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Abstract 
 

Many algorithms for achieving mutual exclusion in 
distributed computing systems have been proposed. The 
three most often used performance measures are the 
number of messages exchanged between the nodes per 
Critical Section (CS) execution, the response time, and 
the synchronization delay. In this paper, we present a 
new fully distributed mutual exclusion algorithm. A node 
requesting the CS sends out the request message which 
will roam in the network. The message will be forwarded 
among the nodes until the requesting node obtains 
enough permissions to decide its order to enter the CS. 
The decision is made by using Relative Consensus Voting 
(RCV), which is a variation of the well-known Majority 
Consensus Voting (MCV) scheme. Unlike existing 
algorithms which determine the node to enter the CS one 
by one, in our algorithm, several nodes can be decided 
and ordered for executing the CS. The synchronization 
delay is minimal. Although the message complexity can 
be up to O  in the worst case in a system with N nodes, 
our simulation results show that, on average, the 
algorithm needs less number of messages and has less 
response time than most of those existing algorithms 
which do not require a logical topology imposed on the 
nodes. This is especially true when the system is under 
heavy demand. Another feature of the proposed algorithm 
is that it does not require the FIFO property of the 
underlying message passing mechanism.   

( )N

 

1. Introduction 
 

Solving the mutual exclusion problem in a distributed 
system imposes more challenges than in a centralized 
system. The mutual exclusion problem states that to enter 
a Critical Section (CS), a process must first obtain the 
lock for it and ensure that no other processes enter the 
same CS at the same time. When competing processes are 
distributed on the nodes over a network, how to achieve 
mutual exclusion efficiently still remains a difficult 
problem to solve in distributed systems. Over the last two 
decades, many algorithms for mutual exclusion in 
distributed computing systems have been proposed. Three 

performance measures are often used to evaluate their 
performance. They are message complexity, response time 
and synchronization delay [16]. The message complexity is 
measured in terms of the number of messages exchanged 
between the nodes per CS execution. The response time is 
the time interval a request waits for its CS execution to be 
over after its request messages have been sent out. The 
synchronization delay is the time interval between two 
successive executions of the CS. The response time and 
synchronization delay both reveal how soon a requesting 
node can enter the CS and are measured in terms of the 
average message propagation delay Tn.  

Distributed mutual exclusion algorithms can be divided 
into two categories: structured and non-structured. 
Structured algorithms impose some logical topologies, such 
as tree, ring and star, on the nodes in the system. These 
algorithms usually have good message complexity when 
the load is “heavy”, i.e., there is always a pending request 
for mutual exclusion in the system. For example, 
Raymond’s tree-based algorithm [12] requires only 4 
messages exchanged per CS execution at heavy loads. 
However, these algorithms increase average response time 
delay as high as ( )( )NO log . Meanwhile, the organization 
and maintenance of the specified topology also lead to a 
large overload. Furthermore, most structured algorithms 
work well only under their specified topologies, and may 
be inefficient in some other environments [20]. In this 
paper, we are concerned with non-structured algorithms 
which are generic in the sense that they are suitable for 
arbitrary network topologies. 

For non-structured algorithms, the message complexity 
can be as low as ( )NO  or ( )( )NlogO . The response time can 
be 2Tn at light loads and N*(Tn+Tc) at heavy loads, where 
Tc is the average CS execution time. But either the 
reduction of the message complexity is achieved at the cost 
of long synchronization delay or the decrease in response 
time is gained at the cost of high message complexity. In 
other words, they either cause high message complexity or 
result in long response time. More importantly, most of the 
algorithms require the FIFO (First In First Out) property as 
prerequisite for the underlying message passing 
communications. If this property can not be satisfied, extra 



messages or mechanisms needed to be employed to solve 
possible deadlock [5].  

In this paper, we present a novel non-structured 
algorithm that can solve distributed mutual exclusion 
efficiently and resiliently. A node requesting the CS sends 
out the request message which will roam in the network. 
The message will be forwarded among the nodes until the 
requesting node obtains enough permissions to decide its 
order to enter the CS. The decision is made by using 
Relative Consensus Voting (RCV), which is a variation of 
the well-known Majority Consensus Voting (MCV) 
scheme [18]. In RCV, the request of a node can be 
granted if it either can eventually obtain the largest 
number of permissions against other currently competing 
requests, or the node has the smallest id among the 
requesting nodes potentially with the same number of 
permissions. Since nodes are not always required to 
collect permissions from the majority of all the nodes in 
the system, the number of messages exchanged can be 
reduced.  

The proposed algorithm requires no pre-configuration 
on the system but only needs to know the total number of 
the network nodes that are involved. It possesses several 
other advantages. First, it does not require the FIFO 
property of the underlying message passing mechanism. 
Even when messages are delivered out of order, there is 
no impact on the algorithm’s correctness and performance. 
Second, unlike existing algorithms which determine the 
node to enter the CS one by one, in our algorithm, several 
nodes can be decided and ordered for executing the CS so 
that the delay time before entering the CS can be reduced. 
The algorithm generates a sequence of requesting nodes 
that describes their order to execute the CS. Each node 
executes the CS directly if it stands on the top the 
sequence or waits for a message from its immediate 
preceding node in the sequence informing it to enter the 
CS, so the synchronization delay is minimal, i.e., T (T is 
the average delay of passing a message between two 
nodes). Another advantage introduced by the RCV 
scheme is resiliency which is inherited from the MCV. 
Since the correct operation of the algorithm does not 
depend on any specific node, crash of nodes will not 
affect the algorithm’s execution. Although the message 
complexity can be up to O  in the worst case, our 
simulation results show that, on average, the algorithm 
needs less number of messages and has less response time 
than most of those existing algorithms which do not 
require a logical topology imposed on the nodes. This is 
especially true when the system is under heavy demand.  
We argue that performance of distributed mutual 
exclusion algorithms under light load is not as critical as 
under the heavy loads, because system resources are rich 
under light load, thus algorithms with higher overhead 
can work well. 

