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Abstract—Recent research advancement of wireless sensing
technology has made device-free interaction in WiFi-enabled the
IoT environment possible. Although gesture-based interaction
with such a smart environment greatly improves usability, it
also introduces many security problems such as shoulder surfing
attacks. By spoofing the gestures of legitimate users, the attacker
could easily access private information or services and cause
even worse consequences. A secure interaction mechanism for
this environment is required to prevent attackers without com-
promising the usability, while the limited recognition ability and
low robustness of WiFi sensing make this target extremely chal-
lenging. To this end, we propose a secure interaction mechanism
called SiWi, which provides the ability to resist shoulder surfing
attacks without compromising the usability by using just WiFi
signals. SiWi innovates in a concurrent interaction/authentication
framework with only three elemental gestures (push, swing, and
wave) and four types of identity-related imperceptible/hidden
features (time distribution, direction, angle, and distance). HMM,
and Fresnel Model-based algorithms are used to recognize the
gestures and extract hidden features robustly and efficiently. Ex-
tensive experiments in a real implemented system were conducted
to investigate the effectiveness of the proposed secure interaction
system. The results show that our system can achieve an average
accuracy of 93% to identify legitimate users and 97% to resist
the spoofer.

Index Terms—Wireless Sensing, Device-Free Sensing, Channel
State Information, Secure Interaction, Gesture Recognition

I. INTRODUCTION

A. Motivations

As a device-free sensing scheme, sensing based on Channel
State Information (CSI) of WiFi has drawn considerable
research attentions recently [1], [2], [3], [4]. Such a sensing
scheme has many advantages such as low-cost (software
updated without specified hardware), easy deployment (per-
vasiveness of WiFi devices) and non-LOS(Light of Sight)
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sensing. Therefore, it has been envisioned to be a key enabling
technology in so-called WiFi-enabled IoT environment (e.g.
smart home or offices) [5]. It offloads sensing functions from
users’ devices to surrounding infrastructures and allows users
to device-freely receive same services as wearable-device
sensing [6], [7]. Numerous applications (e.g. tracking and
sleep monitoring) have been developed with the realization
of WiFi-enabled IoT environment.
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Fig. 1. Scenario of Secure Interaction with WiFi-enabled IoT environment

With advances in gesture recognition [8], [9], [10], [11],
[12], [13], WiFi-enabled IoT environment could further enable
people to interact and trigger personalized services or access
private information [14]. As illustrated in Fig. 1, people can
interact with the environment device-freely with gestures and
control appliances or trigger services (e.g. control the air con-
dition and display personal video or picture.) at their willing.
Although such systems enrich personal interaction usability
and improve interaction efficiency, security has become a
major concern for these systems. For example, in Fig. 1, the
attacker could shoulder-surf an input gesture and spoof the
gesture to the IoT system, so as to access private services or
information illegally. Thus, it is indispensable to require secure
interaction mechanisms for the smart environment.

B. Limitation of State-of-the-Art

The primary requirement of such secure interaction mech-
anisms is to conduct user authentication during the inter-
action process. User authentication in computing systems
traditionally depends on three factors: what you have (e.g.
a hardware token), what you are (e.g. a fingerprint) and
what you know (e.g. a password) [15]. Among all existing
authentication methods, gestures belong to the category of
what-you-know methods. They have advantages over other
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authentication methods, because gestures are highly customiz-
able, easier to remember, and more secure potentially. Clark
and et al. [16] have conducted a comparable study of gesture
based authentication methods with different devices, including
cameras, smart-phones, wearable sensors and WiFi. Their
study did not fully consider recent advancement of WiFi-
based activity recognition, thus underestimated the potential of
WiFi-based gesture authentication. As a classic gesture based
authentication work, the GEAT [17] used not only gestures but
also the features like finger velocity to perform authentication
on smartphones. This work was based on touch screen and the
features or gestures may not be suitable for WiFi-enabled IoT.

So far, only limited works focus on device-free identification
or authentication with WiFi. Some identified a person with
gait features [18], [19]. Such identification approaches have
two limitations. First, the identification process requires a
relatively long walking distance to gather sufficient features,
which restricts its usability in a large open indoor environment.
Second, some services of the smart environment should only
be triggered pro-actively by the user specified activities, but
gait-based approaches are not flexible enough to do so. Shi et
al. [20] also adopted the idea of extracting physical features of
gestures to perform user authentication. However, the proposed
approach was based on the neural network to extract the fea-
tures, which highly depended on training datasets and required
unacceptable labor efforts to collect labeled data. Such a cost
hinders this scheme applicable for secure interaction.

C. Proposed Approach

To address the above problems, we propose a system called
SiWi (Secure Interaction via WiFi Signal), which is a device-
free gesture based scheme considering the Shoulder Surfing
Attack [17] as the major threat. Our idea is based on the
observation that when users interact with WiFi based IoT
system, the inherent features (e.g. time duration, distance
and speed) related to the gestures have a strong correlation
with the identity of the users but can hardly be perceived
by the attacker. Besides, according to previous studies (e.g.
[16]), gesture combination could serve as an authentication
“password/PIN”. As such, we proposed a two phase secure
interaction scheme by combining “what-you-know” gestures
and “what-you-are” features, where SiWi utilizes the CSI of
WiFi signals to recognize and extract the gesture features. At
the first phase, the sequence of gestures is used to examine
whether the user knows the “password/PIN”. If it passed,
the extracted “what-you-are” features are used to perform the
second phase authentication to exclude spoofers.

