
An Efficient Distributed Mutual Exclusion Algorithm
Based on Relative Consensus Voting

Jiannong Cao
Hong Kong Polytechnic

University
Kowloon, Hong Kong

csjcao@comp.polyu.edu.hk

Jingyang Zhou
Nanjing University

Nanjing, China
jingyang@nju.edu.cn

Daoxu Chen
Nanjing University

Nanjing, China
cdx@nju.edu.cn

Jie Wu
Florida Atlantic

University
Boca Raton, USA
jie@cse.fau.edu

Abstract

Many algorithms for achieving mutual exclusion in
distributed computing systems have been proposed. The
three most often used performance measures are the
number of messages exchanged between the nodes per
Critical Section (CS) execution, the response time, and
the synchronization delay. In this paper, we present a
new fully distributed mutual exclusion algorithm. A node
requesting the CS sends out the request message which
will roam in the network. The message will be forwarded
among the nodes until the requesting node obtains
enough permissions to decide its order to enter the CS.
The decision is made by using Relative Consensus Voting
(RCV), which is a variation of the well-known Majority
Consensus Voting (MCV) scheme. Unlike existing
algorithms which determine the node to enter the CS one
by one, in our algorithm, several nodes can be decided
and ordered for executing the CS. The synchronization
delay is minimal. Although the message complexity can
be up to O in the worst case in a system with N nodes,
our simulation results show that, on average, the
algorithm needs less number of messages and has less
response time than most of those existing algorithms
which do not require a logical topology imposed on the
nodes. This is especially true when the system is under
heavy demand. Another feature of the proposed algorithm
is that it does not require the FIFO property of the
underlying message passing mechanism.

()N

1. Introduction

Solving the mutual exclusion problem in a distributed
system imposes more challenges than in a centralized
system. The mutual exclusion problem states that to enter
a Critical Section (CS), a process must first obtain the
lock for it and ensure that no other processes enter the
same CS at the same time. When competing processes are
distributed on the nodes over a network, how to achieve
mutual exclusion efficiently still remains a difficult
problem to solve in distributed systems. Over the last two
decades, many algorithms for mutual exclusion in
distributed computing systems have been proposed. Three

performance measures are often used to evaluate their
performance. They are message complexity, response time
and synchronization delay [16]. The message complexity is
measured in terms of the number of messages exchanged
between the nodes per CS execution. The response time is
the time interval a request waits for its CS execution to be
over after its request messages have been sent out. The
synchronization delay is the time interval between two
successive executions of the CS. The response time and
synchronization delay both reveal how soon a requesting
node can enter the CS and are measured in terms of the
average message propagation delay Tn.

Distributed mutual exclusion algorithms can be divided
into two categories: structured and non-structured.
Structured algorithms impose some logical topologies, such
as tree, ring and star, on the nodes in the system. These
algorithms usually have good message complexity when
the load is “heavy”, i.e., there is always a pending request
for mutual exclusion in the system. For example,
Raymond’s tree-based algorithm [12] requires only 4
messages exchanged per CS execution at heavy loads.
However, these algorithms increase average response time
delay as high as ()()NO log . Meanwhile, the organization
and maintenance of the specified topology also lead to a
large overload. Furthermore, most structured algorithms
work well only under their specified topologies, and may
be inefficient in some other environments [20]. In this
paper, we are concerned with non-structured algorithms
which are generic in the sense that they are suitable for
arbitrary network topologies.

For non-structured algorithms, the message complexity
can be as low as ()NO or ()()NlogO . The response time can
be 2Tn at light loads and N*(Tn+Tc) at heavy loads, where
Tc is the average CS execution time. But either the
reduction of the message complexity is achieved at the cost
of long synchronization delay or the decrease in response
time is gained at the cost of high message complexity. In
other words, they either cause high message complexity or
result in long response time. More importantly, most of the
algorithms require the FIFO (First In First Out) property as
prerequisite for the underlying message passing
communications. If this property can not be satisfied, extra

messages or mechanisms needed to be employed to solve
possible deadlock [5].

In this paper, we present a novel non-structured
algorithm that can solve distributed mutual exclusion
efficiently and resiliently. A node requesting the CS sends
out the request message which will roam in the network.
The message will be forwarded among the nodes until the
requesting node obtains enough permissions to decide its
order to enter the CS. The decision is made by using
Relative Consensus Voting (RCV), which is a variation of
the well-known Majority Consensus Voting (MCV)
scheme [18]. In RCV, the request of a node can be
granted if it either can eventually obtain the largest
number of permissions against other currently competing
requests, or the node has the smallest id among the
requesting nodes potentially with the same number of
permissions. Since nodes are not always required to
collect permissions from the majority of all the nodes in
the system, the number of messages exchanged can be
reduced.

The proposed algorithm requires no pre-configuration
on the system but only needs to know the total number of
the network nodes that are involved. It possesses several
other advantages. First, it does not require the FIFO
property of the underlying message passing mechanism.
Even when messages are delivered out of order, there is
no impact on the algorithm’s correctness and performance.
Second, unlike existing algorithms which determine the
node to enter the CS one by one, in our algorithm, several
nodes can be decided and ordered for executing the CS so
that the delay time before entering the CS can be reduced.
The algorithm generates a sequence of requesting nodes
that describes their order to execute the CS. Each node
executes the CS directly if it stands on the top the
sequence or waits for a message from its immediate
preceding node in the sequence informing it to enter the
CS, so the synchronization delay is minimal, i.e., T (T is
the average delay of passing a message between two
nodes). Another advantage introduced by the RCV
scheme is resiliency which is inherited from the MCV.
Since the correct operation of the algorithm does not
depend on any specific node, crash of nodes will not
affect the algorithm’s execution. Although the message
complexity can be up to O in the worst case, our
simulation results show that, on average, the algorithm
needs less number of messages and has less response time
than most of those existing algorithms which do not
require a logical topology imposed on the nodes. This is
especially true when the system is under heavy demand.
We argue that performance of distributed mutual
exclusion algorithms under light load is not as critical as
under the heavy loads, because system resources are rich
under light load, thus algorithms with higher overhead
can work well.

