Theory and Network Applications of Dynamic
Bloom Filters

Deke Guo*, Jie Wuf, Honghui Chen*, and Xueshan Luo*

* Key laboratory of C*ISR Technology, School of Information System and Management
National University of Defense Technology, Changsha, Hu Nan, 410073, P. R. China
Email: aeronautic@126.com
t Department of Computer Science and Engineering
Florida Atlantic University, Boca Raton, FL. 33431, U.S.A.

Email: jie@cse.fau.edu

Abstract— A bloom filter is a simple, space-efficient, random-
ized data structure for concisely representing a static data set,
in order to support approximate membership queries. It has
great potential for distributed applications where systems need
to share information about what resources they have. The space
efficiency is achieved at the cost of a small probability of false
positive in membership queries. However, for many applications
the space savings and short locating time consistently outweigh
this drawback. In this paper, we introduce dynamic bloom
filters (DBF) to support concise representation and approximate
membership queries of dynamic sets, and study the false positive
probability and union algebra operations. We prove that DBF can
control the false positive probability at a low level by adjusting the
number of standard bloom filters used according to the actual size
of current dynamic set. The space complexity is also acceptable
if the actual size of dynamic set does not deviate too much
from the predefined threshold. Furthermore, we present multi-
dimension dynamic bloom filters (MDDBF) to support concise
representation and approximate membership queries of dynamic
sets in multiple attribute dimensions, and study the false positive
probability and union algebra operations through mathematic
analysis and experimentation. We also explore the optimization
approach and three network applications of bloom filters, namely
bloom joins, informed search, and global index implementation.
QOur simulation shows that informed search based on bloom filters
can obtain higher recall and success rate of query than the blind
search protocol.

Keywords: Bloom filters, informed search, peer-to-peer networks,
resource routing

I. INTRODUCTION

Information representation and query processing are two
core problems of many computer applications, and are often
associated with each other. Representation means organizing
information according to some format and mechanism, and
making information operable by the corresponding method.
Query processing means making decisions about whether an
element with a given attribute value belongs to a given set.

A bloom filter (BF) is a simple, space-efficient, randomized
data structure for representing a static set, in order to support

This work was conducted as part of Spatial Information Grid, supported by
the National High Technology Research and Development Program of China
under grants No. 2002AA104220, 2002AA131010, and 2003AA135110, and
supported in part by US NSF grants ANI 0073736, CCR 0329741, CNS
0422762, CNS 0434533, and EIA 0130806.

an approximate membership query [1]. A bloom filter for a
set S of n elements uses an array of m bits for a concise
representation. Then, we can check whether an element x
belongs to a given set according to its corresponding bloom
filter rather than directly on the set itself. The space efficiency
is achieved at the cost of a small probability of false positives
in membership queries. However, for many applications the
space savings and short locating time consistently outweigh
this drawback.

Bloom filters have been extensively used in database appli-
cations [2] and have received widespread attention in network-
ing literature recently. Bloom filters can be used to summarize
contents to aid global collaboration in peer-to-peer (P2P)
networks [3], [4], [5], to support probabilistic algorithms for
routing and locating resources [6], [7], [8], [9], and to share
web cache information [10]. In fact, bloom filters are a better
data structure and have great potential for representing objects
in memory. They have been used to summarize the contents
of stream data [11] and provide a probabilistic approach for
explicit state model checking of finite-state transition systems
[12].

The major variations of bloom filters include compressed
bloom filters [13], counter bloom filters [10], distance-sensitive
bloom filters [14], bloom filters with two hash functions
[15], space-code bloom filters [16], and spectral bloom filters
[17]. Compressed bloom filters can improve performance in
terms of bandwidth saving when bloom filters are passed
on as messages. Counter bloom filters deal mainly with the
element deletion operation of bloom filters. Distance-sensitive
bloom filters, using locality-sensitive hash functions, try to
answer queries of the form, “Is x close to an element of S7”.
Bloom filters with two hash functions use a standard technique
in hashing to simplify the implementation of bloom filters
significantly. Space-code bloom filters and spectral bloom
filters are approximate representation of a multiset, which
allows for querying, “How many occurrences of x are there in
set M ?”. Both bloom filters and their variations are suitable
for representing static sets whose size can be estimated before
design and deployment.

Although the standard bloom filters and their variations have
found their applications in different fields, there are three main

obstacles listed below, together with our proposed solutions:

1) As the actual size of a data set increases, its correspond-
ing bloom filter should scale well in order to avoid
too much deviation between the actual false positive
probability and the predefined threshold. In order to
solve this problem, we introduce dynamic bloom filters
(DBF) to support concise representation and approxi-
mate membership queries of dynamic sets.

2) How to represent dynamic sets to support queries based
on multiple attributes? We propose multi-dimension
dynamic bloom filters (MDDBF) to support concise
representation and approximate membership queries of
dynamic set in multiple attribute dimensions.

3) How to implement an efficient and scalable informed
search protocol in unstructured P2P networks? We pro-
pose a framework of informed search based on bloom
filters, and evaluate the positive impact of bloom filter
through simulation.

The basic idea of dynamic bloom filters is to represent a
dynamic set with a dynamic s x m bit matrix that consists of
s standard bloom filters. We prove that DBF can control the
false positive probability at a low level if DBF dynamically
adjusts the number of standard bloom filters used according
to the actual number of elements that belong to the given set.
Furthermore, the space complexity is also acceptable if the
estimation of the maximum size of the dynamic set does not
deviate too much from the actual one. The most related work is
split bloom filters [18] which use a constant s xm bit matrix to
represent a set, where s is a constant and must be pre-defined
according to the estimation of the maximum value of set size.
However, split bloom filters waste too much storage space
and bandwidth before the actual size of the given set reaches
(m x In2)/k. Furthermore, a split bloom filter needs to be
reconstructed when the actual size of the given set exceeds the
estimation value. On the contrary, DBF naturally overcomes
these disadvantages.