( )N

The remainder of this paper is organized as follows: 
Section 2 overviews related work. Section 3 describes our 
system model. In Section 4, we present the design of the 

proposed algorithm. Sections 5 and 6 contain the 
correctness proof of and performance evaluation of the 
proposed algorithm, respectively. Finally we conclude the 
paper in Section 7. 

 

2. Background and related works 
 
Some of the non-structured algorithms employ a logical 

token to achieve mutual exclusion [3, 14, 17]. In the token-
based algorithms, a unique token is shared among the 
nodes and only the node which possesses the token is able 
to enter the CS. The most representative algorithm that uses 
token is broadcast [17]: a requesting node sends token 
requests to all other nodes and the token holder then passes 
the token to the requesting node after it finishing executing 
the CS or it no longer need the token. An optimization on 
the broadcast is that a node only sends its token requests to 
nodes that either has the token or is going to get it in near 
future [14] so that the number of messages exchanged per 
CS execution can be reduced from N to N/2 on the average 
at light loads, and the response time keeps 2Tn at light loads 
and N*(Tn+Tc) at heavy loads. [3] proposes an interesting 
algorithm where the token contains an ordered list of all 
requesting nodes that have been determined the order to 
enter the CS. The messages needed to exchange per CS 
execution is 3-2/N at heavy load. But when calculating the 
response time, an extra “request collect time” must be 
considered. Another drawback of the algorithm is that it is 
not a fully distributed algorithm because at any time, there 
is an “arbiter” acting as the coordinator in the system. In 
addition, it is difficult for token-enabled algorithms to 
detect loss of the token and regenerate a new unique one. 
Although some efforts have been made to tackle this 
problem [2, 6, 10], solutions always induce extra high 
overloads. 

For algorithms without using token, usually several 
rounds of message exchanges among the nodes are 
required to obtain the permission for a node to enter the CS. 
Lamport’s logical timestamp [7] is often adopted in this 
type of non token-based algorithms. Ricart and Agrawala 
proposed an algorithm [13] as an optimization of 
Lamport’s algorithm. In their algorithm, a node grants 
multiple permissions to requesting nodes immediately if it 
is not requesting the CS or its own request has lower 
priority. Otherwise, it defers granting permission until its 
execution in the CS is over. Only after receiving grants 
from all other nodes, can the requesting node enter the CS. 
Ricart-Agrawala’s mutual exclusion algorithm has low 
delays because of parallelism in transfer of messages. The 
response time is 2Tn and N*(Tn+Tc) under light load and 
heavy load, respectively. But the number of messages 
exchanged per CS execution is a constant of 2*(N-1), 
which is quite large. Under light load, the average number 
of messages can be reduced to N-1 by using a dynamic 
algorithm [15].  A more recent work described in [8] 
reduces message traffic of the Ricart-Agrawala type 
algorithms to somewhere between N-1 and 2(N-1) by 
making use of the concurrency of requests and some other 



methods. Nevertheless, the message complexity 
remainsO . ( )N

Another type of non-structured algorithms that does 
not need to use token is the quorum-based algorithms. A 
quorum is a set of nodes associated with each node in the 
system and every two quorums have a nonempty 
intersection. The commonality of quorum-based 
algorithms lies in that a requesting node can enter the CS 
with permissions from only the nodes in its quorum. 
Obviously, messages needed to be exchanged are decided 
by the size of the quorum. A well known example is 
Maekawa’s algorithm [9], where nodes issue permission 
only to one request at a time and a requesting node is only 
needed to receive permissions from all members of its 
quorum before it is able to enter the CS. In [9], the 
quorum size is N  while in the Rangarajan-Setia-

Tripathi algorithm [11], the size is reduced to
G
NG

2
1+ , 

where G is the subgroup size. [1] organizes all N nodes to 
a binary tree and a quorum is formed by including all 
nodes along any path that starts from the root of the 
spanning tree and terminates at a leaf. So the quorum size 
is log(N) in the best case and (N+1)/2 in the worst case. 
However, the algorithm will degenerate to a centralized 
algorithm because the root node is included in all 
quorums when it is always available.   

  Incoming Message Queue
Server Nodei 
                          
SI MPM Incoming Message

Message sent out

Figure 1. Node Structure 

As to the response time, it is comparatively high under 
heavy load in Maekawa’s algorithm because the 
synchronization delay is 2Tn. Some improvements have 
been made to the Maekawa type algorithms [4, 19] by 
introducing more types of messages and exchanging a 
few more messages so that the synchronization delay can 
be reduced to Tn. Despite its good performance, the 
quorum-based mutual exclusion algorithms still have two 
disadvantages. First, the overhead of generating quorum 
for each node must be taken into account especially when 
the number of network nodes tends to change 
dynamically. Second, if the FIFO property can not be 
satisfied, which means that messages between two nodes 
are not always delivered in the same order as being sent, 
extra mechanism should be employed to avoid possible 
deadlock, and when conflicts occur frequently, more than 
N messages may need to be exchanged [5]. 

 

3. System model and data structures 
 

A distributed system consists of N nodes that are 
numbered from N0 to NN-1. The term node used here 
refers to a process as well as the computer on which the 
process is executing. There is no shared memory or 
global clock and the nodes communicate with each other 
only through message passing. In this paper, we do not 
consider fault tolerance issues. We assume that the nodes 
do not crash underlying communication medium is 
reliable so that the messages will not be lost, duplicated. 