()N

The remainder of this paper is organized as follows:
Section 2 overviews related work. Section 3 describes our
system model. In Section 4, we present the design of the

proposed algorithm. Sections 5 and 6 contain the
correctness proof of and performance evaluation of the
proposed algorithm, respectively. Finally we conclude the
paper in Section 7.

2. Background and related works

Some of the non-structured algorithms employ a logical

token to achieve mutual exclusion [3, 14, 17]. In the token-
based algorithms, a unique token is shared among the
nodes and only the node which possesses the token is able
to enter the CS. The most representative algorithm that uses
token is broadcast [17]: a requesting node sends token
requests to all other nodes and the token holder then passes
the token to the requesting node after it finishing executing
the CS or it no longer need the token. An optimization on
the broadcast is that a node only sends its token requests to
nodes that either has the token or is going to get it in near
future [14] so that the number of messages exchanged per
CS execution can be reduced from N to N/2 on the average
at light loads, and the response time keeps 2Tn at light loads
and N*(Tn+Tc) at heavy loads. [3] proposes an interesting
algorithm where the token contains an ordered list of all
requesting nodes that have been determined the order to
enter the CS. The messages needed to exchange per CS
execution is 3-2/N at heavy load. But when calculating the
response time, an extra “request collect time” must be
considered. Another drawback of the algorithm is that it is
not a fully distributed algorithm because at any time, there
is an “arbiter” acting as the coordinator in the system. In
addition, it is difficult for token-enabled algorithms to
detect loss of the token and regenerate a new unique one.
Although some efforts have been made to tackle this
problem [2, 6, 10], solutions always induce extra high
overloads.

For algorithms without using token, usually several
rounds of message exchanges among the nodes are
required to obtain the permission for a node to enter the CS.
Lamport’s logical timestamp [7] is often adopted in this
type of non token-based algorithms. Ricart and Agrawala
proposed an algorithm [13] as an optimization of
Lamport’s algorithm. In their algorithm, a node grants
multiple permissions to requesting nodes immediately if it
is not requesting the CS or its own request has lower
priority. Otherwise, it defers granting permission until its
execution in the CS is over. Only after receiving grants
from all other nodes, can the requesting node enter the CS.
Ricart-Agrawala’s mutual exclusion algorithm has low
delays because of parallelism in transfer of messages. The
response time is 2Tn and N*(Tn+Tc) under light load and
heavy load, respectively. But the number of messages
exchanged per CS execution is a constant of 2*(N-1),
which is quite large. Under light load, the average number
of messages can be reduced to N-1 by using a dynamic
algorithm [15]. A more recent work described in [8]
reduces message traffic of the Ricart-Agrawala type
algorithms to somewhere between N-1 and 2(N-1) by
making use of the concurrency of requests and some other

methods. Nevertheless, the message complexity
remainsO . ()N

Another type of non-structured algorithms that does
not need to use token is the quorum-based algorithms. A
quorum is a set of nodes associated with each node in the
system and every two quorums have a nonempty
intersection. The commonality of quorum-based
algorithms lies in that a requesting node can enter the CS
with permissions from only the nodes in its quorum.
Obviously, messages needed to be exchanged are decided
by the size of the quorum. A well known example is
Maekawa’s algorithm [9], where nodes issue permission
only to one request at a time and a requesting node is only
needed to receive permissions from all members of its
quorum before it is able to enter the CS. In [9], the
quorum size is N while in the Rangarajan-Setia-

Tripathi algorithm [11], the size is reduced to
G
NG

2
1+ ,

where G is the subgroup size. [1] organizes all N nodes to
a binary tree and a quorum is formed by including all
nodes along any path that starts from the root of the
spanning tree and terminates at a leaf. So the quorum size
is log(N) in the best case and (N+1)/2 in the worst case.
However, the algorithm will degenerate to a centralized
algorithm because the root node is included in all
quorums when it is always available.

 Incoming Message Queue
Server Nodei

SI MPM Incoming Message

Message sent out

Figure 1. Node Structure

As to the response time, it is comparatively high under
heavy load in Maekawa’s algorithm because the
synchronization delay is 2Tn. Some improvements have
been made to the Maekawa type algorithms [4, 19] by
introducing more types of messages and exchanging a
few more messages so that the synchronization delay can
be reduced to Tn. Despite its good performance, the
quorum-based mutual exclusion algorithms still have two
disadvantages. First, the overhead of generating quorum
for each node must be taken into account especially when
the number of network nodes tends to change
dynamically. Second, if the FIFO property can not be
satisfied, which means that messages between two nodes
are not always delivered in the same order as being sent,
extra mechanism should be employed to avoid possible
deadlock, and when conflicts occur frequently, more than
N messages may need to be exchanged [5].

3. System model and data structures

A distributed system consists of N nodes that are
numbered from N0 to NN-1. The term node used here
refers to a process as well as the computer on which the
process is executing. There is no shared memory or
global clock and the nodes communicate with each other
only through message passing. In this paper, we do not
consider fault tolerance issues. We assume that the nodes
do not crash underlying communication medium is
reliable so that the messages will not be lost, duplicated.

It is assumed that each node can issue a request for
entering the CS only when there is no outstanding request

issued from the same node. Figure 1 shows the structure of
a node. On each node, a MPM (Message Processing
Model) is deployed. It processes messages cached in the
Incoming Message Queue of that node and sends messages
to other nodes when necessary. Also, every node maintains
a table recording the system information (SI). Figure 2
illustrates the data structure used for SI. It contains three
fields:

 Next indicates which node, if any, will enter the CS

 immediately after this node.
 NONL (Node Ordered Node List) is a sequence of

ordered tuples. A tuple, in the form of < NodeID, TS >,
records the requesting node’s ID and the timestamp at
which moment the corresponding request message was
firstly initialized.

 NSIT (Node System Information Table) consists of N
rows, one for each node in the system (including the
node itself). Each row records the information about a
node known to it, including the ID, the timestamp TS,
and a tuple list MNL of that node. MNL is a list of
tuples like <NodeID, TS>, showing all the nodes from
which a request message has been received. TS
represents how up-to-date the information about the
node is. Since the status of the node’s information is
updated whenever the node issues a request message or
receives a request message, TS is implemented as a
counter recording the number of request messages that
have been initialized at or sent to the node.