D. Technical Challenges and Solutions

To realize the full promises of SiWi, there are still several
technical challenge:

1) The Security vs. Usability: Achieving high security and
usability are two major goals when designing an interactive
system. Usability refers to how easily a user interacts with a
system while security refers to the ability of a system to resist
attacks. For our system design, we need to strike a balance
between the two goals. Complicated gestures are more likely to

resist shoulder surfing attacks, but this complicated combina-
tion may lead to low usability. Therefore, we introduced three
elemental gestures (push, swing and wave) for customizing
gesture combinations. Empirical study has shown that these
three gestures and their combinations included enough hidden
features for user authentication, and some hidden features
(e.g. speed and direction) could add versatilities to these
gestures and thus generate more combinations for interaction
and improve the security.

2) Uniqueness of what-you-are features and their feasibility
with WiFi: Although the CSI of WiFi has been proved to
be capable of fetching identity-related features from the gait
[18], [19], we still need to address what features of the
body gestures are closely related to the identity and can be
robustly extracted by the WiFi based IoT system. Hence, we
first identify the unique features of the gestures, including
Inter-gesture interval/Gesture Duration, Distance/Arm Length,
Direction, and Swing Angle/Range through experimental data
analysis. We then proposed a robust segmentation algorithm
and a Fresnel Zone model based algorithm to extract these
features robustly.

3) Interaction & Authentication Simultaneously: In the
smart environment, interaction gestures require immediate
response, thus leaving very limited time for our recognition
and authentication process. How to find the low cost and real
time recognition and extraction algorithm is a very challenge
task. In this paper, we mainly design the SiWi composed
of a high efficient signal processing, gesture detection and
segmentation algorithm, a HMM-based recognition algorithm
and a Fresnel zone modeling based extraction algorithm, all
of which are efficient enough to complete required task in
real-time.

4) What-you-know vs. What-you-have: We have to find a
trade off between the authentication based on explicit and
implicit features, while ensuring the accuracy. A reasonable
identification method of the integrated features needs to be
designed. Apparently, these two factors need to play different
roles in the authentication. Moreover, extracting two types
features incur different amount of cost. How to balance the
identification accuracy and the cost and the response time
need a careful consideration. Only three elemental gestures
are enough to form specified gestures.

E. System Model and Threat Model

For simplicity purposes, our system only considers the case
of a single user interacting with the smart environment in a
device-free sensing manner. The orientation of the operation
is arbitrary in a close range to the signal receiving devices.

In the environment, an attacker could witness the gestures
by the user through either remote videos or in-site sneaking.
With the sneaking results, we assume the attacker can launch
shoulder surfing attacks by spying the owner when s/he
performs gestures.

F. Contributions

In summary, we make following contributions in our paper.
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• We proposed a gesture based secure interaction scheme
for the WiFi-enabled IoT system. This scheme resulted
in a good tradeoff between usability (forming enough
combinations with three elemental gestures) and security
(preventing the shoulder surfing attacks to a large extent).

• We conducted a 4-days empirical study with 10 volun-
teers to identify a set of features that represent intrinsic
attributes of gesture-based interaction in the WiFi-enabled
IoT system.

• We proposed a set of algorithms to extract the features
effectively and reliably from gesture-based interaction
with CSI of WiFi signal.

• We implemented and evaluated SiWi in a real deploy-
ment. The results showed that our system can achieve an
average accuracy of 93% to identify legitimate users and
97% to resist spoofers.

II. RELATED WORK

A. Gesture based Authentication
Passwords, as a traditional authentication method, require

users to remember either certain secure texts or graphical
patterns. Such an authentication system solely relies on the
knowledge of the password and thus easily suffers from pass-
word stolen or shoulder surfing. To overcome this weakness,
researchers seek for behavioral features for authentication,
such as using gestures. Liuet al.[17] proposed GEAT, a gesture
based user authentication scheme for securely unlocking touch
screen devices. GEAT applied gesture features (such as finger
velocity, devices acceleration and stroke time) to user authen-
tication and achieved an average equal error rate of 0.5%
with 3 gestures. Luca et al. [21] used the time of drawing
a password pattern on touch screen phones for authentication
and their scheme achieved an accuracy of 55%. Sae-Bae et
al. [22] performed user authentication based on the time of
articulating five-finger gestures. Li et al. [23] exploited five
basic movements (tapping, sliding up, down, right and left) on
the touchscreen and their related combinations as the user’s
behavioral pattern features, to perform authentication. This
gesture combination contains user’s distinct behavioral charac-
teristics. Shrestha [24] introduced a Wave-to-Access approach
using timestamps, duration for hand wave gesture to prevent
malware attack on smartphones. Yang [25] implemented an
approach using sampling interval and acceleration along the
x, y & z behind the hand wave gesture for locking / unlocking
purposes. However, these studies are based on smartphones.

Using physiological biometrics to authenticate is a novel
way. Jungpil [26] proposed a novel user identification system
based on the bio signal analysis of arm movement (3-axis
accelerometer & 3-axis gyroscope) and electromyography
(EMG) signal using Myo armband as a wearable user authenti-
cation system in P2P systems. A limitation of these approaches
is that they require special hardware and are not applicable to
daily usage.

B. WiFi based Gesture Recognition
With Halperin [27] simply modifying the Intel 5300 802.11

Network Interface Card (NIC), a finer grained channel estima-
tion of CSI values could be obtained for activity recognition.

The key intuition of WiFi sensing is that performing certain
activities in a unique formation and direction could generate
a unique pattern in the time series of CSI values. Prior work
on WiFi sensing can be classified into two main categories:
activity recognition, and user authentication and privacy pro-
tection.