It is assumed that each node can issue a request for 
entering the CS only when there is no outstanding request 

issued from the same node. Figure 1 shows the structure of 
a node. On each node, a MPM (Message Processing 
Model) is deployed. It processes messages cached in the 
Incoming Message Queue of that node and sends messages 
to other nodes when necessary. Also, every node maintains 
a table recording the system information (SI). Figure 2 
illustrates the data structure used for SI. It contains three 
fields: 

 
 Next indicates which node, if any, will enter the   CS  

      immediately after this node.  
 NONL (Node Ordered Node List) is a sequence of 

ordered tuples. A tuple, in the form of < NodeID, TS >, 
records the requesting node’s ID and the timestamp at 
which moment the corresponding request message was 
firstly initialized. 

 NSIT (Node System Information Table) consists of N 
rows, one for each node in the system (including the 
node itself). Each row records the information about a 
node known to it, including the ID, the timestamp TS, 
and a tuple list MNL of that node. MNL is a list of 
tuples like <NodeID, TS>, showing all the nodes from 
which a request message has been received. TS 
represents how up-to-date the information about the 
node is. Since the status of the node’s information is 
updated whenever the node issues a request message or 
receives a request message, TS is implemented as a 
counter recording the number of request messages that 
have been initialized at or sent to the node. 

 

Next 
NONL

NSIT 

Figure 2.
Data structure of SI 

MNTS ID

Host   i 
UL 

MSIT 

 ID TS MN

Type   RM 

MONL 

Figure 3. 
 RM initialized by Nodei

In the remaining part of the paper, we denote a node 
with ID “i” as Ni, and the SI maintained by Ni as SIi. 

 Only three types of messages are employed in our 
proposed algorithm. They are: 

 Request Message (RM)  
 Enter Message (EM)  
 Inform Message (IM)  



Since a RM message can be forwarded by different 
nodes, we call the node that initially sends the message 
the home node of the message. Each message is 
associated with a flag which indicates the type of the 
message. Data structures contained in messages are 
similar to that used for SI. As an example, figure 3 shows 
the data structure used in RM. “MONL” (Message 
Ordered Node List) is a sequence of ordered tuples. 
“MSIT” (Message System Information Table) records the 
newest system information updated during the roaming of 
the message. In addition, a field Host indicates the home 
node of the message. “UL” records unvisited nodes’ ID.  

The EM and IM messages do not have the UL and 
Host fields. IM messages have a field “Next” recording 
the id of the node that will enter the CS after the 
message’s destination node. 

 

4. The algorithm 
 
When a node wants to enter the CS, it initializes a RM 

message and sends it to some other node. As described 
before, the field MNL in the data structure maintained by 
a node records all the nodes that have sent RM to the 
node. When a RM message is processed by the MPM on 
a node, a tuple is generated and appended to the MNL. 
After exchanging with the information carried in the 
incoming messages (using the Exchange procedure), the 
MPM will calculate whether the RM message’s home 
node has gained enough information to determine its rank 
among all the competing nodes (using the Order 
procedure). If not, the RM will be forwarded to other 
nodes that the message has not visited. Otherwise, if the 
rank can be determined, we say that the requesting node, 
or its RM, or the corresponding tuple is ordered. An 
ordered tuple knows the order for its home node to enter 
the CS and will not be forwarded among the nodes. If the 
MPM finds that a tuple has the highest rank, it 
immediately sends an EM message to the tuple’s home 
node. If the tuple hasn’t the highest rank, its immediate 
preceding tuple’s home node will be informed by an IM 
the immediate next node to execute the CS. After a node 
finishes executing the CS, it will send an EM message to 
its successor.  

In the following subsections, we will describe the 
algorithm executed by MPM, the Exchange procedure, 
and the Order procedure.  

 
4.1. The MPM Algorithm 
 

Once a node Ni wants to enter a CS, it increases its 
timestamp ti by one, and appends the tuple <i, ti> to 
SIi.NSIT[i].MNL (Line 4, 5). After doing so, it generates a 
RM message and sends it out for roaming over the 
network to confer with other nodes on its order of 
entering the CS. The RM message is initialized with a 
partial SI copy of the home node (Line 6-13).  

If node Ni has been ordered, it will receive an EM 
message when it is on top of the Ordered Nodes List, or 

its immediate preceding node “k” in the list will receive an 
IM informing it to update the Next field to “i”. When on top 
of the Ordered Node List, Ni will either receive an EM 
from Nk which just exits the CS or from Nj where its order 
is determined. On getting enough permissions to enter the 
CS, Ni will first invoke the Exchange procedure to update 
its SI with the incoming EM and then enter the CS (Line 
14-16).  

Whenever finishing executing the CS, Ni must send an 
EM to the node represented by Nexti, if any, and delete its 
own tuple from the top of SIi.NONL (Line 17-24). 

At times Ni will receive an IM indicating that Nj is the 
next node to it that enters CS. If Ni hasn’t entered the CS or 
is currently executing the CS (this can be determined by 
whether tuple <i, ti> is still in SIi.NONL), the only thing left 
to do reset the value SIi.Next to “j”. Otherwise, which 
means that Ni has finished executing CS, Ni should generate 
an EM with a copy of its SI and send it to Nj immediately 
(Line 25-32).  