Next
NONL

NSIT

Figure 2.
Data structure of SI

MNTS ID

Host i
UL

MSIT

 ID TS MN

Type RM

MONL

Figure 3.
 RM initialized by Nodei

In the remaining part of the paper, we denote a node
with ID “i” as Ni, and the SI maintained by Ni as SIi.

 Only three types of messages are employed in our
proposed algorithm. They are:

 Request Message (RM)
 Enter Message (EM)
 Inform Message (IM)

Since a RM message can be forwarded by different
nodes, we call the node that initially sends the message
the home node of the message. Each message is
associated with a flag which indicates the type of the
message. Data structures contained in messages are
similar to that used for SI. As an example, figure 3 shows
the data structure used in RM. “MONL” (Message
Ordered Node List) is a sequence of ordered tuples.
“MSIT” (Message System Information Table) records the
newest system information updated during the roaming of
the message. In addition, a field Host indicates the home
node of the message. “UL” records unvisited nodes’ ID.

The EM and IM messages do not have the UL and
Host fields. IM messages have a field “Next” recording
the id of the node that will enter the CS after the
message’s destination node.

4. The algorithm

When a node wants to enter the CS, it initializes a RM

message and sends it to some other node. As described
before, the field MNL in the data structure maintained by
a node records all the nodes that have sent RM to the
node. When a RM message is processed by the MPM on
a node, a tuple is generated and appended to the MNL.
After exchanging with the information carried in the
incoming messages (using the Exchange procedure), the
MPM will calculate whether the RM message’s home
node has gained enough information to determine its rank
among all the competing nodes (using the Order
procedure). If not, the RM will be forwarded to other
nodes that the message has not visited. Otherwise, if the
rank can be determined, we say that the requesting node,
or its RM, or the corresponding tuple is ordered. An
ordered tuple knows the order for its home node to enter
the CS and will not be forwarded among the nodes. If the
MPM finds that a tuple has the highest rank, it
immediately sends an EM message to the tuple’s home
node. If the tuple hasn’t the highest rank, its immediate
preceding tuple’s home node will be informed by an IM
the immediate next node to execute the CS. After a node
finishes executing the CS, it will send an EM message to
its successor.

In the following subsections, we will describe the
algorithm executed by MPM, the Exchange procedure,
and the Order procedure.

4.1. The MPM Algorithm

Once a node Ni wants to enter a CS, it increases its
timestamp ti by one, and appends the tuple <i, ti> to
SIi.NSIT[i].MNL (Line 4, 5). After doing so, it generates a
RM message and sends it out for roaming over the
network to confer with other nodes on its order of
entering the CS. The RM message is initialized with a
partial SI copy of the home node (Line 6-13).

If node Ni has been ordered, it will receive an EM
message when it is on top of the Ordered Nodes List, or

its immediate preceding node “k” in the list will receive an
IM informing it to update the Next field to “i”. When on top
of the Ordered Node List, Ni will either receive an EM
from Nk which just exits the CS or from Nj where its order
is determined. On getting enough permissions to enter the
CS, Ni will first invoke the Exchange procedure to update
its SI with the incoming EM and then enter the CS (Line
14-16).

Whenever finishing executing the CS, Ni must send an
EM to the node represented by Nexti, if any, and delete its
own tuple from the top of SIi.NONL (Line 17-24).

At times Ni will receive an IM indicating that Nj is the
next node to it that enters CS. If Ni hasn’t entered the CS or
is currently executing the CS (this can be determined by
whether tuple <i, ti> is still in SIi.NONL), the only thing left
to do reset the value SIi.Next to “j”. Otherwise, which
means that Ni has finished executing CS, Ni should generate
an EM with a copy of its SI and send it to Nj immediately
(Line 25-32).

Upon receiving a RM originally initialized in Nj, the
MPM in Ni must increase its timestamp and register tuple
<j, tj>, then (1) call Exchange procedure to update its SI,
(2) call Order procedure to determine several node’s order
to enter the CS (if they can be ordered) employing RCV
algorithm (Line 33-37). Obviously, the information
included in the message is collected from the nodes along
its forwarding path. If Nj is ordered, then its immediate
preceding node in the NONL Nk will receive an IM or Nj
itself will receive an EM from Ni (if Nj is on top of NONL)
(Line 38-45). Otherwise, when Ni cannot be determined its
access order (that is to say the information carried by the
request message is not enough for determining its home
node’s access order), Ni will regenerate an RM with newest
system information but remains the “Host” to be “j” and
forward it to some other node which exists in the RM’s UL
(any of the unvisited nodes) (Line 46-53).

The MPM Algorithm
1. Initialization:
2. //Omitted
3. Upon requesting the CS:
4. SIi.NSIT[i].TS++;
5. Append tuple <i, SIi.NSIT[i].TS> to

SIi.NSIT[i].MNL;
6. Create a message with following content:
7. //initialize RM, copying information needed
8. Host = i;
9. UL = {Nx | 0≤ x ≤ N-1}-Ni;
10. MONL = SIi.NONL;
11. MSIT = SIi.NSIT;
12. Select an unvisited node randomly and delete

corresponding id from message UL;
13. Send the message to the selected node;
14. Upon receiving the EM:
15. Call Exchange Procedure to update the SIi.NSITi ;
16. Enter the CS;
17. Upon releasing the CS:
18. SIi.NSIT[i].TS++;

19. Delete i from SIi.NONLi
20. If (SIi . Next<> NULL) then // send EM message

informing the next node to enter CS if any
21. Initialize an EM with newest MONL and MSIT

copy from SIi ;
22. Send the EM to the SIi.Next ;
23. SIi.Next = NULL;
24. End if
25. Upon receiving an IM:
 (IM indicating next to be node j)
26. If (tuple <i, ti> which is immediate precedes tuple