The rest of this paper is organized as follows. Section II
surveys the theory of standard bloom filters and presents the
union and intersection algebra operations on them. Section III
studies the concise representation and approximate member-
ship queries of dynamic sets, and presents dynamic bloom
filters theory. Section IV studies the mechanism of dynamic
set concise representation and membership queries in multiple
attribute dimensions. Section V discusses the compression
mechanism and three network applications of DBF. Section
VI simulates the informed search protocol based on bloom
filters in unstructured P2P networks. Section VII concludes
this work and outlines some future work.

II. CONCISE REPRESENTATION AND MEMBERSHIP
QUERIES OF STATIC SET
A. Standard bloom filters

A bloom filter is a compact data structure for probabilistic
representation of a set in order to support membership queries.
A bloom filter for representing a set S = {s1, $2,...,8,} of

n elements is described by a vector of m bits, with all bits
initially set to 0. A bloom filter uses k independent hash
functions hy, ho, ..., by ranging over {1,...,m}. These hash
functions map each item in the universe to a random number
uniform over the range {1, ...,m} [19]. For each element z in
S, bits h;(z) are set to 1 for 1 < ¢ < k. To check whether
an element x belongs to S, one just needs to check whether
all the h;(x) bits are set to 1. If so, then x is a member
of S, although this could be wrong with some probability.
Otherwise, we assume that = is not a member of S. Hence, a
bloom filter may yield a false positive, for which it suggests
that an element z is in S even though it is not. Each false
positive is due to a filter collision, in which all bits indexed
previously were set to 1 by other elements [1].

The probability of a false positive for an element not in the
set can be calculated in a straightforward fashion, given our
assumption that hash functions are perfectly random. Let p
be the probability that a random bit of the bloom filter is 0,
and let n,. be the number of elements that have been added to
the bloom filters, then p = (1 — 1/m)"** a1 — e=nrxk/m,
as n, X k bits are randomly selected, with probability 1/m in
the process of adding each element. Let ng be the threshold of
elements that the standard bloom filter can contain subjected
to constraints m, k, and the predefined threshold of false
positive probability. We use fB¥(m, k, ng,n,.) to denote the
false positive probability caused by the (n, + 1)th insertion,
and we have the following expression

BE(m,k,ng,ny) = (1 —p)F = (1 — e Fxme/myk (1)

For a set X, when n,. reaches ng, the false positive probabil-
ity exceeds fB¥(m, k,ng,ng). The false positive probability
is also called the error rate of the given bloom filter in this
paper. Expression (1) allows, for example, computing the
minimal memory requirements (filter size) and number of hash
functions given the error rate and number of elements in the
set. From the work in [1], we know that fB¥ (m, k, ng,ng) is
minimized exactly when k = (m/ng) In 2.

B. Algebra operations on bloom filters

A set X can be presented as a bloom filter through a
mapping relation: X — BF(X). We use two bloom filters
BF(A) and BF(B) as the concise representation of two
different given sets A and B respectively.

Definition 1: (Union of bloom filters) Assume that BF'(A)
and BF(B) use the same m and hash functions. Then, the
union of BF(A) and BF(B), denoted as BF(C), can be
represented by a logical or operation between their bit vectors.

Theorem 1: If BF(A U B), BF(A) and BF(B) use the
same m and hash functions, then BF(AU B) = BF(A) U
BF(B).

Proof: Assume that the number of hash functions is k.
We choose an element y from set AU B randomly, and y must
also belong to set A or B. Bits hash;(y) of BF(AU B) are
set to 1 for 1 < ¢ < k, and at the same time, bits hash;(y)
of BF(A) or BF(B) are set to 1, thus BF(A)[hash;(y)] U
BF(B)lhash;(y)] are also set to 1. On the other hand, we

chose an element x from set A or B randomly, and = also
belong to set AU B. Bits hash;(z) of BF(A) U BF(B) are
set to 1 for 1 < ¢ < k, and at the same time bits hash;(x)
of BF(A U B) are also set to 1. Thus, BF(A U B)[i] =
BF(A)[i]U BF(B)]i] for 1 <4 < m. Theorem 1 is proved
to be true.]

Theorem 2: The false positive probability of BF(AUB) is
not less than that of BF(A) and BF(B). At the same time,
the false positive probability of BF(A) U BF(B) is also not
less than that of BF(A) and BF(B).

Proof: Assume that the sizes of sets A, B, and AU B
are ng, np, and ngyy respectively. According to (1), we can
calculate the false positive probability for BF(A), BF(B),
and BF(AU B).

In fact, given the same k£ and m, (1) is a monotonically in-
creasing function of n,.. It is true that |AUB| > max(| 4|, |B|),
thus n,p is not less than n, and n;. We could infer that the
false positive probability of BF(A U B) is not less than that
of BF(A) and BF(B). According to Theorem 1, we know
that BF(AU B) = BF(A) U BF(B), thus the false positive
probability of BF(A)UBF(B) is also not less than the value
of BF(A) and BF(B). Theorem 2 is proved to be true. W

Definition 2: (Intersection of bloom filters) Assume that
BF(A) and BF(B) use the same m and hash functions. Then,
the intersection BF'(A) and BF(B), denoted as BF(C'), can
be represented by a logical and operation between their bit
vectors.

Theorem 3: If BF(AN B), BF(A), and BF(B) use the
same m and hash functions, then BF(AN B) = BF(A) N
BF(B) with probability (1 — 1/m) *x|A=ANB|x|B-AnB|

Proof: Assume the number of hash functions is k. We can
derive (2) according to Definition 1, Theorem 1, and Definition
2

BF(A)NBF(B) =
(BF(A—ANB)NBF(B—ANB))U
BF(ANB). 2)

In fact, the elements of set A N B contribute the same bits
whose value is 1 to bloom filters BF(AN B) and BF(A) N
BF(B). According to (2), it is easy to derive that BF(A) N
BF(B) equals to BF(AN B) only if BF(A— AN B)N
BF(B— AN B) =0.