Upon receiving a RM originally initialized in Nj, the 
MPM in Ni must increase its timestamp and register tuple 
<j, tj>, then (1) call Exchange procedure to update its SI, 
(2) call Order procedure to determine several node’s order 
to enter the CS (if they can be ordered) employing RCV 
algorithm (Line 33-37). Obviously, the information 
included in the message is collected from the nodes along 
its forwarding path. If Nj is ordered, then its immediate 
preceding node in the NONL Nk will receive an IM or Nj 
itself will receive an EM from Ni (if Nj is on top of NONL) 
(Line 38-45). Otherwise, when Ni cannot be determined its 
access order (that is to say the information carried by the 
request message is not enough for determining its home 
node’s access order), Ni will regenerate an RM with newest 
system information but remains the “Host” to be “j” and 
forward it to some other node which exists in the RM’s UL 
(any of the unvisited nodes) (Line 46-53).  

The MPM Algorithm 
1. Initialization: 
2.  //Omitted 
3. Upon requesting the CS: 
4.     SIi.NSIT[i].TS++; 
5.     Append tuple <i, SIi.NSIT[i].TS> to    

SIi.NSIT[i].MNL; 
6.     Create a message with following content:   
7.         //initialize RM, copying information needed 
8.         Host = i; 
9.         UL = {Nx | 0≤ x ≤ N-1}-Ni; 
10.         MONL = SIi.NONL; 
11.         MSIT = SIi.NSIT; 
12.     Select an unvisited node randomly and delete  

corresponding id from message UL;  
13.     Send the message to the selected node; 
14. Upon receiving the EM: 
15.     Call Exchange Procedure to update the SIi.NSITi ; 
16.     Enter the CS; 
17. Upon releasing the CS: 
18.     SIi.NSIT[i].TS++; 



19.     Delete i from SIi.NONLi    
20.     If ( SIi . Next<> NULL ) then  // send EM message 

informing the next node to enter CS if any 
21.         Initialize an EM with newest MONL and MSIT 

copy from SIi ; 
22.         Send the EM to the SIi.Next ; 
23.         SIi.Next = NULL; 
24.     End if  
25. Upon receiving an IM: 
           (IM indicating next to be node j) 
26.     If ( tuple <i, ti> which is immediate precedes tuple  

<j, tj> is not in the list of SIi.NONL) then     
27.         // this node has finished executing the CS      
28.         initialize an EM with newest MONL and MSIT 

copy from SIi; 
29.         send the EM to node j; 
30.     else 
31.         set SIi.Next = j; 
32.     end if  
33. Upon receiving/processing a RM: (Assume that the 

message initialized at node k arrives in node i) 
34.     Call Exchange Procedure to update SIi.NSIT; 
35.     Append tuple <k, tk> to SIi.NSIT[i].MNL;   
36.     SIi.NSIT[i].TS=max(SIi.NSIT[h].TS)+1          

(h∈[0, N-1]); 
37.     Call Order procedure; 
38.     if BeOrdered = true  then 
39.         if Highest_Priority = true then 
40.             Initialize an EM with newest MONL and 

MSIT copy from SIi ; 
41.             send the EM to node k; 
42.         else  
43.             // informing k’s preceding node to reset its 

Next field  
44.             send an IM to node k’s immediate preceding 

node according to NONL; 
45.         end if 
46.     else  // forward this RM with updated information 
47.         generate a new RM’ with following content: 
48.             Host’ = k; 
49.             MONL’ = SIi.NONL; 
50.             MSIT’ = SIi.NSIT; 
51.             choose one unvisited node (assume node h) 

from the UL of RM; 
52.             UL’ = UL - Nh; 
53.         send the message to node h; 
54.     end if     

 
4.2. The Order specifications  
 

When request message originally initialized in Nj is 
delivered to Ni, in this procedure, it will determine 
whether Nj can be ordered by employing the RCV scheme. 
First, all tuples existing in the NSIT will be organized as a 
sequence {TPi} temporarily. The rank of a tuple in the 
sequence is defined by two parameters: the number of 
MNLs in which the tuple is placed on the top and the 
value of NodeID. The latter is used to resolve any tie: 

when more than one tuple are placed on the same number 
of MNLs, the tuple with smallest NodeID wins and will be 
assigned the highest rank (Line 12). Afterwards, the first 
tuple in {TPi} is tested to determine whether it can be 
ordered (Line 13).   

 All ordered tuple will be appended to NONL and 
removed from all MNLs of the NSIT (Line 14, 15). The 
boolean variables BeOrdered and Highest_Priority will be 
set to true if node Ni is ordered (Line 16-19) and is on top 
of the NONL (Line25). 

The Order Procedure 
1. Continue = true; 
2. BeOrdered = false; 
3. if (tuple <j, tj> is in ONL) // already ordered when 

processing other RM 
4.     Continue = false 
5.     BeOrdered = true; 
6.     delete <j ,tjk> from any entry of NSIT; 
7. end if 
8. while Continue = true Do 
9.     begin 
10.      //calculate upon the SI stored in node j after 

updating with the incoming message. 
11.      // RCV scheme, some node(s) can be ordered 

simultaneously in this procedure 
12.      finds all the M (M <= N) different tuple in the 

NIST to build the sequence {TPh}: here, each TPh 
reaches the top of Sh (Sh >=1) rows of MNL in 
NSIT, and ),1(, Mlklk ≤≤∀ , if 