<j, tj> is not in the list of SIi.NONL) then
27. // this node has finished executing the CS
28. initialize an EM with newest MONL and MSIT

copy from SIi;
29. send the EM to node j;
30. else
31. set SIi.Next = j;
32. end if
33. Upon receiving/processing a RM: (Assume that the

message initialized at node k arrives in node i)
34. Call Exchange Procedure to update SIi.NSIT;
35. Append tuple <k, tk> to SIi.NSIT[i].MNL;
36. SIi.NSIT[i].TS=max(SIi.NSIT[h].TS)+1

(h∈[0, N-1]);
37. Call Order procedure;
38. if BeOrdered = true then
39. if Highest_Priority = true then
40. Initialize an EM with newest MONL and

MSIT copy from SIi ;
41. send the EM to node k;
42. else
43. // informing k’s preceding node to reset its

Next field
44. send an IM to node k’s immediate preceding

node according to NONL;
45. end if
46. else // forward this RM with updated information
47. generate a new RM’ with following content:
48. Host’ = k;
49. MONL’ = SIi.NONL;
50. MSIT’ = SIi.NSIT;
51. choose one unvisited node (assume node h)

from the UL of RM;
52. UL’ = UL - Nh;
53. send the message to node h;
54. end if

4.2. The Order specifications

When request message originally initialized in Nj is
delivered to Ni, in this procedure, it will determine
whether Nj can be ordered by employing the RCV scheme.
First, all tuples existing in the NSIT will be organized as a
sequence {TPi} temporarily. The rank of a tuple in the
sequence is defined by two parameters: the number of
MNLs in which the tuple is placed on the top and the
value of NodeID. The latter is used to resolve any tie:

when more than one tuple are placed on the same number
of MNLs, the tuple with smallest NodeID wins and will be
assigned the highest rank (Line 12). Afterwards, the first
tuple in {TPi} is tested to determine whether it can be
ordered (Line 13).

 All ordered tuple will be appended to NONL and
removed from all MNLs of the NSIT (Line 14, 15). The
boolean variables BeOrdered and Highest_Priority will be
set to true if node Ni is ordered (Line 16-19) and is on top
of the NONL (Line25).

The Order Procedure
1. Continue = true;
2. BeOrdered = false;
3. if (tuple <j, tj> is in ONL) // already ordered when

processing other RM
4. Continue = false
5. BeOrdered = true;
6. delete <j ,tjk> from any entry of NSIT;
7. end if
8. while Continue = true Do
9. begin
10. //calculate upon the SI stored in node j after

updating with the incoming message.
11. // RCV scheme, some node(s) can be ordered

simultaneously in this procedure
12. finds all the M (M <= N) different tuple in the

NIST to build the sequence {TPh}: here, each TPh
reaches the top of Sh (Sh >=1) rows of MNL in
NSIT, and),1(, Mlklk ≤≤∀ , if

)(lk < then{ (or [(S) and
TP

lk SS > k = lS
1.NodeID < TP2.NodeID)]}; if there is only one

tuple in the sequence, then S2=0, S2.NodeID=1;
13. if ()∑ =

−>−
M

h hSNSS
121

 or (∑ =
−=−

M

h hSNS
121S

and (TP1.NodeID < TP2.NodeID)) then
14. append the TP1 to NONLj ;
15. delete TP1 from any row of NSITi ;
16. if (TP1.NodeID = j) then
17. Continue = false;
18. BeOrdered = true;
19. endif
20. else
21. Continue = false;
22. endif
23. end
24. endif
25. if OnTopOf(NONLi) then Highest_Priority = True ;
26. // node j can enter CS immediately

4.3. The Exchange specifications

In this procedure, MPM updates the node’s SI with the
incoming message by comparing the content of tuples.
After executing this procedure, newest information will be
append and outdated data will be deleted. (Assume that a
message arrives at node i)

First, the information in SIi.NONL and MONL are
synchronized: outdated tuples are deleted from MONL
(line 1, 2). According to line 1-2, if a tuple <j, tj> is in
MONL but not in SIi.NONL and SIi.NSIT[j].MNL, it can
be inferred that node Nj has been ordered. However, to
the current node i, it may be the case that Nj had finished
executing the CS or that no message containing
information about Nj has never visited Ni before. The two
cases can be distinguished by the difference between the
timestamp of Nj maintained by the message (MSIT[j].TS)
and that of the current node (SIi.NSIT[i].TS). If the
timestamp of Nj maintained by the message is smaller
than that of the current node, j must be outdated and can
be removed.

17. if there exists a tuple <k, tk> in MSIT[k].MNL
but is not in SIi.NSIT[k].MNL and
() then TSkMSITTSkNSITSIi].[].[. >

18. delete <k, tk> from any entry of MSIT;
19. if SIi.NSIT[k].TS < MSIT[k].TS then
20. set SIi.NSIT[k] = MSIT[k];
21. end if
22. end for

5. Correctness proof

In this section, we present the correctness argument

which shows that the proposed algorithm achieves mutual
exclusion and is also free of deadlock and starvation. We
first give some lemmas. When Ni receives an EM, it knows that all the nodes

whose tuple is preceding it’s tuple in the Ordered Node
List have finished executing the CS and can be safely
deleted from its own NONL. So, in this procedure, tuples
that precede <i, ti> in Ordered Node List also can be
deleted (line 3, 4). Otherwise, it will be added to
SIi.NONL in the rest of the procedure. Next, SIi.NONL
and MONL are combined if needed and relevant tuples
are deleted from SIi.NSIT (line 5-12).

Lemma 1. ∀i ∀j, |Si.NSIT[j].MNL| < N (|MNL| is the
length of MNL)

Proof: In the assumed distributed system consisting of N
nodes, each node contains only one process that makes a
request to mutual exclusively access the CS and each
process initiates at most one outstanding request at any
time. So, a node will never issue a new request message
until it finishes executing the CS for the previous request.
In other words, there won’t be two different tuples for a
node itself in the node’s own NSIT.