For any element z € (B — A N B), the probability that
bits hashi(z), ..., hashg(z) of BF(A— AN B) are 0 should
be p¥ = (1 — 1/m)* *I4=ANBI| Thus, we can infer that the
probability that BF(B— ANB)NBF(A— ANDB) = 0 should
be (1 — 1/m)k xIA=ANBIx|B=ANB| Theorem 3 is proved to
be true.]

III. CONCISE REPRESENTATION AND MEMBERSHIP
QUERIES OF DYNAMIC SET

Standard bloom filters and their variations are practical
approaches to representing a static set. Given the predefined
threshold ng of the static set and the threshold of false positive
probability, it is easy to calculate the most suitable number of

hash functions k and the size of bloom filters m. However,
for many applications, especially large scale and distributed
systems, it is impractical to foresee the threshold size for
local data set hosted by every node. Thus, it is possible
that the actual size of the set will exceed ng gradually after
deployment. As a result, the actual false positive probability
will exceed its threshold, and the bloom filters will become
unusable under such a scenario.

Standard bloom filters do not take dynamic sets into ac-
count. Split bloom filters partially enhance standard bloom
filters by using a s x m bit matrix instead of an m-bit vector
to represent a dynamic set. The basic idea of spit bloom filters
is to allocate more memory space and enhance the capacity
of filters before their implementation and deployment. In
practice, split bloom filters also need to estimate the threshold
of the size of actual data set, and will encounter the same
problem faced by standard bloom filters. In other words, split
bloom filters also cannot support dynamic sets, and may waste
storage space and bandwidth before the actual size of the set
reaches (m x In2)/k.

We will propose dynamic bloom filters (DBF) to represent
dynamic sets. Dynamic bloom filters can enhance their ca-
pacity on demand, and control the false positive probability
within an acceptable range as the size of a given dynamic set
increases continuously after its deployment.

A. Dynamic bloom filters

The basic idea is to represent a dynamic set A with a
dynamic s X m bit matrix that consists of s standard bloom
filters. The initial value of s is one. In order to construct a DBF,
we must be sure that m and the threshold of the false positive
probability for those standard bloom filters are set according
to the application need and experiment results. Furthermore,
we need to properly calculate the number of hash functions &
used and the maximum number of elements ny contained by
those standard bloom filters according to (1).

Now, we create a DBF initialized by one standard bloom
filter using the above parameters, and discuss two major
operations supported by DBF. First, we present the algorithm
for inserting an element into a DBF. After an event chain
of element insertions, we can represent a dynamic set as a
dynamic bloom filter. Second, we propose the membership
queries algorithm based on the DBF rather than the dynamic
set itself.

Before inserting an element into the given DBF, according
to Algorithm 1, it needs to discover an active standard bloom
filter from given DBF. If there is no active standard bloom
filter, Algorithm 1 must create a new standard bloom filter as
the active bloom filter, then adds 1 to s. After obtaining an
active bloom filter, insert the element into the current active
bloom filter based on the method described in Section II, then
add 1 to the value of n, for the active bloom filter. In fact,
only the last bloom filter of a DBF is always active, others
are inactive.

Given a dynamic set A, it is convenient to obtain the
corresponding DBF according to Algorithm 1. Thus, one can

Algorithm 1 Insert (element)
Require: element is not null
1. ActiveBF «— GetActiveStandardBF ()
2: if ActiveBF is null then
3: ActiveBF «— CreateStandardBF (m, k)
4: Add ActiveBF to this dynamic bloom filter.
5. s+—s+1
6
7
8

: fori=1to k do
Active BF [hash;(element)] — 1
. ActiveBF.n, «— ActiveBF.n, +1
GetActiveStandardBF()
1: for j =1to s do
2. if StandardBF;.n, < ng then
3: Return Standard BF}
4: Return null

check whether an element is a member of set A according to
Algorithm 2 below with the element as an input parameter.

Algorithm 2 Query (element)

Require: element is not null
1: fori=1to s do

2 counter «— 0

33 for j=1to k do

4 if StandardBF;[hash;(element)] = 0 then

5: break

6

7

8

else
counter < counter + 1
if counter = k then
9: Return true
10: Return false

The major processes of Algorithm 2 are the following: 1)
For 1 < j < k, check whether there is a standard bloom filter
of DBE, and all the hash;(element) bits of it are set to 1;
2) If the result is false, we can be sure that element ¢ A;
3) Otherwise, we believe that element € A with some false
positive probability.

The average time complexity of adding an element to
a standard and dynamic bloom filter is the same O(k),
where k is the number of hash functions used by them. The
average time complexity of membership queries for standard
and dynamic bloom filters are O(k) and O(k x (S + 1)/2)
respectively, where s is the number of standard bloom filters
used by this dynamic bloom filter.

B. False positive probability of dynamic bloom filters

Given the standard bloom filter with parameters m, k,
ng, and error rate, one dynamic set A could be represented
by a dynamic bloom filter using the standard bloom filter
mentioned above. In other words, there is a mapping relation
A — DBF(A). The corresponding dynamic bloom filter uses
s = [n,/ng] standard bloom filters. Then, one can check
whether an element x is a member of the dynamic set A

according to Algorithm 2, if the result is true, we believe
x € A even though it may be false with a certain probability.
Hence, dynamic bloom filters also may yield a false positive,
and each false positive is due to a filter collision, in which all
the bits indexed by k independent hash functions of any one
standard bloom filter of DBF'(A) are set to 1 by the insertion
operation by other elements previously.

