing framework with multi-
ple rounds of data collecting and model training, as illustrated
in Fig. 1. In round j, the data collector first collects a batch of
labeled data under the budget in this round Bj , then enlarges
the training set with the collected data instances and finally
re-trains the machine learning model. The round continues
recurrently until the total budget B is depleted.

The data collector can specify how to allocate the total
budget B to each round. We provide a common budget
allocation scheme adopted by most works about active learning
[4]. In the common scheme, the total budget B is allocated
equally to each round. Hence, the budget in each round is
Bj = B/r, where r is the number of rounds.

The interactions between the data collector and workers in
each round are as follows. At the beginning of each round, the
data collector announces the data type, such as the activity data
sensed by the gyroscope and the accelerometer in smartphones.
If necessary, the data collector would provide smartphone
apps to help workers to collect data. Then, upon a worker
arriving, the following interactions between the data collector
and the arriving worker occur. First, the worker i submits a
data instance xi and the cost ci for this instance. Second, the
data collector decides whether or not to accept this instance
and informs worker i of the decision. Third, worker i submits
the label if the instance is accepted. Fourth, the data collector
pays worker i according to the submitted cost.

C. Data Utility
To train a learning model with the highest performance, we

should select data instances which increase the performance
of the trained model most. We use data utility of a data batch
to indicate its potential value for improving the performance
of the model. In this paper, we make use of active learning
strategies to construct the data utility model.

We adopt a data utility model, which is a combination
of uncertainty and weighted density. Uncertainty measures
how uncertain the learning model is about classifying an
instance. It is the most intuitive and most widely used active
learning strategy. However, it is prone to outliers. Therefore,
we incorporate density. Density evaluates how representative a
data instance is of data in Q, which serves as the test set. We
modify the classic density measure [5] by further considering
the importance of each data in Q.

1) Uncertainty: By uncertainty, we always choose the
instances that are hardest (or most ambiguous) to the learning
model. There are many ways to measure uncertainty of an
instance, such as confidence-based, margin-based and entropy-
based uncertainty measures [6]. For example, margin of an
data instance x is defined as P (ŷ1|x,Θ)− P (ŷ2|x,Θ). Label
ŷ1 and ŷ2 are the first and second most likely predictions under
the model f(Θ). The larger margin indicates less uncertainty.

2) Weighted Density: Choosing the instance hardest to the
learning model might not always be the best strategy. The
chosen instance may be a outlier.

An alternative strategy would be to collect an instance
representative of uncertain data instances in Q. This strategy
is different from the classic density-based strategy, which
assumes that all data instances in Q have the same importance.
We emphasize most uncertain instances in Q.

The weighted density of an instance x is defined as∑
x′∈Q u(x′)sim(x, x′). u(x′) is uncertainty of x′, serving

as the weight. sim(x, x′) is the similarity between x and x′.
When sim(x, x′) is larger, data x is more representative of
x′. As a data instance (a graph, a sentence or a piece of
sensor data) is usually represented as a vector, we can just
adopt similarity measurements for vectors, such as Euclidean
distance and cosine similarity.

Note that we cannot completely ignore uncertainty. When
the learning model is highly confident of an instance, selecting
that instance wastes budget because the corresponding label
will most likely agree with the learning model. Therefore,
defining the data utility of an instance x as its uncertainty
u(x) multiplied by its weighted density seems to be good.

Definition 1 (Data utility). Given the unlabeled data set Q,
the learning model f(·) obtained in the last round, data utility
of a data batch S collected in the current round for improving
the performance of the learning model is

V (S) =
∑

x∈S
(u(x) ∗

∑
x′∈Q

u(x′)sim(x, x′)) (1)

D. Problem Formulation
In a round, given the current trained model f(·), a set Q of

unlabeled data instances and budget B, the general objective

of data collector is to increase the performance of f(·) to the
maximum extent, which can be achieved by solving the data
utility maximization problem defined as follows. Because we
only focus on one round, we omit the subscript of Bj .

Definition 2 (Data utility maximization problem). Let B
denote the budget in a round. Under the constraint that the
total cost of S does not exceed budget, we try to find a labeled
data set S with the largest data utility.

max V (S)

s.t.
∑
xi∈S

ci ≤ B (2)

Note that it is nontrivial to solve this problem. It is NP-hard
even in the offline scenario.