1) Activity Recognition: CSI measurements have been
widely used for large scale activity and small scale motion
recognition in single human environment [28], [29], [30].
For large scale activity recognition, E-eyes [31] used CSI
histograms as fingerprints to separate different daily activities.
CARM [8] proposed CSI-speed model and CSI-activity model
to quantify the correlation between CSI values and the specific
human activity. WiDir[32] used the Fresnel zone model from
a physical level to estimate the moving direction. For small
scale motion recognition, WiFinger [33] used WIFi signals
to recognize a set of finger-grained gestures and achieved up
to 90.4% average classification accuracy for 9 digits finger-
grained gestures from American Sign Language(ASL). WiGest
[34] identified different signal change primitives from mutu-
ally independent gesture families with no modifications and
no training for gesture recognition. WiGest detected the basic
gestures with an accuracy of 87.5% with a single AP only and
the accuracy increased to 96% using three overheard APs. In
the latest work, Wang [35] proposed a system (QGesture) to
measure the movement distance and direction of human hands.
Based on LEVD algorithm, QGesture achieved an average
accuracy of 3cm in the measurement of movement distance
and more than 95% accuracy in the movement direction
detection in the one-dimensional case. Furthermore, in the
two-dimensional case, QGesture also had a state of the art
performance.

2) User Authentication and Privacy Protection: CSI char-
acterizes the state information of wireless channel, which can
be used to authenticate users and protect privacy. Liu et al.
[36] proposed a framework to build user profile resilient to
the presence of spoofer. WiWho [18] and WifiU [19] used
WiFi devices to capture fine-grained gait patterns for human
identification. Wobly [37] encoded individuals’ gaits and room
configuration information by WiFi signals to protect privacy.
FingerPass [38] uses the channel state information of WiFi
signal to achieve continuous authentication by finger gestures.
The system divides authentication into two stages: login and
interaction. In the login stage, a deep learning-based approach
is developed to extract behavioral characteristics of finger
gestures for highly accurate user identification which highly
depended on training datasets and required unacceptable labor
efforts to collect labeled data.Some others introduce the acous-
tic signal into this area. Zhou et.al. [39] propose an innovative
cracking method on Android Phone with only acoustic signals.
This method greatly extends the reach of acoustic signal and
its application in mobile devices.

With above system model and threat model, we are going to
study how to achieve accurate interaction with the users while
ensuring the security of such system to resist above attacks.
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III. EMPIRICAL STUDY

In this section, we mainly answer these questions: 1) which
gestures could be used as what-you-know gestures? and 2)
which features of these gestures could be used as what-you-
are features? We answer these questions through empirical
studies. The algorithm detail of recognition and extraction will
be presented later in section IV.
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A. Data Collection

We used MiWiFi as the signal transmitter, and two Intel
NUC with Intel Link 5300 WiFi NIC as the signal receivers
(Fig. 2). Their floor plan is shown in Fig. 3. The distance
between the transmitter and the receiver was 1m, and the
connections between the sender and the receiver made a right
angle.

Ten volunteers with different heights and arm lengths took
part in our experiments, and the data were collected from each
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volunteer over 4 different dates. Each volunteer was required
to carry out 5 different gestures (push, swing, wave, sit and
walk). Worth to mention that, we chose these gestures mainly
due to the fact that they can be recognized effectively and
stably in wireless sensing system. In addition, we can also ex-
tract biometric features for recognition. For the convenience of
measurement, the position and moving direction are on/along
the vertical line and tangent line of Fresnel zone. Volunteers
needed to perform each gesture in 4 locations (P1, P2, P3, P4
in Fig. 3). Note that, we have marked the x-axis and y-axis
in the figure, where they are along the line Tx-Rx1 (x-axis)
and line TX-Rx2(y-axis). In each position, each participant
performed the gestures by facing 3 different directions (d1, d2,
d3) and repeated them 20 times. The volunteers also walked
from P4 to the other three points along with their CSI recorded.
In total, we obtained 28800 samples.

B. Data Analysis

1) What-you-know Gestures: In order to test the stability
of recognizing these gestures, we used the algorithm proposed
in IV to perform gesture recognition. As shown in Fig.
15, the recognition of these activities is obvious and stable.
Worth to mention that, sitting and walking are not suitable
for interaction. Primarily, they are too common in ordinary
life; thus, the system will not be able to distinguish between
intended input and casual behaviors. In addition, even with
proper designed preamble action or sequence, sitting/walking
need body movements rather than hand/arm movements. Users
will not chose them for interaction in WiFi enabled smart
environments. These three gestures in Fig. 4 represent the
gestures using hand and arms towards three orthogonal di-
rections. Our following analysis also shows that they contain
enough identity-related features. Given the above three factors,
we chose the first three gestures as the elemental what-you-
know gestures.

2) What-you-are features: Through numerous of data col-
lection and experiment, we examined multiple features which
could be reliably extracted with algorithms and have inher-
ent relation with user identity. In this section, we empiri-
cally examine four types of gesture features: Inter-gesture
interval/Gesture Duration, Distance/Arm Length, Swing An-
gle/Range and Push Direction. The results are as follows.
• Inter-gesture interval/Gesture Duration: We divided con-

tinuous time data into active data and stationary data, and
extract the duration of each segment in time domain of
signal. Through our data analysis, we found that when
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performing the same gesture combination, the same person
will have the similar time distribution, but different people
may have different time distributions. Fig. 5 shows an
example of the time distribution of pushing hand, interval
and swinging hand. The dots of different colors indicate the
time distribution of five different participants. The interval
distribution from the same person is concentrated, while
the one from different people is relatively independent.
Hence, the time series distribution can be deemed as hidden
features for authentication.