)( lk < then{ ( or [( S ) and 
TP

lk SS > k = lS
1.NodeID < TP2.NodeID)]}; if there is only one 

tuple in the sequence, then S2=0, S2.NodeID=1; 
13.       if ( )∑ =

−>−
M

h hSNSS
121

 or ( ∑ =
−=−

M

h hSNS
121S  

and (TP1.NodeID < TP2.NodeID ))  then  
14.           append the TP1  to NONLj ; 
15.           delete TP1 from any row of NSITi ; 
16.           if (TP1.NodeID = j ) then   
17.               Continue = false; 
18.               BeOrdered = true; 
19.           endif 
20.      else  
21.           Continue = false; 
22.      endif 
23.   end 
24. endif 
25. if OnTopOf(NONLi) then Highest_Priority = True ; 
26. // node j can enter CS immediately 
 
4.3. The Exchange specifications 
 

In this procedure, MPM updates the node’s SI with the 
incoming message by comparing the content of tuples. 
After executing this procedure, newest information will be 
append and outdated data will be deleted. (Assume that a 
message arrives at node i) 



First, the information in SIi.NONL and MONL are 
synchronized: outdated tuples are deleted from MONL 
(line 1, 2). According to line 1-2, if a tuple <j, tj> is in 
MONL but not in SIi.NONL and SIi.NSIT[j].MNL, it can 
be inferred that node Nj has been ordered. However, to 
the current node i, it may be the case that Nj had finished 
executing the CS or that no message containing 
information about Nj has never visited Ni before. The two 
cases can be distinguished by the difference between the 
timestamp of Nj maintained by the message (MSIT[j].TS) 
and that of the current node (SIi.NSIT[i].TS). If the 
timestamp of Nj maintained by the message is smaller 
than that of the current node, j must be outdated and can 
be removed.  

17.         if there exists a tuple <k, tk> in MSIT[k].MNL 
but is not in  SIi.NSIT[k].MNL and 
( ) then TSkMSITTSkNSITSIi ].[].[. >

18.             delete <k, tk> from any entry of MSIT; 
19.         if SIi.NSIT[k].TS < MSIT[k].TS then 
20.             set SIi.NSIT[k] = MSIT[k]; 
21.     end if 
22. end for   

 

5. Correctness proof 
 
In this section, we present the correctness argument 

which shows that the proposed algorithm achieves mutual 
exclusion and is also free of deadlock and starvation. We 
first give some lemmas. When Ni receives an EM, it knows that all the nodes 

whose tuple is preceding it’s tuple in the Ordered Node 
List have finished executing the CS and can be safely 
deleted from its own NONL. So, in this procedure, tuples 
that precede <i, ti> in Ordered Node List also can be 
deleted (line 3, 4). Otherwise, it will be added to 
SIi.NONL in the rest of the procedure. Next, SIi.NONL 
and MONL are combined if needed and relevant tuples 
are deleted from SIi.NSIT (line 5-12). 

Lemma 1. ∀i ∀j, |Si.NSIT[j].MNL| < N  (|MNL| is the 
length of MNL) 

Proof: In the assumed distributed system consisting of N 
nodes, each node contains only one process that makes a 
request to mutual exclusively access the CS and each 
process initiates at most one outstanding request at any 
time. So, a node will never issue a new request message 
until it finishes executing the CS for the previous request. 
In other words, there won’t be two different tuples for a 
node itself in the node’s own NSIT. 

Last, SIi.NSIT and MSIT are synchronized (line 13-22). 
If the Nj’s timestamp in MSIT of the message and the 
current node is the same, then no information need to be 
exchanged because the message and the current node 
maintain the same state about Nj. Otherwise, information 
update is needed. First, outdated tuples, if any, are deleted 
from SIi.NSIT and MSIT (line 15-18). Then SIi.NSIT[j] is 
set as MSIT if its TS is smaller (line 19, 20). 

A node’ knowledge about other nodes is reflected in its 
NSIT. The NSIT stores tuples in the field of MNL, 
representing who and when sent request message to that 
node. It is obviously that the tuples come from the 
information carried by an incoming message. The message 
copies information from the node where it is generated. 
When a message (RM, EM or IM) arrives in a node, it will 
firstly processed by the Exchange procedure, which 
ensures that a MNL does not contain any pair of tuples that 
has the same NodeID: if there exist two tuples with the 
same NodeID but different TS in MSIT and NSIT 
respectively, the one with smaller timestamp must be 
outdated and will be deleted in the procedure. As only one 
tuple survives for any other nodes in each entry of the NSIT, 
there will be at most N tuples in a MNL. 

The Exchange Procedure 
1. if ∃  and a  and 

 and 
 then 

MONLa∈
NSITSIi [.∉

NodeIDaMSIT .[

NONLSI i .∉

MNL].
aNSITSI i .[.<

Hosta
TS]. TSNodeID ].

2.     delete tuples which precede a and a from MONL; 
3. if ∃  and b  and 

 and 
 then 

NONLSIb i .∈

MSITb [∉
NodeIDaMSIT ]..[

MONL∉

MNL].
aNSITSIi .[.

Host
TS > TSNodeID]. Lemma 2. When every MNL in NSIT is nonempty, at 

least one node can be ordered after the execution of the 
Order procedure. 

4.     delete tuples which precede a and a from 
SIi.NONL;  

5. if Length (MONL) >Length (SIi.NONL) then Proof: During the execution of Order, a sequence of 
tuples regarding their order is generated.  The order is 
determined by the number of MNLs of which a tuple stands 
on the top and the value of its NodeID. If every MNL in the 
NSIT is nonempty, we then have N . At least, 

the first tuple in the sequence can be ordered after the 
execution of the Order procedure because either the first 
tuple in the sequence either holds more first positions or it 
has smaller NodeID value. 