III. ONLINE ALGORITHM

A. Overview
In this section, we propose an online algorithm to solve our

problem. In each round, our online algorithm (Alg. 1) proceeds
in multiple stages. In each stage, it accepts data instances
according to an efficiency threshold (to be defined later). The
data instance whose efficiency is larger than the threshold is
accepted. We propose another algorithm (Alg. 2) for updating
the efficiency threshold at the end of each stage according to
the sample set consisting of all instances arriving before.

Note that each stage is an accepting process as well as a
sampling process, so all workers have an opportunity to be
accepted. Some online algorithms based on the threshold reject
workers arriving earlier and make use of them to compute the
value of the threshold. These works are unfair for workers
who come earlier. Since these workers have no chance to be
accepted no matter how low the cost is or how high the utility
contribution is. The unfairness encourages users to come late
and even results in task starvation.

We introduce how to partition the total time T of a round
into multiple stages. We recursively cut the total time T
according to the proportion r, such as 0.3. More specifically,
we first cut the total time T into two stages. The length of
the first stage is rT and the remaining time, i.e., (1 − r)T
constitutes the second stage. We then cut the first stage into
two stages with length r2T and (1 − r)rT , respectively. We
repeat this operation until the length of the shortest stage is 1.
The time length of each stage is increasing. This is because
the sample size is small at the beginning, and the efficiency
threshold is not accurate. We have to update the threshold
frequently.

The number of stages n depends on the piecewise point
r. When r is smaller than 0.5, the shortest stage is the first
stage with length rn−1T . Set the length of the shortest stage
to 1, i.e., rn−1T = 1. We have n =

⌊
log

1/T
r + 1

⌋
. If r is

larger than or equal to 0.5, the shortest stage is the second
stage with length rn−2T − rn−1T . Then, the number of
stages is

⌊
log

1/((1−r)T)
r

⌋
. The i-th stage ends at time-slot

Ti =
⌊
rn−1T

⌋
. The budget that can be used before the end

of the i-th stage is (Ti/T)B.

Algorithm 1: Selecting Instances
Input: Budget B, deadline T , unlabeled data set Q,
{Ti|i = 1 · · ·m} and {Bi|i = 1 · · ·m}

Output: The collected data set D.
1: (t, j, ρ, S, S′)← (1, 1, ϵ, ∅, ∅)
2: while t ≤ T do
3: if there is an instance xi arriving at time step t then
4: if ci ≤ Vi(S)/ρ ≤ Bj −

∑
xk∈S

ck then
5: S = S ∪ {xi}
6: end if
7: S′ = S′ ∪ xi

8: end if
9: if t = Tj then

10: Update efficiency threshold ρ with S′ and Bj .
11: j = j + 1
12: end if
13: t = t+ 1
14: end while

B. Selecting Data Instances

We first define the important concept of marginal efficiency
to be used by the online algorithm for determining which
instances to select. The marginal efficiency of an instance is
the marginal utility contribution per cost with respect to the
current set of selected instances. More formally, it is defined
as follows.

Definition 3 (Marginal Efficiency). Given the current set of
selected instances, denoted by S, the marginal contribution to
the data utility of a newly coming instance xi is

Vi(S) = V (S ∪ xi)− V (S) (3)

Then, the marginal efficiency of instance xi is the marginal
contribution per cost, i.e., Vi(S)/ci.

With the definition of marginal efficiency, we next explain
the main idea of Alg. 1. A new instance xi is accepted if both
the following two conditions hold: (1) the marginal efficiency
is not less than the efficiency threshold of the current stage,
and (2) the remaining budget can cover the cost.

The details of the algorithm are shown in Alg. 1. The current
stage is j. The accepted instance set is S. The sample set is
S′, which is used for updating the efficiency threshold. We
initially set a small efficiency threshold ϵ, which is used for
making decisions at the first stage. In each stage, when a new
instance xi arrives, if the marginal efficiency is not less than
the efficiency threshold, and we can afford the cost with the
remaining budget, we add this instance into S. Otherwise,
we reject this instance. We add all arriving instances into the
sample set S′. When it is the end time of a stage, the efficiency
threshold is updated by Alg. 2. At the same time, we move to
the next stage.

C. Updating Efficiency Threshold

Let Oj denote the optimal data utility achieved under budget
Bj with the sample set S′ arriving before the end of stage j.
Then, the efficiency threshold should be updated to Oj/Bj .
However, as shown in section II-D, finding the optimal data

Algorithm 2: Updating Efficiency Threshold
Input: Budget Bj , sample set S′, unlabeled data set Q.
Output: The updated efficiency threshold ρ.