Last, SIi.NSIT and MSIT are synchronized (line 13-22).
If the Nj’s timestamp in MSIT of the message and the
current node is the same, then no information need to be
exchanged because the message and the current node
maintain the same state about Nj. Otherwise, information
update is needed. First, outdated tuples, if any, are deleted
from SIi.NSIT and MSIT (line 15-18). Then SIi.NSIT[j] is
set as MSIT if its TS is smaller (line 19, 20).

A node’ knowledge about other nodes is reflected in its
NSIT. The NSIT stores tuples in the field of MNL,
representing who and when sent request message to that
node. It is obviously that the tuples come from the
information carried by an incoming message. The message
copies information from the node where it is generated.
When a message (RM, EM or IM) arrives in a node, it will
firstly processed by the Exchange procedure, which
ensures that a MNL does not contain any pair of tuples that
has the same NodeID: if there exist two tuples with the
same NodeID but different TS in MSIT and NSIT
respectively, the one with smaller timestamp must be
outdated and will be deleted in the procedure. As only one
tuple survives for any other nodes in each entry of the NSIT,
there will be at most N tuples in a MNL.

The Exchange Procedure
1. if ∃ and a and

 and
 then

MONLa∈
NSITSIi [.∉

NodeIDaMSIT .[

NONLSI i .∉

MNL].
aNSITSI i .[.<

Hosta
TS]. TSNodeID].

2. delete tuples which precede a and a from MONL;
3. if ∃ and b and

 and
 then

NONLSIb i .∈

MSITb [∉
NodeIDaMSIT]..[

MONL∉

MNL].
aNSITSIi .[.

Host
TS > TSNodeID]. Lemma 2. When every MNL in NSIT is nonempty, at

least one node can be ordered after the execution of the
Order procedure.

4. delete tuples which precede a and a from
SIi.NONL;

5. if Length (MONL) >Length (SIi.NONL) then Proof: During the execution of Order, a sequence of
tuples regarding their order is generated. The order is
determined by the number of MNLs of which a tuple stands
on the top and the value of its NodeID. If every MNL in the
NSIT is nonempty, we then have N . At least,

the first tuple in the sequence can be ordered after the
execution of the Order procedure because either the first
tuple in the sequence either holds more first positions or it
has smaller NodeID value.

0
1

=−∑ =

M

h hS

6. for every tuple c in MONL and not in SIi.NONL
7. delete c from any entry of SIi.NSIT;
8. Set SIi.NONL = MONL;
9. else
10. for every tuple c in in SIi.NONL but not in MONL
11. delete c from any entry of MSIT
12. end if
13. for k = 1 to N do
14. if SIi.NSIT[k].TS <> MSIT[k].TS then

Lemma 3. A node Ni’s rank to enter the CS can be
determined after its corresponding RM message has been
forwarded at most N-1 times.

15. if there exists a tuple <k, tk> in
SIi.NSIT[k].MNL but is not in MSIT[k].MNL
and (SI) then TSkMSITTSkNSITi].[].[. <

Proof: Since the RMt
i (RMt

i means the request message
was initialized at node Ni at timestamp t) will not be sent to 16. delete <k, tk> from any entry of SIi.NSIT;

a node that it has already been forwarded to, after N-1
times of forwarding and information exchange, tuple <i,
t> will appear in each MNL of NSIT of the last visiting
node (we assume the node is Nk). It’s obviously that
every MNL isn’t empty. By Lemma 2, at least one node
can be ordered, so its corresponding tuple <j, t’> will be
deleted from NSITk and appended to NONLk. If j≠i,
another tuple will be deleted from NSITk and appended to
NONLk. This procedure will be repeated according to
Lemma 2 and the specification of Order. By Lemma 1,
there are at most N tuples in each MNL, which means that
after finite times of iterations, node Ni will be ordered at
some node Nk.

Lemma 4. When a RMt
i is ordered and is appended to

the NONL at certain node, the tuple for the nodes which
precede Ni in NONL and haven’t finished executing the
CS, if any, must still exist in that NONL.

Proof: When a node Nj precedes Ni in entering the CS
was ordered, if any, then according to Order procedure,
tuple <j, t’> must have been ranked the highest among the
M (M<N) tuples competing for entering the CS at that
time. Semantically, a tuple <j, t’> will not be deleted from
any NONL and NSIT until Nj hasn’t finished executing
the CS. Otherwise in any node, <j, t’> will either exists in
the NONL or is still in the NSIT keeping unordered. When
RMt

i is processed at certain node Nk, if tuple <j, t’> hasn’t
been ordered, the rank that tuple <i, t> can achieve should
be no higher than that of tuple <j, t’>. Consequently, RMt

i
cannot determine its own order because it needs to wait
until RMt

j is ordered. Thus, when RMt
i is able to be

ordered and appended to NONL at some node, RMt
j is

already in that NONL if Nj hasn’t exited from the CS.
Lemma 5. Two different tuples cannot achieve the

same rank.
Proof: By definition, a tuple is ranked according to the

number of MNLs in which it stands on the top and the
value of the NodeID field. It is straightforward that two
different tuples cannot achieve the same rank.

Lemma 6. In the Exchange procedure, after outdated
tuples are deleted, either MONL⊆NONL or MONL⊇
NONL and tuples on the top of the two lists are the same
if both are nonempty.

Proof: Assume the contrary, neither MONL⊆NONL
nor MONL⊇NONL is true. It is clear that | NONL | >0
and |MONL | > 0. So there must exist at least one tuple,
which can be denoted as A, and we have A∈ MONL,
A∉NONL. Also, there must exist tuples, which is denoted
as B, we have B∈NONL but B∉MONL. We assume that
MONL={Ak} (1≤ k ≤ M), NONL ={Bk}(1≤ k ≤ M’).

Firstly, we consider NONL ∩ MONL =∅. According
to the Order Procedure, Ak1 is ranked higher than Ak2 if
k1 < k2 in MONL, and Bk’1 is ranked higher than Bk’2 if k’1
< k’2 in NONL. By Lemma 5, two different tuples could
not achieve the same order. Since NONL ∩ MONL=∅, by
Lemma 4, either AM precedes all tuples in NONL or BM’
precedes all tuples in MONL. But in the first case, since
B1 must know AM is ordered before it got ordered, AM is

sure to exist in NONL. In the second case, A1 must know
BM’ is ordered before it got ordered, then BM’ should exist
in MONL. This is obviously contrary to NONL ∩ MONL
=∅.