• Distance/Arm Length: Intuitively, when performing a ges-
ture, arm’s moving range or distance should be closely
related to arm length. Participants with different heights
should have unique moving range or distance for the same
gesture. We conduct data analysis based on this straightfor-
ward fact.
As shown in Fig. 4, when people push their hand, the
movement distance is their arm length, that is equal to the
sum of the length of the forearm and the length of upper
arm. When people swing their arm, the movement distance
depends on the arm length and the angle of swinging. When
people wave their arm, the movement distance what we
can measure is the projective length of hand and forearm
in a horizontal two dimensional plane. It depends on the
angle of waving and the sum of the length of hand and
the length of forearm. The above conclusion shows that
the movement distance is related to two parts of human
body, the first is the sum length of forearm and big arm,
the second is the sum length of forearm and hand. Fig.
6 shows the statistic of the real measured arm length and
the forearm length from each volunteers. In the figure, ’A’,
’B’,...’J’ represent different volunteers. (Unless otherwise
stated below, the capital letters in the drawing notes indicate
different volunteers). Interestingly, the proportions of the
forearm and the big arm (the red dash line in the figure)
are different for different people. Thus, the distance/arm
length could serve as the identity-related features and the
extraction of this feature is feasible.

• Swing Angle: Another what-you-are feature is the swing
angle for the swing gesture, (Fig. 4). Such a feature depicts
the range when people swing their arm. Although people
may lead to different ranges/angles when they perform this
gesture, the distribution is fairly stable. This can be verified
through statistical experiments (Fig. 7). Also, according to
this figure, it can be found that for different people, their
angle distributions for their gestures are different. Thus, the
swing angle could reflect intrinsic characteristics of swing
their arm. Besides, the swing angle could also serve as a
what-you-know element. The extraction algorithm for the
swing angle is described in subsection IV-D.

• Push Direction: Push gestures not only indicate the arm
length but also provide another hidden feature of push
direction. We used the proposed algorithm in subsection
IV-D to extract the push direction. The statistical results
are shown in Fig. 8, from which we can tell that the push
direction does not vary too much among participants. How-
ever, this feature could be used as what-you-know feature
and add versatility to the push gesture, thus generating more

interaction gesture combinations.

C. Result Summary

According to the analysis results, we can draw the following
conclusions. First, the gestures (push, swing, wave) are per-
ceptible, which can be used as what-you-know elements for
secure interaction. In addition, the arm length/forearm length
and swing angle revealed in different gestures could be used
as what-you-are elements, as they show close correlation with
user identity. Second, what-you-know gestures and what-you-
are features are not fully exclusive. The interval and duration
of the gestures could be controlled by the user intentionally
(what-you-know) or just as their custom (what-you-are). The
same is true with the push direction. Third, not all what-you-
know features are perceptible. The direction, time interval
and the angle of the swing could all be used as what-
you-know components of the input gesture combination, and
these intentional features could also be used as the hidden
information to resist shoulder surfing attack. Fourth, we could
extract different hidden features from different gestures. For
example, the swing angle could only be extracted from the
swing gesture, and the forearm length could only be extracted
from the wave gesture. Thus, intuitively, it is recommended to
come up with a combination consist of all gestures in various
sequences to improve the level of security.

In the next section, we will describe how to recognize the
gestures and extract the hidden/imperceptible features in a
robust and efficient way.

IV. SYSTEM DESIGN

A. System Overview

According to the analysis above, we design our system as
illustrated in Fig. 9, which mainly consists of four parts.

In the first part, SiWi obtains the raw CSI waveform by
commercial wireless devices (e.g. Intel 5300NIC). Due to the
hardware deficiency and signal interference, raw CSI data
commonly have noises. Hence, we firstly use ButterWorth
filter to remove high frequency noises. For noises within
band, we use Principal Component Analysis (PCA) to process
further. Then we choose Discrete Wavelet Transform (DWT)
to transform the time series data into the frequency spectrum
to obtain the detailed features of the gesture. We also design
a novel algorithm to correctly split each gesture. The duration
of each gesture (Tact), the duration of two adjacent gestures
(Tinter), the arm length and the gesture angle are features for
identity authentication.

In the second part, SiWi utilizes Hidden Markov Model
(HMM) to distinguish the gestures. In our system, HMM dis-
tinguishes each gesture (i.e. wave, push hand, swing) correctly.
The recognized sequence of gestures is compared with the user
profile to check whether the two match. However, the spoofer
can imitate these gesture combinations easily. Hence, this is
just the first phase for identity authentication in our system
and we need to rely on hidden features behind these gestures
for further authentication.

Next, we extract the hidden features with the help of Fresnel
zone formed by WiFi signal propagation. We can calculate the
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distance, push direction and swing angle from 2-Dimension
Fresnel zone model. These hidden features are relatively stable
and as proposed in the last section, the diversity among
different people is obvious. Hence, the extracted features are
used for authentication of the next step.

The last part is the authentication module which trains a
robust model with these hidden features (arm length, angle,
Tact, Tinter and direction), we utilize traditional Support
Vector Machine (SVM) to generate the model. Meanwhile, we
can determine user identification by comparing the similarity
of features between the testing sample and user profile.

As illustrated in Fig. 10, SiWi extracts features from the
activity elements and interval elements. The activity elements
contain the activity type, activity direction, activity distance
and the time cost of the activity. The interval element means
the intervals between a sequence of activities. We can dis-
tinguish the types of activities by HMM and the directions
and distances can be calculated by Fresnel zone. The time
cost of each activity and intervals between a sequence of
activities can be measured by the process of gesture detection
and segmentation. The features such as direction, distance,
time cost are correlated with user’s shape and habits. However,
the activity type is training dependent, which means that we
need to collect samples to build a HMM model to distinguish
different activities.