1: R = ∅
2: xk = argmaxxi∈S′(Vi(R)/ci)
3: while ck ≤ Bj −

∑
xi∈R

ci do
4: R = R ∪ {xk}
5: S′ = S′\{xk}
6: if S′ ̸= ∅ then
7: xk = argmaxxi∈S′(Vi(R)/ci)
8: else
9: break;

10: end if
11: end while
12: if S′ = ∅ then
13: ρ = V (R)

δBj

14: else
15: ρ = V (R∪xk)

δBj

16: end if

utility is NP-hard. Therefore, we estimate the upper bound of
Oj through a greedy algorithm.

The details of the algorithm are shown in Alg. 2. It adopts
a greedy strategy, which always selects the instance with
the largest marginal efficiency with respect to the current
set of selected instances, denoted by R. The algorithm stops
when the remaining budget cannot cover the cost of the next
candidate.

When the algorithm stops, if S′ ̸= ∅, V (R ∪ xk) ≥ (1 −
1
e)Oj , where xk is the next candidate [7]. Therefore, the upper
bound of Oj is V (R∪xk)

1−1/e . If S′ = ∅, V (R) = Oj is the exact
upper bound. Finally, we set the updated efficiency threshold
to be V (R∪xk)

δBj
when S′ ̸= ∅ and V (R)

δBj
when S′ = ∅, where

δ = (1− 1/e)δ′. We call δ′ as shrinkage factor and set δ′ > 1
to obtain a slight underestimate of the efficiency threshold for
guaranteeing that enough instances are accepted and avoiding
wasting budget. We find the best δ′ to optimize the competitive
ratio in the next section.

IV. THEORETICAL ANALYSIS

We present a theoretical analysis to demonstrate that the
proposed online mechanism has a competitive ratio.

Theorem 1. Assume that the contribution of any instance is
at most 1

λ of the offline optimal data utility. Then, when 1
λ is

infinitely small, r is 0.4390, and δ′ is 4.6048, the competitive
ratio is 0.1218.

Proof. We partition the whole time length T into two parts.
The first part includes stage 1 to stage n − 1 and the second
part is the last stage.

Let R be the set of selected instances in the offline optimal
solution. Define R1 and R2 as the subsets of R that appear in
the first part and the second part, respectively. In the first part,
we obtain the sample set S′. Thus, we have R1 = R∩S′, and
R2 = R∩U\S′, where U is the set of all arriving bids before
the time slot T . Let R′

1 denote the set of selected instances by
Alg.2 based on the sample set S′ and the budget rB. Then, the

efficiency threshold used in the last stage is ρ =
V (R′

1∪bI)
(1−1/e)δ′rB ≥

On−1

δ′rB . Let R′
2 denote the set of selected instances by Alg. 1

in the last stage. Assume that the contribution of a instance is
at most V (R)/λ, where λ is very small.

Since the costs and contributions of all users are i.i.d,
they can be selected in the set R with the same probability.
We have that E(|R1|) = r|R| and E(|R2|) = (1 − r)|R|.
The contribution of each instance can be seen as an i.i.d
random variable, and because of the submodularity of the data
utility objective, we can obtain that E(V (R1)) ≥ rV (R) and
E(V (R2)) ≥ (1 − r)V (R). The expected sum of costs of
instances in R1 and R2 are rB and (1 − r)B, respectively.
Since On−1 is the optimal data utility achieved with the
budget rB and the sample set S′, it can be derived that:
E(On−1) ≥ E(V (R1)) ≥ rV (R).

We study the achieved competitive ratio by comparing the
data utilities achieved by the selected instance set R′

2 in the last
stage and the intersection R2 between the optimal instance set
R and the set of arriving instances in the last stage. Consider
two cases as follows.

Case 1: The sum of costs of instances in R′
2 is at least

βB, β ∈ (0, 1− r]. In this case, since each selected instance
has marginal efficiency at least ρ ≥ On−1

δ′rB , we have V (R′
2) ≥

ρβB ≥ βOn−1

δ′r ≥ β
δ′V (R).

Case 2: The sum of costs of instances in R′
2 is less than βB,

β ∈ (0, 1− r]. There are two reasons leading to that instances
in R2 not being selected in R′

2. The first reason is the marginal
efficiencies of some instances in R2 are less than ρ. Even if all
instances in R2 are such instances, their expected total cost is
at most (1−r)B. Because of submodularity, the expected total
loss due to such instances is at most ρ ·(1−r)B ≤ (1−r)On−1

(1−1/e)δ′r .