If n,. < ng, DBF(A) is just a standard bloom filter, and
the false positive probability of DBF(A) can be calculated
according to (1). Otherwise, the false positive probability of
DBF(A) can be calculated in a straightforward way. For
1 <17 < s —1, the false positive probability of those standard
bloom filters coming from DBF(A) is fB¥(m,k,ng,no),
and the false positive probability of the last standard bloom
filter coming from DBF(A) is fB¥(m,k,ng,i), with i =
ny — ng X |[n./no|. Then, the probability that not all the
bits indexed by k independent hash functions of all stan-
dard bloom filters belonged to DBF(A) set to 1 is (1 —

7’25@7”0)”0)[”"/”“ (1- n]i,l/z,nmi)' Thus, the probability of all
the bits indexed by k independent hash functions of at least
one standard bloom filter of DBF(A) being set to 1 can be
denoted as

757%11207”7‘ = 1= (1 - ﬁiynomo)mr/nd (1 B 7125‘67”0-,73)
- 1-— (1 _ (1 _ e—kxno/m)k)mr/noj

(1 _ (1 _ e—kx(nr—noxI_’!LT/TLQJ)/’HL)k). (3)

In the following discussion, we will use the dynamic set A
to represent both standard bloom filters and dynamic bloom
filters, and observe the change trend of fPB¥ (m, k,ng,n,)
and fBF(m,k,ng,n,) as n, increases continuously.

For 1 < n, < ng, false positive probability of DBF'(A)
equals to the corresponding value of BF'(A), and both are less
than or equal to fBF (m,k,ng,no). In this case, a dynamic
bloom filter degenerates as a standard one, and (3) also
degenerates as (1). For n, > ny, the false positive probability
of DBF(A) increases gradually with n,.. The false positive
probability of BF'(A) increases quickly to a high value, and
then, slowly increase to almost one. For example, when n,
reaches 10 x ng, fB¥(m, k,ng, 10 x ng) becomes about one
hundred times of f2 (m, k,ng,no), but fPBE (m, k,ng, 10x
ng) is about ten times of f2(m, k,ng,ng). We can draw a
conclusion from (1), (3), and Figure 1 that dynamic bloom
filters scale better than standard bloom filters after the actual
size n, of dynamic set exceeds the predefined threshold nyg.

Furthermore, we use multiple different dynamic and stan-
dard bloom filters to represent the same dynamic set A, and
study the trend of fB¥ (m, k,ng,n,.)/fPPE (m, k,ng,n,) as
n, increases continuously. In the experiment, we choose four
kinds of DBF using four different standard bloom filters with
different m. For all four standard bloom filters, the number
of hash functions used is 7, and the predefined threshold of
false positive probability is 0.0098. The experiment results
are illustrated in Figure 2, and it is obvious that all the four
curves follow a similar trend. The ratio of the false positive
probability of standard bloom filters (noted as BF,, o) to

0.9r- -

081 ,*~ [~ Dynamic Bloom Filter
. - - _Standard Bloom Filter

0.7 ‘

oef ,

osf /

o4t ,

0.3

‘ n=133, false positive probability is
‘. 0.0098.

False positive probability of bloom filter

0.2

0.1

"
o 200 400 600 800 1000 1200 1400
Acutal size of a dynamic set

Fig. 1. False positive probability of dynamic and standard bloom filters are
functions of the actual size n, of a dynamic set, where m = 1280, k = 7,
and ng = 133.

that of DBF (noted as DBF,.,.) is a function of the actual
size n, of dynamic set A. For 1 < n, < ng, the ratio
equals to 1. For n, > ng, the ratio quickly increases to
the peak because of the slow increase in DBF,,,.,- and
the quick increase in BF,, o, and then decreases slowly
because of the slow increase in DBF,,.., and the very slow
increase in BF,,,.. After the actual size n, of dynamic
set A exceeds ng, the dynamic bloom filter with different
parameter m scale better than corresponding standard one.
In fact, the value of m has no effect on the curve trend of
FBE(m, k,ng,n,.)/ fPBE (m, k,ng,ny).

fBE(m,k,ng,n,) and fPBE(m, k,ng,n,) are
monotonically decreasing functions of m according to
(1) and (3). In other words, fPBF(mqy,k,ng,n.) <
fPBE(mg, k,ng,n,) for my > ma, this means that the
curve of fPBF(my, k,ng,n,) is always lower than the curve
of fPBF(my, k ng,n,) as n, increases. In fact, so does
fBE(m, k,ng,n,). We also conduct experiments to confirm
this conclusion, and illustrate the result in Figure 3. Thus, we
can conclude that both standard and dynamic bloom filters
which possess larger m can represent larger set and control
the false positive probability at an acceptable level.

C. Algebra operations on dynamic bloom filters

We use two dynamic bloom filters DBF(A) and DBF(B)
as the concise representation of two given different dynamic
sets A and B.

Definition 3: (Union of dynamic bloom filters) Given the
same standard bloom filter, we assume that DBF(A) and
DBF(B) use s; x m and ss X m bit matrix, respectively.
DBF(A) U DBF(B) could result in a (s1 + s2) x m bit
matrix. The ith line vector equals to the ith line vector of
DBF(A) for 1 < i < sl, and the (i — s1) th line vector of
DBF(B) for s; <i < (s1 4+ s2).

Theorem 4: The false positive probability of DBF(A) U
DBF(B) is larger than that of DBF(A) and DBF(B).

Proof: Assume that DBF(A) U DBF(B), DBF(A),
and DBF(B) use the same standard bloom filter with para-
meters m, k, ng, and the actual size of dynamic set A and B
are n, and n; respectively. The false positive probability of

e

The ratio of BFerror to the DBF rror

() 200 400 600 800 1000 1200
Actual size of a dynamic set

Fig. 2. The ratio of false positive probability of a standard bloom filter to
the value of a DBF is a function of the actual size n, of a dynamic set.