0
1

=−∑ =

M

h hS

6.     for every tuple c in MONL and not in SIi.NONL  
7.         delete c from any entry of SIi.NSIT; 
8.     Set SIi.NONL = MONL; 
9. else 
10.     for every tuple c in in SIi.NONL but not in MONL  
11.         delete c from any entry of MSIT 
12. end if 
13. for k = 1 to N do 
14.     if SIi.NSIT[k].TS <> MSIT[k].TS then 

Lemma 3.  A node Ni’s rank to enter the CS can be 
determined after its corresponding RM message has been 
forwarded at most N-1 times.  

15.         if there exists a tuple <k, tk> in 
SIi.NSIT[k].MNL but is not in MSIT[k].MNL 
and     ( SI ) then  TSkMSITTSkNSITi ].[].[. <

Proof:  Since the RMt
i (RMt

i means the request message 
was initialized at node Ni at timestamp t) will not be sent to 16.             delete <k, tk> from any entry of SIi.NSIT; 



a node that it has already been forwarded to, after N-1 
times of forwarding and information exchange, tuple <i, 
t> will appear in each MNL of NSIT of the last visiting 
node (we assume the node is Nk). It’s obviously that 
every MNL isn’t empty. By Lemma 2, at least one node 
can be ordered, so its corresponding tuple <j, t’> will be 
deleted from NSITk and appended to NONLk. If j≠i, 
another tuple will be deleted from NSITk and appended to 
NONLk. This procedure will be repeated according to 
Lemma 2 and the specification of Order. By Lemma 1, 
there are at most N tuples in each MNL, which means that 
after finite times of iterations, node Ni will be ordered at 
some node Nk. 

Lemma 4. When a RMt
i is ordered and is appended to 

the NONL at certain node, the tuple for the nodes which 
precede Ni in NONL and haven’t finished executing the 
CS, if any, must still exist in that NONL. 

Proof: When a node Nj precedes Ni in entering the CS 
was ordered, if any, then according to Order procedure, 
tuple <j, t’> must have been ranked the highest among the 
M (M<N) tuples competing for entering the CS at that 
time. Semantically, a tuple <j, t’> will not be deleted from 
any NONL and NSIT until Nj hasn’t finished executing 
the CS. Otherwise in any node, <j, t’> will either exists in 
the NONL or is still in the NSIT keeping unordered. When 
RMt

i is processed at certain node Nk, if tuple <j, t’> hasn’t 
been ordered, the rank that tuple <i, t> can achieve should 
be no higher than that of tuple <j, t’>. Consequently, RMt

i 
cannot determine its own order because it needs to wait 
until RMt

j is ordered. Thus, when RMt
i is able to be 

ordered and appended to NONL at some node, RMt
j is 

already in that NONL if Nj hasn’t exited from the CS. 
Lemma 5. Two different tuples cannot achieve the 

same rank. 
Proof: By definition, a tuple is ranked according to the 

number of MNLs in which it stands on the top and the 
value of the NodeID field. It is straightforward that two 
different tuples cannot achieve the same rank. 

Lemma 6. In the Exchange procedure, after outdated 
tuples are deleted, either MONL⊆NONL or MONL⊇
NONL and tuples on the top of the two lists are the same 
if both are nonempty. 

Proof: Assume the contrary, neither MONL⊆NONL 
nor MONL⊇NONL is true. It is clear that | NONL | >0 
and |MONL | > 0. So there must exist at least one tuple, 
which can be denoted as A, and we have A∈ MONL, 
A∉NONL. Also, there must exist tuples, which is denoted 
as B, we have B∈NONL but B∉MONL. We assume that 
MONL={Ak} (1≤ k ≤ M), NONL ={Bk}(1≤ k ≤ M’). 

Firstly, we consider NONL ∩ MONL =∅. According 
to the Order Procedure, Ak1 is ranked higher than Ak2 if 
k1 < k2 in MONL, and Bk’1 is ranked higher than Bk’2 if k’1 
< k’2 in NONL. By Lemma 5, two different tuples could 
not achieve the same order. Since NONL ∩ MONL=∅, by 
Lemma 4, either AM precedes all tuples in NONL or BM’ 
precedes all tuples in MONL. But in the first case, since 
B1 must know AM is ordered before it got ordered, AM is 

sure to exist in NONL. In the second case, A1 must know 
BM’ is ordered before it got ordered, then BM’ should exist 
in MONL. This is obviously contrary to NONL ∩ MONL 
=∅. 

When NONL ∩ MONL ≠∅, we consider the minimum k 
where Ak≠Bk. When k>1, An-1=Bn-1 for any n∈ [1, k). But 
we have the instance that different Ak and Bk achieve the 
same rank (they both rank kth in the NONL and MONL), 
which is contrary to Lemma 5. In case of k=1, we can find 
the minimum k’, where Ak’ = Bk’. And if k’ >1, An-1≠Bn-1 for 
any n∈ [1, k’). According to the proposed algorithm, both 
Ak’-1 and Bk’-1 precede Ak’, but by Lemma 5, Ak’-1 and Bk’-1 
which are different tuples cannot achieve the same rank. 
Assume they are of different rank, by Lemma 4, if Ak’-1 
precedes Bk’-1, Bk’-1will be appended to MONL after Ak’-1 
but before Ak’. Or if Bk’-1 precedes Ak’-1, Ak’-1 will be 
appended to NONL after Bk’-1 but before Bk’. It is contrary 
to the assumption. In each case, there is contradiction. 

Lemma 7. Tuples in any NONLs are ranked in the same 
order. 