Furthermore, there is not enough budget to cover the costs
of some instances in R2 whose marginal efficiencies are not
less than ρ. It means that the cost of such a instance is larger
than (1 − r − β)B. Otherwise, selecting this instance would
not lead to the total cost of R′

2 exceeding the stage budget
(1− r)B. Therefore, the number of such instances in R2 is at
most (1−r)B

(1−r−β)B . Since the contribution of such a instance is
at most V (R)/λ, the expected total loss due to such instances
is at most (1−r)V (R)

(1−r−β)λ .
Therefore, we have that

E(V (R′
2)) ≥ E(V (R2))−

(1− r)On−1

(1− 1/e)δ′r
− (1− r)V (R)

(1− r − β)λ

≥ (1− r)V (R)− (1− r)On−1

(1− 1/e)δ′r
− (1− r)V (R)

(1− r − β)λ

≥ (1− r − 1− r

(1− 1/e)δ′r
− 1− r

(1− r − β)λ
)V (R)

Consider case 1 and case 2, the ratio of E(R′
2) to E(R) is

at least β/δ′ if the following equation is satisfied.

(1− 1

(1− 1/e)δ′r
− 1

(1− r − β)λ
)(1− r) = β/δ′

Therefore, we can obtain the optimal ratio by solving the

0 1 2 3 4
Rounds

0.75

0.8

0.85

0.9

0.95

A
cc

u
ra

cy

ACU-MyAL
ACU-Uncertainty
ACU-NoAL

Fig. 2. Accuracy achieved in each
round under different data utility
models in two-class classification.

0 1 2 3 4
Rounds

0.65

0.7

0.75

0.8

0.85

0.9

0.95

A
cc

u
ra

cy

ACU-MyAL
ACU-Uncertainty
ACU-NoAL

Fig. 3. Accuracy achieved in each
round under different data utility
models in multiclass classification.

400 600 800 1000 1200 1400
of data instances

2

3

4

5

6

7

8

D
a

ta
 u

ti
li

ty

×104

Multi_Stage
Multi_Stage_Compare
Two_Stage

Fig. 4. Data utility vs. # of coming
instances under different algorithms.

15 20 25 30 35 40 45
Budget

3

4

5

6

7

8

9

10

D
a

ta
 u

ti
li

ty

×104

Multi_Stage
Multi_Stage_Compare
Two_Stage

Fig. 5. Data utilities vs. budget
under different online algorithms.

following optimization problem when λ is infinitely large:

max β/δ′

s.t. (1− 1

(1− 1/e)δ′r
− 1

(1− r − β)λ
)(1− r) = β/δ′

s.t. β ∈ (0, 1− r]
(4)

According to the optimization result, we achieve the com-
petitive ratio 0.1218 when r is 0.4390 and δ′ is 4.6048.

V. EVALUATION

A. Methodology and Settings

We evaluate our data utility model and online algorithm
based on the application of human activity recognition. Human
activity recognition aims to identify the actions carried out
by humans given a set of observations. The trace comes
from the Human Activity Recognition Using Smartphones
Dataset in the UCI Machine Learning Repository [8]. The
dataset was collected from 30 people. Each person performed
six activities (walking, walking upstairs, walking downstairs,
sitting, standing, lying down) wearing a smartphone (Samsung
Galaxy S II) on the waist. The labels were manually annotated
by analyzing video recordings. The sensor signals were pre-
processed by applying noise filters and then sampled in fixed-
width sliding windows. As a result, 561 features in time and
frequency domain are selected.

We perform two-class and multiclass classification on this
dataset, respectively. In the two-class classification problem,
the classes are walking downstairs and walking upstairs, and
we choose 20 most relevant features by checking the mutual
information between each feature and each class. We have
implemented a logistic regression classifier for this problem.
For the multiclass classification problem, all 561 features are
used and a one-vs-one SVM classifier with linear kernels is
applied. In both problems, the uncertainty measure is based
on the margin of an data instance, and the similarity between
two instances is defined as the cosine similarity.

Other settings are as follows. The cost of a worker for la-
beling one instance confirms the truncated normal distribution
from [$0.05, $0.15]. The number of rounds is 4. Each data
point reported below is the average result of 20 independent
runs under the same setting.