When NONL ∩ MONL ≠∅, we consider the minimum k
where Ak≠Bk. When k>1, An-1=Bn-1 for any n∈ [1, k). But
we have the instance that different Ak and Bk achieve the
same rank (they both rank kth in the NONL and MONL),
which is contrary to Lemma 5. In case of k=1, we can find
the minimum k’, where Ak’ = Bk’. And if k’ >1, An-1≠Bn-1 for
any n∈ [1, k’). According to the proposed algorithm, both
Ak’-1 and Bk’-1 precede Ak’, but by Lemma 5, Ak’-1 and Bk’-1
which are different tuples cannot achieve the same rank.
Assume they are of different rank, by Lemma 4, if Ak’-1
precedes Bk’-1, Bk’-1will be appended to MONL after Ak’-1
but before Ak’. Or if Bk’-1 precedes Ak’-1, Ak’-1 will be
appended to NONL after Bk’-1 but before Bk’. It is contrary
to the assumption. In each case, there is contradiction.

Lemma 7. Tuples in any NONLs are ranked in the same
order.

Proof: We assume that a RMt
i is sent from node Nj to Nj,

so MONL = NONLi and MSIT= NSITi (here, we use NONLi
and SIi.NONL equally for simplicity). We re-denote MONL
and NONLk as MONL’ and NONLk’ after outdated ordered
tuples being deleted. By Lemma 6, either MONL’⊆
NONLk’ or MONL⊇NONLk’ is true, and tuples on the top
of the two lists are the same if both are nonempty. This
means tuples in MONL and NONLk are ranked in the same
order except outdated ordered tuples.

Without losing generality, we assume that MONL’⊆
NONLk’. What is left to be proved now is that an outdated
ordered tuple, before it is deleted, is ordered equally in
MONL and NONLk. According to the definition of outdated
ordered tuple given in section 3.2.2 and the specification of
Order procedure, such a tuple precedes all the ordered
tuples that is not outdated and there is no such tuple
existing in both NONLk and MONL.

If both MONL’and NONLk’ are nonempty, we only need
to prove that all of outdated tuples must exist either in
NONLk or in MONL. Assume the contrary, there is an
outdated ordered tuple A∈MONL and A∉ NONLk and
another outdated ordered tuple B∈NONLk and B∉MONL.
By Lemma 5, tuple A and B cannot achieve the same rank.
But by Lemma 4, if tuple B precedes A, A precedes all
tuples in NONLk’, A will be appended to NONLk after B and
before any other tuples in NONLk’. Otherwise, i.e. tuple A
precedes B, B will be appended to MONL after A and
before any other tuples in MONL’. We can see that both
cases result in contradiction distinctly.

If MONL’ is empty, we only need to prove that any
outdated tuples in MONL precedes all tuples in NONLk.
Also assume the contrary, there is an outdated ordered
tuple A∈MONL, A∉NONLk while another outdated ordered
tuple B∈ NONLk, B∉MONL and B precedes A. By Lemma
4, A will be appended to NONLk after B and before any
other tuples in NONLk’. It is contradiction to A∉NONLk.

Thus, tuples in any two different NONLs are ranked in
the same order.

Lemma 8. When a node Ni is executing the CS, tuple
<i, t> must stand on the top of NONLi.

Proof: From the algorithm presented above, there are
only two cases in which Ni can enter the CS. One is that
when Ni is ordered at some node Nk after executing the
Order procedure, its corresponding tuple <i, t> is nicely
on the top of NONLk. Since <i, t> gets Highest_Priority,
Nk will send an EM message to Ni informing it to enter
the CS immediately. When Ni receives the EM, it will
invoke the Exchange procedure. Since tuple <i, t> is on
the top of MONL of the incoming EM, after executing the
Exchange procedure, <i, t> will stand on the top of
NONLi by Lemma 6.

In another case, the order of Ni is determined without
Highest_Priority. Only when Ni receives an EM message
from its directly preceding node Nj can it enter the CS.
Since Nj has finished executing the CS, Nj will delete its
corresponding tuple from NONLj so that <i, t> will stand
on the top. When Ni receives the EM, it will delete all
tuples which precede <i, t> from NONLi. Thus tuple <i, t>
will be also on the top of NONLi.

Theorem 1. Mutual exclusion is achieved.
Proof: Mutual exclusion is achieved when any pair of

nodes is never simultaneously executing the critical
section. Assuming the contrary that two nodes Ni and Nj
are in the CS at the same time, so tuple <i, ti> and <j, tj>
must reside on top of NONLi and NONLj respectively
according to Lemma 8.

Now, let’s assume that a message (RM, IM or EM) is
sent from node Ni to Nj with MONL=NONLi and
MSIT=NSITi. Because both Ni and Nj are simultaneously
in their CS, neither <i, ti> or <j, tj> can be considered as
outdated tuples and be deleted as in the Exchange
procedure. Thus the facet that tuples in NONLi and
NONLj are not ranked in the same order is contrary to
Lemma 6 and Lemma 7.

Theorem 2. Deadlock is impossible.
Proof: The system is deadlocked when no node is in its

critical section and no requesting node can ever proceed
to its own critical section. Assume the contrary that the
deadlock is possible, in our algorithm, it will result in two
cases. First case, no node could determine its order to
enter the CS. This is contrary to Lemma 2 and Lemma 3
because every requesting node could determine its order
to enter the CS after its corresponding RM message is
forwarded no more than N-1 times. In the second case,
there exist three node NA, NB and NC, where NA is waiting
for EM message from NB directly or indirectly, NB is
waiting for EM message from NC directly or indirectly
and NC is waiting for EM message from NA directly or
indirectly. Then NA precedes NC, NC precedes NB and NB
precedes NA. It is contradiction to Lemma 7, so in our
algorithm, deadlock is impossible.

Theorem 3. Starvation is impossible.