DBF(A)UDBF(B) is

rggioma—i—nb 1- (1 — Jm, k S0, no)(tna/nOJ+Lnb/n0J) X
(1—(1— e~ kx(na—mnox Lna/noJ)/m)k) %
(1 _ (1 _ —kx(nb nox_nb/noj)/m)) (4)

The false positive probability of DBF(A) and DBF(B)
are fPBE (m, k,ng,n,) and fPBE (m, k,ng, ny) respectively.
In fact, given the same k, m, and ng, the value of (4)
minus fPBE (m, k,ng,n,) is larger than 0, and the value of
4) minus fPBF(m_ k,ng,ny) is also larger than 0. Thus,
we can easily derive that the false positive probability of
DBF(A) U DBF(B) is larger than that of DBF(A) and
DBF(B). []

Theorem 5: If the size of sets A and B is not zero and less
than ng, the false positive probability of DBF(A)UDBF(B)
is less than that value of BF(A) U BF(B).

Proof: The false positive probability of DBF(A) U
DBF(B) is denoted as fPBF(m,k,ng,n, + np), and that
of BF(A)U BF(B) is denoted as fBF(m, k,ng,n, + nyp).
Because the size of sets A and B is less than ng, (4) can be
simplified as (5). Let & = e #*"a/™ and y = e~ F*™ /™ we
can obtain (6) which denotes 2 (m, k,ng,n, + np) minus

fPBE(m, k,ng,ng + np) according to (1) and (5).
DBF _
mokno,natny —
Lo (1 (1 e X/ (1 (1= el 5
flz,y) =
(1—zy)* + (1 —2)(1—y)" -
(1-2)" =1y (6)
fla) = f(d) =
f@@a—d)+...+ 1 d)(a—d)" (k- 1)+
FOa—d)f /K, d<E<a (7
fle) = f(b) =
F@)e=b)+ ...+ fFHb) (e =) /(k
) (e —b)" /k' b<é<e ®)

Leta=1—a2y, b=(1-2)x(1—-y),c=1—u=, and
d=1-—y.Thus,b<c<a,b<d<abecause of 0 < x < 1

False positive probability of dynamic bloom filter

1000 1500 2000 2500
Actual size n_of a dynamic set

Fig. 3. False positive probability of four kinds of DBF are functions of the
actual size n, of a dynamic set, where k = 7, and the predefined threshold
of false positive probability of each DBF is 0.0098.

and 0 < y < 1. If ¢ < d, then we obtain formulas (6) and (7)
according to the Tailor formula. f(z) = 2*,0 < z < 1,is a
monotonically increasing function of z and has a continuous
k-rank derivative, and the ith derivative is a monotonically
increasing function for 1 < ¢ < k. It is obvious that a — b =
c—d,d < ¢ <a,b<d< a. Thus, each item of f(a) is larger
than the corresponding item of f(c), then (6) is larger than 0.
If ¢ > d, the result is the same. Theorem 5 is proved to be
true. |

On the other hand, we used MATLAB 6.5 to calculate the
result of fBF (m, k,ng,ng +np) minus fPBF (m, k,ng,ng +
ny), and the result is illustrated in Figure 4. We discover that
the false positive probability of DBF(A) U DBF(B) is also
less than that of BF(A) U BF(B), even though the size of
both A and B exceeds ny.

D. Performance analysis

We compare the space of the standard and dynamic bloom
filter used to represent the same dynamic set A with the same
false positive probability. Then, we compare the false positive
probability of dynamic and standard bloom filters, but we
allow a standard bloom filter to expand its size to s = [n,./ng]
instead of keeping the filter size as a constant.

First, we discuss the case where the ratio of actual size n,. to
predefined size ng is an integer. The false positive probability
of DBF can be simplified as (9) under this situation. Then, we
use a standard bloom filter to present this dynamic set, and
wish to obtain the same false positive probability. Let m; be
the actual size of a standard bloom filter, and x be the ratio of
actual size n,. to predefined size ng of dynamic set A. Finally,
we establish the relationship between (1) and (9), and obtain
the expression of the ratio of space used by a standard bloom
filter to space used by a dynamic bloom filter as (10).

DBF

m,k,ng,n. 1- (1 - (1 -
mi/z xm=—kXxng/(mxIn(l-31-(1-y)*)) (10)

We can draw the following conclusions according to (10)
and Figure 5. In order to obtain the same false positive
probability, standard and dynamic bloom filters use the same
bits to represent dynamic set A for n, < ng, and standard

67k><n0/m)k)n,./ng (9)

The false positive of BF(A)UBF(B)

3000
2500

2000
1500
1000

Actual size of dynamic set A Actual size of dynamic set B

Fig. 4. False positive probability of BF'(A) U BF(B) minus that of
DBF(A)U DBF(B) is a function of size n, of dynamic set A and ny of
set B, where m = 1280, k = 7, and ng = 133.

bloom filters always use fewer bits than dynamic bloom filter
for n, > ng. But, if the estimation of the maximum size of
dynamic set does not deviate too much (i.e., = is not too large),
then the size difference between standard and dynamic bloom
filters is small. Thus, choosing DBF to represent a dynamic
set will not cause much of a space complexity when compared
to a standard bloom filter.

Second, if a standard bloom filter can expand its bloom
filter size m to s x m (s = [n,/ng|) instead of keeping its
size as a constant as the dynamic set grows, false positive
probability of standard bloom filters should be calculated
according to (11). The false positive probability of DBF should
still be (3). It is necessary to compare fPBF (m, k, ng, n,.) and
FNBE(m, k,ng,n,) again under this situation, and we have

NBF

m,k,no,n, (11)

We used MATLAB 6.5 to compare (3) and (11), the
result is illustrated in Figure 6. We can draw the fol-
lowing conclusions from the result. For n, < ng,
fPBE(m, k,ng,n,) = fNBF(m, k,ng,n,), and both are not
more than fBF(m, k,ng,ng). For n, > ng, false positive
probability of DBF will increase continuously with the actual
size of the given dynamic set, and that of updated standard
bloom filters will fluctuate between i x ng and (i + 1) x
ng, where i is any non-negative integer. Let n, < ng
be any non-negative integer, and k£ be a positive integer,
thus fVBE(m, k,ng,n, + (k — 1) x ng) is not larger than
INBE(m k,ng,ne + k x ng). In fact, fNBE(m,k, ng,n,)
increases as n,- increases in the whole range, but the increase
rate is slower than that of fPB¥ (m, k ng,n,).