B. Efficiency of Data Utility Model

In this subsection, we compare our data utility model with
other two models to show the efficiency and advantage of
our model. More specifically, we compare the accuracy of the
trained model under different data utility models. The first
compared data utility model only considers uncertainty, called
Uncertainty. The second one is selecting instances randomly,
called NoAL. To eliminate the effect of various costs of data
collecting, we adopt the simplified budget constraint that the
number of selected instance is limited in each round. The
algorithm used for instance selecting also has effect on the
accuracy of the trained model. To remove this effect, we adopt
the offline approximate-optimal algorithm to choose instances.

In Fig. 2, we report the accuracy of the trained model in
each round under the three data utility models in the two-class
classification problem. In each round, the number of coming
instances is 150 and we select 15 instances. The initial training
set has 5 instances. The unlabeled data set Q (the test data set)
consists of 368 instances. The accuracy of the trained model
increases in each round, because more data are obtained. Our
data utility model performs best. Uncertainty is worse because
it does not consider density. NoAL is the worst. The accuracy
achieved by our data utility model in the second round is
higher than that achieved by NoAL in the last round. That
is to say, our data utility model can save at least 3/4 times
the budget spent by NoAL.

We report the accuracy of the trained model achieved for the
multiclass classification problem in Fig. 3. In each round, the
number of coming instances is 600 and we select 80 instances.
The initial training set has 40 instances. The set Q consists of
1201 instances. Our strategy still performs best.

C. Comparison with Other Algorithms

We evaluate our online algorithm with other two algorithms
called Two-Stage [9] and Multi-Stage-Compare [10]. Tow-
Stage observes the utility contribution of the uploaded data and
does not accept any one in the first stage. In the second stage,
it accepts a data instance if its efficiency reaches the efficiency
threshold computed according to the instances arriving in the
first stage. The competitive ratio is min(0.0208, 0.2083−1/λ)
[9]. The shrinkage factor is 6 and the piecewise point is 0.5.
Multi-Stage-Compare is similar with our algorithm. The dif-
ference is that it applies another offline algorithm to update the
efficiency threshold [11]. What’s more, the different piecewise

point and shrinkage factor are adopted. The competitive ratio
of Multi-Stage-Compare is about 0.026 when λ is infinitely
large [10]. It is much smaller than ours. We focus on one
round of the multiclass classification problem.

In Fig. 4, we study the data utilities achieved by the three
online algorithms when the number of coming instances
increases from 400 to 1400. The budget is $30. The data
utilities increase as the number of coming users becomes larger
because better data instances can be selected among more
candidates. Our algorithm performs best. Two-Stage is worst.
More candidates can decrease the performance gap between
Two-Stage and the two algorithms with multiple stages.

We report the data utilities achieved by the three online
algorithms, when the budget increases from $15 to $45 in
Fig. 5. Our algorithm is still the best. The performance gap
between Two-Stage and the other two algorithms increases
with the larger budget. This is because Two-Stage only accepts
data instances in the second stage. Therefore, the candidate set
is not enough.

VI. RELATED WORK

Data Collecting by Crowdsensing. There are many works
about data collecting by crowdsensing [12] [13] [14] [15].
For example, Yang et al. [14] focus on truth estimation on
one Point of Interest, e.g., estimating the noise level on one
PoI. They try to derive the quality of each submitted data by
calculating the distance from the data to the center of all data
instances. The estimated truth is the weighted center of all data
instances, where the weight of a data instance is the quality.

Nonetheless, these works can hardly be applied to our prob-
lem. The collected data instances are not for training models.
Therefore, no one bridges the gap between the performance
of the trained model and the data collection process.

There is one work collecting data by crowdsensing for train-
ing learning models [16]. However, they consider a simpler
setting where the cost of each data instance is same. It is not
realistic in the real world. At the same time, they update the
learning model upon getting a new data instance, which is
very time-consuming. Moreover, they do not consider density
of each data.

The Secretary Problem. In the online scenario, our data u-
tility maximization problem is actually a submodular secretary
problem with a knapsack constraint. The secretary problem is
a kind of problems where applicants arrive online in a random
order. A decision about each particular applicant is to be made
immediately after the interview. Generally, once rejected, an
applicant cannot be recalled. In our work, a data instance is an
applicant. Our secretary problem has a knapsack constraint.

There are two related works [9] [10] solving this problem.
They are the compared algorithms in the evaluation. Two-
Stage is unfair and Multi-Stage-Compare has a much lower
competitive ratio than our work.