B. Gesture Detection and Segmentation

1) Wave Filter: As shown in Fig. 11, the original CSI
amplitude features extracted from commodity WiFi NICs are
noisy owing to the fast fading characteristics of the wireless

Fig. 10. The activity classification of SiWi

channel and the electromagnetic interference in the environ-
ment. As the frequency of the variations in CSI stream due
to gestures is within 1-60Hz, we first remove high frequency
noises through low-pass Filter. We set the cutoff frequency
of 60Hz to remove the noises. However, the noise within
band can not be eliminated. Hence, we have to do further
processing for low frequency noises. Worth to mention that,
the ButterWorth filter could be the bottleneck that hinder the
whole system to response in realtime, if the sampling rate
exceed 800hz. For high sampling rate case, it it recommend
to use average filter.

To remove low frequency noises and combing CSI streams,
we apply principal component analysis (PCA) and discrete
wavelet transform (DWT) to do further processing. Details of
PCA noise removable for CSI of WiFi signal could be found
in [8]. From Fig. 11, we can see that the noises are removed.

The CSI waveform after ButterWorth Filter can be expressed
as H(t) = [H(1), H(2), ...,H(t)] and H(t) is denoted as the
following equation:

H1,1 H1,2 · · · H1,30

H2,1 H2,2 · · · H2,30

...
...

...
...

H6,1 H6,2 · · · H6,30

 (1)

where Hi,j represents the CSI waveform at jth sub-carrier
in the ith Tx-Rx pair. We apply PCA by the following three
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steps:
• DC component removal: we first subtract the correspond-

ing constant offsets to remove the Direct Current(DC)
component for every subcarrier. The DC component can
be calculated through a long term averaging over that
subcarrier.

• Eigenvector decomposition: SiWi gets the eigenvector qi
through decomposition of the correlation matrix M as
M = HT ×H .

• Principal Components: In this step, we construct the
principal components using the equation hi = H × qi,
where qi and hi are the ith eigenvector and the ith

principal components respectively.
SiWi extracts the 2rd to 11th components and discards

the first principal component. After PCA, we apply DWT to
transfer the time series data into frequency spectrum. SiWi
selects the Daubechies D4 wavelet to decompose the PCA
components into ten levels. The frequency features can be
expressed as matrix D: Dt1,1 · · · D1,30

... Dti,j

...
Dtn,1

· · · Dtn,m

 (2)

where Dti,j represents the result of ith dimensional PCA and
jth level frequency spectrum values.

2) Activity Detection: The core of gesture detection is to
compare the waveform of existent gesture with the empty room
to get the start and end point. The algorithm is presented as
follows:
• Step 1: To detect the start and end of an gesture, SiWi needs

the benchmark value of CSI when the room is empty which
denotes as Hempty . We also need to do the wave filter for
these values and get the mean variance Vempty .

• Step 2: For gesture waveforms, we divide the data into
T/t time slices according to the time window size t. For
the ith time slice, we get the variance V as the basis for
judgment. We perform a statistic on the number of V greater
than Vempty . If the number is greater than the threshold, the
time slice is regarded as the beginning of the gesture.
Fig. 11 shows the waveform of pushing hand continuously

for three times. The blue vertical line represents the start
of each gesture, the red vertical line represents the gesture
ended and we can see that our algorithm correctly splitting
each gesture. Meanwhile, we can get the time interval Tinter

between two adjacent gestures. Note that, in our system three
different gestures are used. The start and the end of the
gestures may not be the same. This may cause the user
performing an extra movement before conducting next gesture.
We find that these extra movement could be detect and split
in segmentation stage. To alleviate such interference, this
extra movement segment will be recognized as an incomplete
push/pull. We only deem this incomplete push/pull as a gesture
interval and merge it with its neighboring intervals.

C. Recognition of Elemental Gestures

The two typical wave forms of each gesture after DWT
are illustrated in Fig. 12. To distinguish these three types
of gestures in this form, SiWi extracts the average energy
and variance in each time slice as features and uses Hidden
Markov Model(HMM) to build a CSI gesture recognition
model. As human gestures generally comprise different states,
for example push hand can be divided into start, acceleration,
deceleration and stop. These states correspond to the concept
of states in HMM. When people are in the relatively slow
movement state, most CSI energy is on the low frequency
components. However, when entering into the acceleration
state, the energy is distributed in high frequency components.
By looking at these transitions between different states, we
can infer different types of gestures. Hidden Markov Model is
a special kind of Bayesian network. The variable Yt denotes
tth node in the network and each node has possible states. For
variable Y1 · · ·YT , we have

P (Y1 · · ·YT ) = P (YT |YT−1)P (YT−1|YT−2) · · ·P (Y1) (3)

The probability distribution of the state at t moment only
depends on the state at t− 1, which is called transition
probability. The characteristics of the transition probability
make HMM perform well on time series problems. For the
gestures which are not included in the three gestures (wave,
push, swing), we set the probability threshold α. When the
probability is less than α, the gesture can be considered as
unknown gesture.

D. Extraction of Hidden Gesture features

We utilize HMM to distinguish different types of gestures
such as wave or push hand, however these gestures are not
enough for authentication. The spoofer may imitate the gesture
combination. Hence, we need to extract hidden features from
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(a) 1-Dimension Fresnel zone (b) 2-Dimension Fresnel zone

Fig. 13. Fresnel Zone Model
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Fig. 14. Gestures and the hidden features

these activities. Although Shi et al. [20] have proposed the
concept to extract the physical features to perform identifica-
tion, the proposed approach is based on the neural network to
extract the features which is highly depended on the training
set and require unacceptable labor efforts to collect the labeled
data. To this end, we proposed a high level feature extraction
approach to extract the hidden features that are closely related
to the authentication.