Proof: We assume that a RMt
i is sent from node Nj to Nj, 

so MONL = NONLi and MSIT= NSITi (here, we use NONLi 
and SIi.NONL equally for simplicity). We re-denote MONL 
and NONLk as MONL’ and NONLk’ after outdated ordered 
tuples being deleted. By Lemma 6,  either MONL’⊆
NONLk’ or MONL⊇NONLk’ is true, and tuples on the top 
of the two lists are the same if both are nonempty. This 
means tuples in MONL and NONLk are ranked in the same 
order except outdated ordered tuples. 

Without losing generality, we assume that MONL’⊆
NONLk’. What is left to be proved now is that an outdated 
ordered tuple, before it is deleted, is ordered equally in 
MONL and NONLk. According to the definition of outdated 
ordered tuple given in section 3.2.2 and the specification of 
Order procedure, such a tuple precedes all the ordered 
tuples that is not outdated and there is no such tuple 
existing in both NONLk and MONL.  

If both MONL’and NONLk’ are nonempty, we only need 
to prove that all of outdated tuples must exist either in 
NONLk or in MONL. Assume the contrary, there is an 
outdated ordered tuple A∈MONL and A∉ NONLk and 
another outdated ordered tuple B∈NONLk and B∉MONL. 
By Lemma 5, tuple A and B cannot achieve the same rank. 
But by Lemma 4, if tuple B precedes A, A precedes all 
tuples in NONLk’, A will be appended to NONLk after B and 
before any other tuples in NONLk’. Otherwise, i.e. tuple A 
precedes B, B will be appended to MONL after A and 
before any other tuples in MONL’. We can see that both 
cases result in contradiction distinctly. 

If MONL’ is empty, we only need to prove that any 
outdated tuples in MONL precedes all tuples in NONLk. 
Also assume the contrary, there is an outdated ordered 
tuple A∈MONL, A∉NONLk while another outdated ordered 
tuple B∈ NONLk, B∉MONL and B precedes A. By Lemma 
4, A will be appended to NONLk after B and before any 
other tuples in NONLk’. It is contradiction to A∉NONLk.  



Thus, tuples in any two different NONLs are ranked in 
the same order. 

Lemma 8. When a node Ni is executing the CS, tuple 
<i, t> must stand on the top of NONLi. 

Proof: From the algorithm presented above, there are 
only two cases in which Ni can enter the CS. One is that 
when Ni is ordered at some node Nk after executing the 
Order procedure, its corresponding tuple <i, t> is nicely 
on the top of NONLk. Since <i, t> gets Highest_Priority, 
Nk will send an EM message to Ni informing it to enter 
the CS immediately. When Ni receives the EM, it will 
invoke the Exchange procedure. Since tuple <i, t> is on 
the top of MONL of the incoming EM, after executing the 
Exchange procedure, <i, t> will stand on the top of 
NONLi by Lemma 6. 

In another case, the order of Ni is determined without 
Highest_Priority. Only when Ni receives an EM message 
from its directly preceding node Nj can it enter the CS. 
Since Nj has finished executing the CS, Nj will delete its 
corresponding tuple from NONLj so that <i, t> will stand 
on the top. When Ni receives the EM, it will delete all 
tuples which precede <i, t> from NONLi. Thus tuple <i, t> 
will be also on the top of NONLi. 

Theorem 1. Mutual exclusion is achieved. 
Proof: Mutual exclusion is achieved when any pair of 

nodes is never simultaneously executing the critical 
section. Assuming the contrary that two nodes Ni and Nj 
are in the CS at the same time, so tuple <i, ti> and <j, tj> 
must reside on top of NONLi and NONLj respectively 
according to Lemma 8. 

Now, let’s assume that a message (RM, IM or EM) is 
sent from node Ni to Nj with MONL=NONLi and 
MSIT=NSITi. Because both Ni and Nj are simultaneously 
in their CS, neither <i, ti> or <j, tj> can be considered as 
outdated tuples and be deleted as in the Exchange 
procedure. Thus the facet that tuples in NONLi and 
NONLj are not ranked in the same order is contrary to 
Lemma 6 and Lemma 7. 

Theorem 2. Deadlock is impossible. 
Proof: The system is deadlocked when no node is in its 

critical section and no requesting node can ever proceed 
to its own critical section. Assume the contrary that the 
deadlock is possible, in our algorithm, it will result in two 
cases. First case, no node could determine its order to 
enter the CS. This is contrary to Lemma 2 and Lemma 3 
because every requesting node could determine its order 
to enter the CS after its corresponding RM message is 
forwarded no more than N-1 times. In the second case, 
there exist three node NA, NB and NC, where NA is waiting 
for EM message from NB directly or indirectly, NB is 
waiting for EM message from NC directly or indirectly 
and NC is waiting for EM message from NA directly or 
indirectly. Then NA precedes NC, NC precedes NB and NB 
precedes NA. It is contradiction to Lemma 7, so in our 
algorithm, deadlock is impossible. 

Theorem 3. Starvation is impossible. 

Proof:  Starvation occurs when one node must wait 
indefinitely to enter its critical section even though other 
nodes are entering and exiting their own critical section. 
Assume the contrary, that starvation is possible. In our 
algorithm, time need to execute the algorithm and CS and 
the time for message transfer are all finite. Since a 
requesting node’s order to enter the CS is determined after 
its corresponding RM message has been forwarded at most 
N-1 times (Lemma 3), the reason that cause a node to be in 
starvation must be waiting for its preceding nodes infinitely. 
But by Lemma 4 and Lemma 7, the sequence of ordered 
nodes which precede it is determined once one node gets 
ordered. So, the node in starvation will receive an EM 
message from its directly preceding node and enter the CS 
in finite time. Thus a contradiction occurs and the theorem 
must be true. 