The filter size m and the number of hash functions & must
be consistent among all nodes, only this can guarantee the
stability and inter-operability of applications in a distributed
environment. If one uses standard bloom filters to represent
dynamic sets among all nodes, once the size of a dynamic set
exceeds its predefined threshold it needs to readjust parameters
of corresponding bloom filters locally and performs a consis-
tency operation through the whole network. The consistency
operation includes propagating the new parameters of bloom
filters to other peers, reconstructing the bloom filter again at

— (1 _ e—kxnr/(mx]'nr/ng'\))k

Ratio of standard bloom filter size to
dynamic bloom filter size

o 5 10 15 20 25
Ratio of actual size n, to designed size n of a given dynamic set

Fig. 5. The ratio of size of a standard bloom filter to that of a DBF is a
function of a non-negative integer, which denotes the ratio of n, to ng. The
experiment condition is the same as that in Figure 4.

each node, and gossiping each new bloom filter to other nodes.
However, the overhead of consistency operation is often huge.
On the other hand, it is reasonable that few nodes own large
amounts of data while the most of the nodes own a small
amount of data, thus it is unsuitable to use standard bloom
filters with the same configuration to represent these data sets
among all nodes.

Dynamic bloom filters are suitable when dealing with the
above problem. Initially, one can represent a dynamic set for
each node as a DBF using an appropriate number of standard
bloom filters with same configuration. Once any dynamic
set exceeds its threshold, the DBF just needs to adjust the
number of standard bloom filters used without performing the
consistency operation among all nodes. Furthermore, DBF can
also control the false positive probability at a low level, and
the space complexity is also acceptable if the estimation of the
maximum size of the dynamic set does not deviate too much
according to Figure 5.

IV. CONCISE REPRESENTATION AND MEMBERSHIP
QUERIES OF MULTI-ATTRIBUTE DYNAMIC SET

A. Multi-dimension dynamic bloom filters

Standard and dynamic bloom filters just focus on represent-
ing sets consisted of single attribute objects, and supporting
approximate membership queries based on a single attribute.
In reality, it is common to describe and represent a given object
using multiple attributes in many applications. In order to
deal with this situation, we propose multi-dimension standard
bloom filters (MDBF) and multi-dimension dynamic bloom
filters (MDDBF). The basic idea is to represent sets consisted
of multi-attribute objects from each attribute dimension using
standard and dynamic bloom filters. In the following discus-
sion, we first explain the details of adding objects with multi-
attribute to a MDDBF in Algorithm 3. Then add all the objects
of a dynamic set A to the MDDBF according to Algorithm 3.

In order to represent multi-dimension information of a given
object, we first obtain the DBF for each attribute dimension
according to the attribute name from current MDDBE. Then,
add the value of each attribute to the corresponding DBF by

= = Dynamic bloom filter ||
— Standard bloom filter

o

°

]
T
~
L

o
o
s
T
.
L

The false positive probability
o o
g 8
—
'
'
\
.
L

°
9
]
T
]
[l
v
L

0.01 - 1

o 200 400 600 800 1000 1200 1400
Actual size n,_of a dynamic set.

Fig. 6. False positive probability of dynamic and standard bloom filters
are functions of the actual size of a dynamic set. Standard bloom filters can
expand the filter size m to [n,/ng| xm. m = 1280, k = 7, and ng = 133.

Algorithm 3 Insert(element)
Require: element with multi-attribute is not null
1: Get all attribute names of the element, and store them to
a string array attributes
2: for ¢ = 0 to attributes.length do
DynamicDBF «— GetDynamicDBF (attributes]i])
if DynamicDBF is null then
DynamicDBF — CreateDynamicDBF (m, k)
SetDynamicBF(attribute[i], DynamicDBF)
DynamicDBF.Insert(element.GetValue(attribute[i]))

N AW

calling Algorithm 1. It is necessary to initialize every DBF for
each attribute dimension before processing the first addition.

Once dynamic set A has been represented as an MDDBF,
we check whether an element is a member of set A according
to the MDDBEF instead of the set A itself. We present the
details of the algorithm of supporting membership queries
based on the value of multi-attribute in Algorithm 4.

Algorithm 4 Query(element)
Require: element with multi-attribute is not null
1: Get all attribute names of element, and store them to a
string array attributes
2: for ¢ = 0 to attributes.length do
3: DynamicDBF — GetDynamicDBF (attributesi])
4: if DynamicDBF.Query(element.GetValue(attributes([i]))
is false then
5: Return false
6: Return true

The major process of Algorithm 4 is as follows. First, find
the corresponding DBF for each attribute dimension of an
element. Second, check whether the value of element for
each attribute dimension is presented by corresponding DBF
by invoking Algorithm 2. If the responses for all attribute
dimensions are true, one can assume that element € A with
some false positive probability. Otherwise, one can be sure
that element ¢ A.

The time complexity of adding an element to MDDBF is
O(l x k), where [denotes the number of attribute dimensions

P — MDDBF
e - = MDBF

o o
N
T T

~
I I

°

o
T
I

False positive probability of bloom filters
o o o
© 3
T —
| L

o
v
T
I

o
T
I

)

T
2000 2500

°

500 1000 1500
Actual size n, of the given dynamic set

Fig. 7. The false positive probability of MDBF and MDDBF are functions
of the actual size n, of a given dynamic set, where m = 1280, k = 7, and
no = 133. The number of the attribute dimensions is 2.

used to describe the full information of a given object, and &
denotes the number of hash functions used by dynamic bloom
filters. The average time complexity of querying an object
from a given MDDBF based on multi-attribute is O(l x k X
(s +1)/2), where s is the number of standard bloom filters
used by the DBF for each attribute dimension. Algorithms of
multi-attribute set representation and membership queries are
similar between MDBF and MDDBEF, so these algorithms for
MDBEF are omitted here.