VII. CONCLUSION

In this paper, we have studied the data utility maximiza-
tion problem under the budget constraint when leveraging

crowdsensing in machine learning. We propose the multi-
round crowdsensing framework. We further come up with
a novel data utility model to bridge the gap between the
performance of the trained model and the collected instances.
We further design a fair online algorithm and achieve a non-
trivial competitive ratio. The experimental results demonstrate
that the performance of the trained model is significantly
improved by maximizing the data utility using our algorithm.

ACKNOWLEDGEMENTS

This research is supported in part by 973 Program (No.
2014CB340303), NSFC (No. 61772341, 61472254, 61572324
and 61170238), NSF grants (CNS 1757533, CNS1629746,
CNS 1564128, CNS 1449860, CNS 1461932, CNS 1460971,
and IIP 1439672). This work is also supported by the Program
for Changjiang Young Scholars in University of China, the
Program for China Top Young Talents, and the Program for
Shanghai Top Young Talents.

REFERENCES

[1] Stephanie R. Debats, Lyndon D. Estes, David R. Thompson, and Kel-
ly K. Caylor, “Integrating active learning and crowdsourcing into large-
scale supervised landcover mapping algorithms”, in PeerJ PrePrints,
2017.

[2] R. K. Ganti, F. Ye, and H. Lei, “Mobile crowdsensing: current state
and future challenges.”, IEEE Communications Magazine, vol. 49, pp.
32–39, 2011.

[3] Davide Anguita, Alessandro Ghio, Luca Oneto, Xavier Parra, and
Jorge L. Reyes-Ortiz, “Human activity recognition on smartphones using
a multiclass hardware-friendly support vector machine”, in Ambient
Assisted Living and Home Care, 2012.

[4] Barzan Mozafari, Purnamrita Sarkar, Michael J. Franklin, Michael I.
Jordan, and Samuel Madden, “Scaling up crowd-sourcing to very large
datasets: A case for active learning”, in PVLDB, 2014.

[5] Burr Settles, “Active learning”, Synthesis Lectures on Artificial
Intelligence and Machine Learning, vol. 6, no. 1, pp. 1–114, 2012.

[6] Yifan Fu, Xingquan Zhu, and Bin Li, “A survey on instance selection
for active learning”, Knowledge and Information Systems, vol. 35, pp.
249–283, 2013.

[7] Thibaut Horel, “Notes on greedy algorithms for submodular maximiza-
tion”, 2015, https://thibaut.horel.org/submodularity/notes/02-12.pdf.

[8] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A public
domain dataset for human activity recognition using smartphones.”, in
ESANN, 2013.

[9] Mohammadhossein Bateni, Mohammadtaghi Hajiaghayi, and Morteza
Zadimoghaddam, “Submodular secretary problem and extensions”, ACM
Trans. Algorithms, vol. 9, no. 4, pp. 32:1–32:23, 2013.

[10] Dong Zhao, Xiang-Yang Li, and Huadong Ma, “Budget-feasible online
incentive mechanisms for crowdsourcing tasks truthfully”, IEEE/ACM
Transactions on Networking, vol. 24, no. 2, pp. 647–661, 2016.

[11] Y. Singer, “Budget feasible mechanisms”, in IEEE FOCS, 2010.
[12] Jacopo De Benedetto, Paolo Bellavista, and Luca Foschini, “Proximity

discovery and data dissemination for mobile crowd sensing using lte
direct”, Computer Networks, vol. 129, pp. 510–521, 2017.

[13] Jing Wang, Jian Tang, Guoliang Xue, and Dejun Yang, “Towards
energy-efficient task scheduling on smartphones in mobile crowd sensing
systems”, Computer Networks, vol. 115, pp. 100–109, 2017.

[14] Shuo Yang, Fan Wu, Shaojie Tang, Xiaofeng Gao, Bo Yang, and Guihai
Chen, “On designing data quality-aware truth estimation and surplus
sharing method for mobile crowdsensing”, IEEE Journal on Selected
Areas in Communications, vol. 35, pp. 832–847, 2017.

[15] Kai Han, Chi Zhang, and Jun Luo, “Taming the uncertainty: Budget
limited robust crowdsensing through online learning”, IEEE/ACM
Transactions on Networking, vol. 24, pp. 1462–1475, 2016.

[16] Qiang Xu and Rong Zheng, “When data acquisition meets data analytics:
A distributed active learning framework for optimal budgeted mobile
crowdsensing”, in IEEE Infocom, 2017.