Proof: Starvation occurs when one node must wait
indefinitely to enter its critical section even though other
nodes are entering and exiting their own critical section.
Assume the contrary, that starvation is possible. In our
algorithm, time need to execute the algorithm and CS and
the time for message transfer are all finite. Since a
requesting node’s order to enter the CS is determined after
its corresponding RM message has been forwarded at most
N-1 times (Lemma 3), the reason that cause a node to be in
starvation must be waiting for its preceding nodes infinitely.
But by Lemma 4 and Lemma 7, the sequence of ordered
nodes which precede it is determined once one node gets
ordered. So, the node in starvation will receive an EM
message from its directly preceding node and enter the CS
in finite time. Thus a contradiction occurs and the theorem
must be true.

6. Performance Evaluation

As mentioned before, there are three measures to

evaluate the performance of a mutual exclusion algorithm:
message complexity, response time and synchronization
delay. The performance of an algorithm depends upon
loading conditions of the system and has been usually
studied under two special loading conditions: light load and
heavy load. Under the light load condition, there is seldom
more than one request for mutual exclusion simultaneously
in the system while under the heavy load condition, there is
always a pending request in a node. We first present an
analysis of the performance of the proposed algorithm
under the two different cases. Then we describe our
simulation study, which focus on the heavy load condition,
and discuss the simulation results.

6.1. Performance Analysis

6.1.1. Message Complexity. When a node wants to enter
the CS, it must firstly initialize a RM message with a copy
of its SI. The RM message will be forwarded among nodes
carrying up-to-date system information until its home
node’s ID stands on top of relative majority of MNLs,
meaning that it gains enough permissions. Under the light
load condition, if there is no outdated information, the
RM’s host ID will be on top of each MNL the message
travels. So, after being forwarded [N/2]+1 times (the RM
will be updated on each forwarding), the currently
processing MPM will find that the RM’s host ID has been
ordered with Hightest_Priority and immediately send an
EM message to that server. Hereby, the message
complexity is [N/2]+2. (Here, we use the square brackets
denoting a function that gets the integer part of a digit.)

When there exists outdated information, if the outdated
information can be deleted within [N/2]+1 forwarding
times, the message complexity will be [N/2]+2 all the
same. Otherwise, in the worst case, the RM will be
forwarded N-1 times visiting all system nodes until it can
be ordered. In this case, the message complexity is O(N).

Under the heavy load condition, when a total of m nodes

0

5

10

15

20

25

30

35

40

45

0 5 10 15 20 25 30 35 40 45 50

Our Algorithm Maekawa

Ricart Broadcast

0

50

100

150

200

250

300

350

400

450

0 5 10 15 20 25 30 35 40 45 50

Our Alogrithm Maekawa

Broadcast Ricart

500Time

Figure 5. Response time Vs node number
N

Figure 4. Message number Vs node number
N

50NME

are competing for the same CS, a node who is granted the
privilege must have its ID standing on the top of at least
[N/m]+1 MNLs. The minimum times the RM message is
forwarded is [N/m]+2. So the message complexity is
calculated by counting how many nodes in the system are
competing the CS simultaneously, and the number of
competing nodes m is decided by the distribution model
that describes how frequently a node requests the CS.

6.1.2. Synchronization delay. It is obvious that the
synchronization delay of our algorithm is T where T is
average message propagation delay, because only one
enter message is needed to be passed between two
successive executions of the CS.

6.1.3. Response Time. Under low load condition, before
a node can enter the CS, its corresponding request
message needs to be forwarded N/2 to N-1 times to
determine its order and one enter message for entering the
CS. So the response time will be ([N/2]+2)*Tn to (N-
1)*Tn. Under high load condition, if each node will wait
for an enter message to enter the CS, the response time is
sure to be N*(Tn+Tc) under heavy load condition where Tc
is the average CS executing time.

6.2. Simulation Results

Although our algorithm has high message complexity

and long response time in the worst case, it has good
performance in general. In fact, the heaver the system
load is, the better our algorithm performances. To
demonstrate that, a simulation is conducted to evaluate
our algorithm against several other algorithms including
the Maekawa which is low in message complexity and the
Broadcast, Ricart which are low in response time.

We adopt a simulation model similar to the one used in
[14]: requests for CS execution arrive at a site according
Poisson distribution with parameter λ; message
propagation delay between any pair of nodes Tn and CS
execution time Tc are all constant to be 5 and 10 time
units (although this condition is not necessary, we still
take it for ease). The whole system is free of node crash
and communication failure. Two measure results are
collected, viz. number of message exchanged (NME) and
response time (RT) per CS execution. Here, we use the
first method mentioned in [9] to generate quorums for
Maekawa’s algorithm.

We first consider the situation that all nodes are
requesting the CS simultaneously as soon as the system is
initialized. Every node only requests once. When the
system is initialized, each node knows nothing about
others in our algorithm. So in this situation, we can see
how soon and sufficient the system information
exchanges. Figure 4 and 5 plot the average NME and RT
against the number of nodes in the system. It is shown
that when the number of nodes increases, the messages
exchanged and time delay both increase. Moreover, our
algorithm has the least messages exchanged of the four

algorithms while its average response time is similar to the
other three’s.

Afterwards, a system of 30 nodes is simulated with
different request arrival rate λ. We run the simulation for
enough long time (100000 time units) repeatedly and
record the NME and RT for all successful requests. Figure 6
and Figure 7 illustrate the performance comparison of the
four simulated algorithms. As the load increases, messages
needed for per mutual exclusion decreases in our algorithm.
It is clear that the heaver the system load is, the better our
algorithm outperforms the Maekawa in average NME.
Although the average response time of our algorithm is a
little higher than that of the Broadcast and the Ricart, it is
much lower than the Maekawa’s. Since the Broadcast and
the Ricart need much more messages exchanged to achieve
mutual exclusion, our algorithm performances better than
the other three in general.