We mainly rely on the Fresnel Zone model [32] to extract
the features, we can get these hidden features with the help of
Fresnel model.

1) Modeling Activity with Fresnel zone: In the context of
radio propagation, Fresnel zones refer to the concentric ellipses
with foci in the transceivers. Assume P1 and P2 are transmitter
and receiver respectively as shown in Fig. 13(a), for a given
wavelength λ, the Fresnel zones containing n ellipses which
can be constructed by the following equation:

|P1Q1|+ |P2Qn| − |P1P2| = nλ/2 (4)

where Qn is the point in the nth ellipse. According to the
equation when the object is located in the odd number Fresnel
zone, the reflected signal would enhance the receiving signal
at P2. However when the object is located at the even number
Fresnel zone, the reflected signal and LOS signal would cancel
each other. This means when an object moves from the 1st
Fresnel zone to the nth Fresnel zone, the received signal would
present peaks or valleys. Hence, we can calculate the number
of passed Fresnel zone by observing the peaks and valleys
of the waveform. Empirically, the object moves through one
Fresnel zone at the distance of half wavelength. Above this,
we can get the distance of moving object through 1-dimension
Fresnel zone model. However, the angle cannot be obtained
from 1-dimension Fresnel zone model. As the angle can be
extracted if we have the same features from an orthogonal
dimension, we set two receivers to form an orthogonal Fresnel
zone to solve this problem. The 2-dimension Fresnel zone is
illustrated in Fig. 13(b).

2) Inter-Gesture Interval/Gesture Duration: Regarding the
Inter-gesture interval/gesture duration, assuming that we have
a gesture combination 〈act1, inter1, · · · , actn, intern〉, then
we can obtain the time series interval and gesture duration
distribution denoted as 〈Tact1 , Tinter1 , · · · , Tactn , Tintern〉 in
the process of gesture segmentation. Worth to mention that the
sampling rate of our data is 1200 per second and we select
60 as the length of time window, thus the sampling gratuity
of the measured time is 0.05 second.

3) Arm Length: As shown in Fig. 14, the push length is
the sum length of forearm and upper arm. From Fig. 13(b),
we find that the push length can be projected on the X axis
and Y axis and the projection distance is the sum of quantities
that pass through Fresnel zone. Hence, We can get the sum
length of forearm and upper arm which is denoted as L1 from
pushing hand.

L1 =
√
x2 + y2 (5)

For wave, the sum length of hand and forearm is denoted as
L3 and the projective distance is denoted as L4. Hence, L3

and L4 satisfy the following equation:

L4 = L3 sinβ, (6)

where β is the angle of wave. By 2-Dimension Fresnel zone,
we can easily get L4, but L3 is unknown. From the equation
6, we can easily find when β equals 90◦, L3 and L4 is equal.
However, in the actual experimental environment, we cannot
guarantee the angle equals 90◦ exactly. Since L3 is between
40cm to 60cm for most people which means generating 1cm
distance error requires at least 11◦. This indicates the errors
due to user behavior are negligible. Hence we can get L3.

Need to mention that, when one may conduct incomplete
gestures, or different gesture combination and consequence
may lead to subtle different in different gestures. In our
solution, we require the user to conduct the gestures in full
stretch, so that we can measure the arm length without mislead
information.

4) Move Range/Angle: We can extract the angle from swing
gesture. Denote L2 as the projective distance in 2-Dimension
Fresnel zone and the angle α of swing can be expressed as
the following equation:

α = 2arcsin
L2

2L1
(7)

From the equation 7, we find that L1 is the sum of the length
of forearm and upper arm extracted from push hand and L2

can be calculated by 2-Dimension Fresnel zone, hence we can
easily get the angle.

5) Push Direction: In the 2-Dimension Fresnel zone, we
can get the push direction as hidden features. As shown in
Fig. 13(b), we can get the x component and the y component
by 2-Dimension Fresnel zone. Hence, push direction can be
expressed as the following equation:

γ = arctan
y

x
(8)
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E. Authentication Module

Through the above process, we can recognize the type
of gestures (Wave, Swing, Push) through HMM which are
used as the interaction gestures. For push hand gesture, we
can get the sum length of forearm and upper arm and the
direction of push hand. The angle and the sum length of
forearm and hand are extracted from swing and wave. We
can also get the time distribution from our gesture detection
algorithm. These features can be seen as hidden features.
For these features, we need to build users profiles. Suppose
we have a gesture combination 〈Push, Swing,Wave〉,
the feature vector for training can be expressed as F =
[Tactp , Tinterp , Tacts , Tinters , Tactw , Tinterw , L1, γ, α, L3].
Before the interaction process, the users could conduct
several times of the preferred gesture combinations for
training and attach them to certain functions. We use
traditional Support Vector Machine(SVM) with Gaussian
kernel function to train the input samples. The output model
and the gesture combination are set to be the user profile.

In addition, to tackle the shoulder surfing attack, we utilize
one-class support vector machine to detect the spoofer. The
spoofer is someone who does not exist in user profiles and tries
to imitate the witnessed legitimate user’s gesture combinations.
For each legitimate user in the users profiles, we construct the
one-class model using the feature vector F . Then, we get a
score denoted as S which compares the similarity between
the features denoted as Ftest extracted from testing samples
and the support vectors Fuser of the user in the profiles. The
equation can be expressed as the following equation:

S =

N∑
n=1

k(Ftest, Fuser) (9)

where N is the number of legitimate users and k() is the
Gaussian kernel function. When S is larger, it implies the
testing sample has less distance to the user in the profiles. We
can set a threshold η to discover the possible spoofer and if
S is less than η, it implies the testing sample is from spoofer.