B. False positive probability of multi-dimension bloom filters

Given the standard bloom filter with parameters m, k,
ng, and predefined threshold of false positive probability, the
dynamic set A consisting of objects with multi-attribute could
be presented as a MDDBF using | DBFs through a mapping
relation: A — MDDBF(A), where [is the number of
attribute dimensions for set A.

If we denote the actual size of A as n,., the corresponding
DBF for each attribute dimension should use s = [n,/ng]
standard bloom filters to represent it. False positive of MDDBF
for an element not in the set A means that there are filter
collisions in each DBF for each attribute dimension, and the
false positive probability of each DBF can be calculated by
(3). Thus the false positive probability of a given MDDBF can
be denoted as

MDDBF _ TT! DBF; DBF 1
=11, 7)

m,k,no,n-

(12)

m,k,no,n., m,k,ng, e (

Indeed, the dynamic set A also can be represented by
a MDBEF using [standard bloom filters through a mapping
relation: A — M DBF(A). The false positive of MDBF for
an element not in set A means that there are filter collisions
of BF for each attribute dimension, and the false positive
probability of BF can be calculated according to (1) mentioned
above. Thus, the false positive probability of a given MDBF
can be denoted as

MDBF _ TT' FBE: —
m,k,ng,n.,l T i=1 m,k,no,ne

For 1 < n, < ng, MDDBF becomes MDBF, and (12)
degenerates as (13). It implies that the MDBF and MDDBF
representation of a set whose actual size does not exceed the

BF l
m,k,no,n,.)

13)

05

ity of MDBF(A) U MDBF(B)
DDBF(A) U MDDBF(B)

3000
2500
2000
1500
1000
500

Actual size of dynamic setB © 0 Actual size of dynamic set A

Fig. 8. False positive probability of MDBF(A)UMDBEF(B) minus that of
MDDBF(A)UMDDBEF(B) is a function of the size of set A and B where
m = 1280, k = 7, ng = 133, and the attribute dimension of set A and B
are 3.

largest capacity is identical. For n, > ng, the false positive
probability of MDBEF is larger than that of MDDBF, we also
illustrate this fact in Figure 7.

The false positive probability of MDDBEF increases slowly
with n,, but the corresponding value of MDBF quickly
increases to a high value, and then, slowly increases to almost
one. We can infer from (12), (13), and Figure 7 that MDDBF
scales better than MDBF when the actual set size exceeds the
predefined value.

C. Algebra operations on multi-dimension bloom filters

We assume that there are random dynamic sets A and B
with identical attribute dimensions.

Definition 4: (Union of multi-dimension dynamic bloom
filters) Assume that sets A and B are represented as MD-
DBF(A) and MDDBF(B) respectively. MDDBF(A)U MD-
DBF(B) result in a new MDDBF(C), and the DBF of MD-
DBF(C) for each attribute dimension equals to the union result
on DBF of MDDBF(A) and MDDBF(B) for the same attribute
dimension. The detailed union operation on DBF has been
presented in Section III.

Theorem 6: The false positive probability of MDDBF(A)U
MDDBEF(B) is larger than that of MDDBF(A) and MD-
DBF(B).

Proof: We use MDDBF(C) to denote the result of
MDDBF(A)U MDDBF(B). For 1 < ¢ < [, according to the
definition of union operation on MDDBF, we can conclude that
fgfiffojnr(C) = fflfiffo,m (A)Uffz,}if:jo n, (B). Furthermore,
it is easy to see that fgﬁii (AU fmiffoynr(B) is larger
than PP (A) and fb £

m,k,no,ny m,k,ng,ny

4. We can infer that gﬁﬁo’nr(C) is larger than g,lg,l;o,n,- (A)
and fDPE (B). Theorem 6 is proved to be true. []

Definition 5: (Union of multi-dimension bloom filters) If
set A and B are represented as MDBF(A) and MDBF(B),
the union of MDBF(A) and MDBF(B) will result in a new
MDBF(C). The standard bloom filter of MDBF(C) for each
attribute dimension equals to the union result on standard
bloom filters of MDBF(A) and MDBF(B) for the same at-

tribute dimension. The union operation on standard bloom

(B) according to Theorem

filters has been presented in Section II.

Theorem 7: If the size of sets A and B is not zero
and less than ng, then the false positive probability of
MDDBF(A)UMDDBF(B) is less than that of MDBF(A)U
MDBEF(B).

Proof: We use MDDBF(C) and MDBF(C) to denote the
result of MDDBF(A)UMDDBF(B), MDBF(A)UMDBF(B).
Then the false positive probability of MDDBF(C) and
MDBF(C) can be calculated according to (12) and (13) re-
spectively. According to the definition of union operation on
MDDBF and MDBEF, for 1 < ¢ <[, we have

DBF; DBF; DBF;
fm,k,ng,nr (C) = fm,k,ng,nr (A) U fm,k,no,nr (B>
fm,k,ng,nr(c) - fm,k,ng,nr(A) U fm,k,no,nr <B)

If the size of both sets A and B is not zero and less than
ng, fﬁfii"o,nr(o) < fgii,nmm(C) according to Theorem 5
for 1 < 4 < I. Therefore, fMPDBF () < T]x[kDfanr().

m,k,no,n-
Theorem 7 is proved to be true. |

In fact, fR57 (C) < fE0i (C)for 1 < i <1
according to Theorem 5 and Fig{lré 4, even when both A
and B are larger than ng. Thus, we can infer that the false
positive probability of MDDBF(A)UMDDBF(B) is less than
that of MDBF(A)UMDBF(B) for random sets A and B. We
also conducted an experiment using MATLAB 6.5 to validate

Theorem 7, and illustrate the results in Figure 8.