7. Conclusion

In this paper, we described an efficient fully distributed

algorithm for mutual exclusion. Our algorithm imposes no
specified structure on the system topology and doesn’t
force messages to be delivered in FIFO order. These two
merits make our algorithm more attractive in applications.
In addition, we adopt the RCV scheme to schedule nodes
that are intended to execute the critical section. Since the
RCV scheme comes from the famous MCV scheme, the
algorithm gains high resiliency. We have presented the
proof of correctness of the algorithm, with respect to
guaranteed mutual exclusion, deadlock freedom and
starvation freedom. Both analysis and simulation are used

17

17.5

18

18.5

19

19.5

0 5 10 15 20 25 30
1/λ

320

0 5 10 15 20 25 30
1/λ

Figure 7. Response time Vs λ

340

360

380

400

Our Algorithm Maekawa

Broadcast Ricart

Time
Figure 6. Message number Vs λ

20NME

Our Algorithm

Maekawa

[5] Ye-In Chang, “Notes on Maekawa's O(√N) Distributed
 Mutual Exclusion Algorithm”, In Proceedings of the 5th IEEE
 Symposium on Parallel and Distributed Processing, Dallas,
 USA, Dec. 1-4, 1993, pp. 352-355.
[6] M. Choy, “Robust Distributed Mutual Exclusion”, In
 Proceedings of the 16th International Conference on
 Distributed Computing Systems, Hong Kong, May. 27-30,
 1996, pp. 760 -767.
[7] L. Lamport, “Time, Clocks and Ordering of Events in
 Distributed Systems”, Communications of the ACM, Vol.
 21(7), Jul. 1978, pp. 558-565.
[8] S. Lodha, and A. Kshemkalyani, “A Fair Distributed Mutual
 Exclusion Algorithm”, IEEE Transactions on Parallel and
 Distributed Systems, Vol. 11(6), June 2000, pp. 537-549.
[9] M. Maekawa, “A √N Algorithm for Mutual Exclusion in
 Decentralized Systems”, ACM Transaction on Computer
 Systems, Vol. 3(2), May. 1985, pp. 145-159.
[10] S. Nishio, K. F. Li, and Manning E. G. “A Resilient Mutual
 Exclusion Algorithm for Computer Networks”, IEEE
 Transactions on Parallel Distributed Systems, Vol. 1(3), Jul.
 1990, pp. 344-355.
[11] S. Rangarajan, S. Setia, and S.K. Tripathi, “A Fault-
 Tolerant Algorithm for Replicated Data Management”,
 IEEE Transactions on Parallel and Distributed Systems,
 Vol. 6(12), Dec. 1995, pp. 1271-1282.
[12] K. Raymond, “A Tree-based Algorithm for Distributed
 Mutual Exclusion”, ACM Transactions on Computer Systems,
 Vol. 7(1), Feb. 1989, pp. 61-77. to evaluate the algorithm’s performance. Simulation

results compare our algorithms with some existing
algorithms and show that the proposed algorithm
outperforms other algorithms especially under high load
condition.

[13] G. Ricart, and A. K. Agrawala, “An Optimal Algorithm for
 Mutual Exclusion in Computer Networks”, Communications
 of the ACM, Vol. 24(1), Jan. 1981, pp. 9-17.
[14] M. Singhal, “A Heuristically-Aided Algorithm for Mutual
 Exclusion in Distributed Systems”, IEEE Transactions on
 Computers, Vol. 38(5), May. 1989, pp. 651-662. In our future work, we will conduct simulation studies

to compare with more existing algorithms. We will also
investigate how to improve the algorithm by designing
different methods for forwarding the request messages.

[15] M. Singhal, “A Dynamic Information Structure Mutual
 Exclusion Algorithm for Distributed Systems”, IEEE
 Transactions on Parallel and Distributed Systems, Vol. 3(1),
 Jan. 1992, pp. 121-125.

Acknowledgement [16] M. Singhal, “A Taxonomy of Distributed Mutual Exclusion”,
 Journal of Parallel and Distributed Computing, Vol. 18,
 1993, pp. 94-101.

This work is partially supported by Hong Kong
Polytechnic University under HK PolyU research grants
G-YD63 and G-YY41, and The National 973 Program of
China under grant 2002CB312002.

[17] I. Suzuki, and T. Kasami “A Distributed Mutual Exclusion
 Algorithm”, ACM Transactions on Computer Systems, Vol.
 3(4), Nov. 1985, pp. 344 - 349.
[18] R. H. Thomas, “A Majority Consensus Approach to
 Concurrency Control for Multiple Copy Databases”, ACM
 Transactions on Database Systems, Vol. 4(2), Jun. 1979,
 pp. 180–209.

Reference
[1] D. Agrawal, and A. E. Abbadi, “An Efficient and Fault-
 Tolerant Solution for Distributed Mutual Exclusion”, ACM
 Transactions on Computer Systems, Vol. 9(1), Feb。 1991,
 pp. 1-20.

[19] T. Tsuchiya, M. Yamaguchi, and T. Kikuno, “Minimizing
 the Maximum Delay for Reaching Consensus in Quorum-
 Based Mutual Exclusion Schemes”, IEEE Transactions on
 Parallel and Distributed Systems, Vol. 10(4), Apr. 1999,
 pp. 337-345.

[2] D. Agrawal, and A. E. Abbadi, “A Token-Based Fault-
 Tolerant Distributed Mutual Exclusion Algorithm”, Journal
 of Parallel and Distributed Computing, Vol. 24(2), 1995,
 pp. 164-176.

[20] J. E. Walter, J. L. Welch, and N. H. Vaidya, “A Mutual
 Exclusion Algorithm for Ad Hoc Mobile Networks”,
 Wireless Networks, Vol. 7(6), Nov. 2001, pp. 585-600. [3] S. Banerjee , and P. K. Chrysanthis, “A New Token Passing

 Distributed Mutual Exclusion Algorithm”, In Proceedings
 of 16th International Conference on Distributed
 Computing Systems, 1996, Hong Kong, May. 27-30,
 1996, pp. 717 -724.
[4] G. Cao, and M. Singhal, “A Delay-Optimal Quorum-Based
 Mutual Exclusion Algorithm for Distributed Systems”,
 IEEE Transaction on Parallel and Distributed
 Systems, Vol. 12(12), Dec. 2001, pp. 1256-1267.

	4.1. The MPM Algorithm