 

6. Performance Evaluation 
 
As mentioned before, there are three measures to 

evaluate the performance of a mutual exclusion algorithm: 
message complexity, response time and synchronization 
delay. The performance of an algorithm depends upon 
loading conditions of the system and has been usually 
studied under two special loading conditions: light load and 
heavy load. Under the light load condition, there is seldom 
more than one request for mutual exclusion simultaneously 
in the system while under the heavy load condition, there is 
always a pending request in a node. We first present an 
analysis of the performance of the proposed algorithm 
under the two different cases. Then we describe our 
simulation study, which focus on the heavy load condition, 
and discuss the simulation results.  

 
6.1. Performance Analysis 
 
6.1.1. Message Complexity. When a node wants to enter 
the CS, it must firstly initialize a RM message with a copy 
of its SI. The RM message will be forwarded among nodes 
carrying up-to-date system information until its home 
node’s ID stands on top of relative majority of MNLs, 
meaning that it gains enough permissions. Under the light 
load condition, if there is no outdated information, the 
RM’s host ID will be on top of each MNL the message 
travels. So, after being forwarded [N/2]+1 times (the RM 
will be updated on each forwarding), the currently 
processing MPM will find that the RM’s host ID has been 
ordered with Hightest_Priority and immediately send an 
EM message to that server. Hereby, the message 
complexity is [N/2]+2.  (Here, we use the square brackets 
denoting a function that gets the integer part of a digit.) 

When there exists outdated information, if the outdated 
information can be deleted within [N/2]+1 forwarding 
times,  the message complexity will be [N/2]+2 all the 
same. Otherwise, in the worst case, the RM will be 
forwarded N-1 times visiting all system nodes until it can 
be ordered. In this case, the message complexity is O(N). 

Under the heavy load condition, when a total of m nodes 
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are competing for the same CS, a node who is granted the 
privilege must have its ID standing on the top of at least 
[N/m]+1 MNLs. The minimum times the RM message is 
forwarded is [N/m]+2. So the message complexity is 
calculated by counting how many nodes in the system are 
competing the CS simultaneously, and the number of 
competing nodes m is decided by the distribution model 
that describes how frequently a node requests the CS.  

 
6.1.2. Synchronization delay. It is obvious that the 
synchronization delay of our algorithm is T where T is 
average message propagation delay, because only one 
enter message is needed to be passed between two 
successive executions of the CS. 

 
6.1.3. Response Time. Under low load condition, before 
a node can enter the CS, its corresponding request 
message needs to be forwarded N/2 to N-1 times to 
determine its order and one enter message for entering the 
CS. So the response time will be ([N/2]+2)*Tn  to (N-
1)*Tn. Under high load condition, if each node will wait 
for an enter message to enter the CS, the response time is 
sure to be N*(Tn+Tc) under heavy load condition where Tc 
is the average CS executing time. 
 
6.2. Simulation Results 

 
Although our algorithm has high message complexity 

and long response time in the worst case, it has good 
performance in general. In fact, the heaver the system 
load is, the better our algorithm performances. To 
demonstrate that, a simulation is conducted to evaluate 
our algorithm against several other algorithms including 
the Maekawa which is low in message complexity and the 
Broadcast, Ricart which are low in response time.  

We adopt a simulation model similar to the one used in 
[14]: requests for CS execution arrive at a site according 
Poisson distribution with parameter λ; message 
propagation delay between any pair of nodes Tn and CS 
execution time Tc are all constant to be 5 and 10 time 
units (although this condition is not necessary, we still 
take it for ease). The whole system is free of node crash 
and communication failure. Two measure results are 
collected, viz. number of message exchanged (NME) and 
response time (RT) per CS execution. Here, we use the 
first method mentioned in [9] to generate quorums for 
Maekawa’s algorithm.  

We first consider the situation that all nodes are 
requesting the CS simultaneously as soon as the system is 
initialized. Every node only requests once. When the 
system is initialized, each node knows nothing about 
others in our algorithm. So in this situation, we can see 
how soon and sufficient the system information 
exchanges. Figure 4 and 5 plot the average NME and RT 
against the number of nodes in the system.  It is shown 
that when the number of nodes increases, the messages 
exchanged and time delay both increase. Moreover, our 
algorithm has the least messages exchanged of the four 

algorithms while its average response time is similar to the 
other three’s.  

Afterwards, a system of 30 nodes is simulated with 
different request arrival rate λ. We run the simulation for 
enough long time (100000 time units) repeatedly and 
record the NME and RT for all successful requests. Figure 6 
and Figure 7 illustrate the performance comparison of the 
four simulated algorithms. As the load increases, messages 
needed for per mutual exclusion decreases in our algorithm. 
It is clear that the heaver the system load is, the better our 
algorithm outperforms the Maekawa in average NME. 
Although the average response time of our algorithm is a 
little higher than that of the Broadcast and the Ricart, it is 
much lower than the Maekawa’s. Since the Broadcast and 
the Ricart need much more messages exchanged to achieve 
mutual exclusion, our algorithm performances better than 
the other three in general.  

 

7. Conclusion 
 
In this paper, we described an efficient fully distributed 

algorithm for mutual exclusion. Our algorithm imposes no 
specified structure on the system topology and doesn’t 
force messages to be delivered in FIFO order. These two 
merits make our algorithm more attractive in applications. 
In addition, we adopt the RCV scheme to schedule nodes 
that are intended to execute the critical section. Since the 
RCV scheme comes from the famous MCV scheme, the 
algorithm gains high resiliency. We have presented the 
proof of correctness of the algorithm, with respect to 
guaranteed mutual exclusion, deadlock freedom and 
starvation freedom.  Both analysis and simulation are used 
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