V. EXPERIMENTAL EVALUATION

A. Experimental Setup

The deployment of the system is mainly divided into two
parts. We use MiWiFi as the signal transmitter and two Intel
NUCs with Intel Link 5300 WiFi NIC as the signal receivers.
The deployment is shown in Fig. 3 and has been described in
subsection III-A.

Our experiments were conducted in the 5GHz frequency
band with 20MHz bandwidth channels. On one hand, the
band of 5GHz has a shorter wavelength (6cm in 5Ghz while
12cm in 2.4Ghz), which leads to better movement speed
resolution. On the other hand, 5GHz has lower coherence rate
than 2.4GHz according to the standard of IEEE 802.11a and
IEEE 802.11b. The devices in 5Ghz is also much less than
the ones in 2.4Ghz, thus leading to better SNR and CSI. All
the experiments were conducted with 10 volunteers in a Lab.
Unlike the data analysis experiment in section III-A, in these
experiment, the participants are required to perform predefined
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gesture combinations in different locations. The gestures are
performed at their own preferences except that the pushing has
to be full stretching in order to measure the arm length. The
collected data are processed to give following results.

B. Evaluation Metrics

• Confusion Matrix: Each column in the confusion matrix in-
dicates the ground truth of an identity/gesture and each row
represents the classified identity/gesture in our system. Each
entry in the matrix represents the percentage of correctly
classified identify/gesture. Need to mention that, in order to
keep enough details, we used the ceiling function to preserve
the accuracy of the two decimal points. This may lead to
the sum of the rows of the matrix exceed 100%.

• Authentication/Recognition Accuracy: The percentage of the
human identity/gesture/features correctly recognized by our
system over the total samples.

• Receiver Operating Characteristic (ROC): ROC curve shows
the trade-off between the False Positive Rate and True
Positive Rate under different values of threshold. The more
the ROC curve hugs the point (0, 1), the better the perfor-
mance is. The minimum distance between the point (0, 1) of
ROC space and any point on ROC curve gives the optimal
threshold.

• Area Under The Curve (AUC): The area under the ROC
curve shows the performance of the learner, and represents
the probability that the predicted positive cases are ahead
of the negative ones. The larger the area is, the better
performance of the learner is.

• Equal Error Rate (EER): This is used to depict the Shoulder
Surfing attacker detection accuracy. It is the rate that the
spoofer has successfully been treated as a legitimate user.

C. Gesture Recognition Accuracy

1) Generally Accuracy: The recognition accuracy for
empty, walk, sit down, push, swing and wave is greater than
97%. Fig. 15, indicates that we can easily distinguish these
gestures with each other and other interference activities and
gestures. The control group only by accurately identifying
these kinds of gestures can we extract hidden features from
them and this is also the basis for our system to operate
correctly.

2) Impact of Location: To evaluate the impact of the
location to our recognition system, we mainly use the data
in different location (P1, P2, P3, P4) to verify. The gestures
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Fig. 19. The accuracy of arm length
extraction

Fig. 20. The accuracy of arm length
extraction vs. Location (P1-P4 stand
for different location).

in this experiment include swing, wave and push, which is
the candidate gestures of our authentication system. All the
gestures are performed when facing towards the transmitter
(D2 in Fig. 2). The results are summarized in Fig. 17, from
which we can see that the location only slightly changed the
recognition accuracy. When the location is distant from the
Tx-Rx pair, it indeed impact the recognition accuracy[8]. But
it could be mitigated by increasing the deployment density.

3) Impact of Direction: To evaluate the impact of the
facing direction to our recognition system, we mainly use
the data facing different location(D1, D2, D3) to verify. The
gestures in this experiment also include swing, wave and push,
all of which are performed in location P3. The results are
summarized in Fig. 18, from which we can see that the location
accuracy merely changed with the vary of direction. With the
summarize of the results from Fig. 17 and Fig. 18, the gestures
can be recognized effectively and stably. This is why we chose
these gestures as part of our system.

D. The limitations of activity recognition model

To find whether we can directly use the type of activities for
user identification, we conduct a simple experiment. Specifi-
cally, we collected the one third volunteers’ activity samples
for training and the others samples for the rest volunteers for
testing. Basically, if only the gesture recognition could have
variance in terms of identity, our experiments will results in
low recognition accuracy. However, as is illustrated in Fig.
16, the model for the first third volunteers can also have a
good performance on the remaining volunteers’ samples. What
is more, the average accuracy is near to 98%, which means
activity type is not sufficient for identification and we need
to use more detailed information such as interval, activity
distance for identification. The types of activities have a lower
degree of division on people identification.

E. Feature Extraction Accuracy

1) Arm length: The mean absolute error of the estimated
arm length is within 3cm. We measure the arm length error
size from all 10 volunteers which shown in Fig. 19. The mean
absolute error is within 3cm which means the arm length we
obtain from the Fresnel zone is relatively precise.

2) Angle/Direction: This variance of estimated angle is at
most 15◦±, while the average of the samples approximate the
real value.

The angle of swing or the push direction is derived through
the modeling and extraction algorithm based on Fresnel zone
based. Our experiment was conducted with 5 volunteers
standing at the location P1 and pushing towards the router,
which refers to the zero point of the plain and the push angle
of 45 degree. Totally 50 samples were collected from each
volunteer. The statistical results are shown in Fig. 8, indicating
that the average of the angle is correctly extracted by our
algorithm. However, the variance of the extracted results is still
observable. This variance is at most 15◦±, which is acceptable
for the deriving of the forearm length. But for identification,
it has to work with other features together. By combing the
results from Fig.8 and Fig. 19, we can also find an interesting
result that the shorter the arm is, the larger the estimation
variance of the arm length is.

3) Location Dependency: The location does not affect
the accuracy of arm length estimation within certain range.
The estimation of arm length is the base for estimation of
angle/direction. Thus, we use the result of the arm length to
depict the location dependency of the feature extraction. The
experiments are taken by 4 volunteers pushing their hand in
4 different locations in Fig.3. The results are shown in Fig.
20 with the average arm length from the samples. We can see
that the measured arm length vary in negligible amount (with
in 3 cm). Thus, our system perform very robust in terms of
location change for the feature extractions.

F. Authentication Accuracy

The EER values of 3 and 6 gestures are 14.5% and
9.5% respectively and the average authentication accuracy
approaches 92.9% among ten volunteers. In this experiment,
we require the volunteers to perform the motion sequences
of push-swing-wave and push-swing-swing-wave-wave-push
respectively. As shown in 21(a) and 21(b), in the first instance,
the mean accuracy is above 82% and in the next instance,
the mean accuracy approaches 92.9% among ten volunteers.
Hence, we find that the accuracy is improved largely when
the complexity of gesture sequence improved which conform
to the actual situation. Fig. 21(c) plots the accuracy without
the features of time distribution when the volunteers perform
the same complex gesture sequence. The accuracy drops to
89% indicates that time distributions for different people
vary greatly owing to the behavioral habit and this feature
is indispensable for our secure interaction mechanism. Also,
we use average authentication accuracy and ROC curve to
evaluate the performance of the authentication system. First,
we draw the ROC curves of three gestures and six gestures
as shown in Fig. 22. It can be seen from the figure that the
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Fig. 21. Authentication Result with different Gesture Combination
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Fig. 22. The ROC of with different
Gesture Combination
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Fig. 23. The three gestures ROC of
Shoulder surfing attack
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Fig. 24. The six gestures ROC of
Shoulder surfing attack
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Fig. 25. The impact of the scale of
dataset

AUC values of three actions and six actions are greater than
0.95 and the EER values of 3 and 6 gestures are 14.5% and
9.5% respectively, which indicates a good performance of our
certification system.

G. System Response Time Evaluation

We evaluate the response time of the system. The program
ran in a computer with i7 8700 CPU and 16G DDR3 RAM.
All the codes are in form of MATLAB code. The time con-
sumption of action recognition, hidden feature extraction and
SVM is shown in Table I. In the time consumption of whole
system, the time consumption of SVM is about 0.00085s,
which can be ignored given hidden feature extraction is very
time-consuming. The total time cost of the whole system is
2.08s. Worth to mention that, the above results were measured
when the program was coded in MATLAB. The system delay
could be greatly improved if all the code transformed into
C/C++. Specifically, several the experimental reports regarding
the execution efficiency of C/C++ and MATLAB, show that
the performance difference between recursive code C++ and
MATLAB is more than 500 times. In the normal running

TABLE I
SYSTEM RESPONSE TIME

feature extraction action recognition SVM Total Time(s)
1.71(±0.27) 0.37(±0.13) 0 2.08(±0.4)

mode, the loop statement of MATLAB is much slower than
that of C++ by about 4-10 times. Thus, if our system is
implemented with C++, the system response time is will
be 5-20 times less, which means 200ms or less with high
probability. In such response time delay, the simultaneous
interaction and authentication will be possible.

H. Shoulder Surfing Attack

The average EER of the attackers with 3 and 6 gestures
combinations is 15.4% and 7.3% respectively. To examine
the security of SiWi, we come up with a scenario that three
volunteers act as a legitimate user performing 3 and 6 gestures
combinations and the other 9 volunteers act as the attackers.
The attackers are allowed to watch the video as many times as
they wanted and then are requested to perform the sequence. In
Fig. 23 and 24, we can see that the average EER of two group
of gesture combinations are 15.4% and 7.3% respectively and
the ROC curve hugs the point (0,1) more, which indicates the
system has better performance on the spoofing detection.

I. The impact of dataset

SiWi attempts to use training dataset to construct a robust
model for resisting shoulder surfing attack, the scale of training
set is an important indicator of the generality of the model.
We treat the samples of first three volunteers as training set
and the others are test set. Meanwhile, we reduce the samples
in each activity to 7 to check the performance. From the Fig.
25, we find that the average accuracy maintains around 90%.
Hence, although we reduce samples, we can still get a state-
of-art performance.

VI. CONCLUSION

We proposed a gesture-based secure interaction scheme,
called SiWi, for the WiFi-enabled IoT environment, which
could resist shoulder surfing attack. It is mainly realized by the
robust recognition of the combination of the interactive ges-
tures and the hidden/imperceptible features related to the user’s
identity. From extensive data collection and empirical study,



12

we identified three elemental gestures (push, swing, wave),
which is easy to conduct and robust to recognize, and four
hidden/imperceptible features (Inter-gesture interval/Gesture
Duration, Distance/Arm Length, Swing Angle/Range and Push
Direction), which have strong correlation with people’s iden-
tity. We also proposed corresponding efficient and robust
algorithms for gesture recognition and feature extraction. Ex-
periments in real deployed systems were conducted with 10
volunteers, and the results showed that the authentication accu-
racy could reach 92.9% on average, while a small combination
of our proposed gestures is strong enough (in percentage of
97%) to resist the shoulder surfing attacks.
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