V. OPTIMIZATION AND APPLICATIONS OF DYNAMIC
BLOOM FILTERS

A. Compressed multi-dimension dynamic bloom filters

Some applications that use bloom filters need to commu-
nicate these filters across the network. In this case, besides
the three performance metrics we have seen so far: (1) the
computational overhead to lookup a value (related to the
number of the hash functions used), (2) the size of the filter
in memory, and (3) the error rate, a fourth metric can be
used: the size of the message used to transmit the filter
across the network. The compressed bloom filters might save
significant bandwidth at the cost of larger uncompressed filters
and some additional computation to compress and decompress
the filter sent across the network. In the idealized setting, using
compression always reduces the false positive probability by
adopting larger bloom filter size and less number of hash
functions than standard bloom filters. We do not detail here all
theoretical and practical issues about compressed bloom filters
analyzed in [13].

DBF uses standard bloom filters as foundation. It is rea-
sonable to compress DBF by using compressed bloom filters
instead of standard bloom filters. Thus, compressed DBF
can reduce transmission size and false positive probability of
original DBF at the cost of higher memory requirements and
additional computation at each node. On the other hand, it is
reasonable to compress MDDBF by using compressed DBF
instead of original DBF. Compressed MDDBF can reduce
transmission size and false positive probability at the cost of
higher memory requirements and additional computation at
each node.

B. Applications of dynamic bloom filters

Bloom filters have a great potential for distributed protocols
where systems need to share information about what data they
have. A survey of network applications of bloom filters has
been presented in [19]. Moreover, bloom filters as a better data
structure has great potential for representing objects in mem-
ory [11], [12]. DBF is also suitable for various applications
mentioned in those papers, and has some better characteristics
than standard bloom filters.

In distributed applications, some peers own large amount of
data while most of the nodes own a small amount of data. If
we set relevant parameters of standard bloom filters according
to the largest amount of data, it would result in huge waste of
space and bandwidth. By adjusting the number of standard
bloom filters used according to the actual number of data
at each node, DBF can overcome this problem. Furthermore,
DBF can tolerate the data increase without reconstructing a
new bloom filter at each node. If a distributed application
desires to distribute DBF of each peer among part of or
all other peers, it also needs to keep the consistency among
replications for each DBF. In reality, the data insertion just
affects the active BF of DBF, and for keeping consistency it
is enough to gossip the active BF instead of the whole DBF.

1) Bloom joins: Bloom joins [20], [21] is a method for
performing a fast join between two distributed data sets R;
and R, based on a attribute a: R; in site 1 and R, in site
2. The bloom joins includes the following steps. First, site
1 represents Ry as a BF(R,) in the attribute dimension a
and sends it to site 2. Second, site 2 sends tuples of Ro
with a match in BF(R,) to site 1, noted as Rjs. Third,
site 1 performs a join operation between R; and R;s, and
produces the final result. The first transmission only sends a
summarization of a projection of the tuples, and the second
transmission usually contains a small fraction of the tuples.
So this method is economical in network usage.

DBF is also suitable to perform single attribute distributed
bloom joins between data sets as the number of tuples in-
creases. Furthermore, MDDBF can be used to perform multi-
attribute distributed bloom joins between data sets as the
number of tuples increases. In the following, we will give
an example.

SELECT R.a, R.b, R.c, S.d, S.e FROM R, S

WHERE R.a = S.a and R.b=S.b

First, Site 1 represents data sets R as a BF(R,) in the
attribute dimensions a and b, and sends it to site 2. Second,
site 2 sends tuples of data set S with a match in BF (R,)
to site 1, denoted as R, . Third, at site 1, performs a join
operation between I? and R, ,, and produces the final result.

2) Informed routing: The searching strategy in unstructured
P2P systems is either blind search or informed search [22]. In
a blind search such as iterative deepening [23] and random
walker [24], no node has information about the location of
the desired data. In an informed search [25], [26], each node
keeps some information about the data location.

Bloom filters are an alternative method to implement
informed resource routing for distributed applications, and

many literatures have recently presented different approaches
to utilize bloom filters for different scenarios [6], [7], [8],
[9], [27]. The common assumption in those literatures is to
represent local resource using bloom filters and gossip it to
other peers according to different control mechanisms. Thus,
each peer can possess individual bloom filters coming from
related peers, then re-construct them according to the distance
and/or direction between the local peer and other peers, and
obtain a set of union results of individual bloom filters at each
relative distance and/or relative direction.

A dynamic bloom filter is still suitable to support informed
routing, and has more advantages than the standard one as the
resource at each peer increases. Furthermore, a dynamic bloom
filter is more suitable to support the necessary union operation
than the standard one according to Theorem 5. As mentioned
above, dynamic bloom filters, standard bloom filters, and
their variations just represent objects and support approximate
membership queries in a single attribute dimension. On the
other hand, it often requires to route multi-attribute queries in
reality. Both MDDBF and MDBF can satisfy this need. The
former has the advantage over the latter as the resource at
each peer increases, and supports the union operation better
than the latter according to Theorem 7. Thus, DBF and its
variations are better alternatives than standard bloom filters to
implement informed routing in some scenarios.

3) Implementation of global index: We will refer to the
globally replicated index as the global index, while the more
detailed index that describes only the resources hosted locally
by a peer will be denoted as the local index. Global index can
be implemented in a number of ways. We define bloom filters
in such a way that each peer summarizes the set of terms in its
local index as a bloom filter. The cost of replicating the global
index can be reduced by simply decreasing the gossiping rate;
updating the global index with a new bloom filter requires
constant time, regardless of the number of changes introduced.
Furthermore, bloom filters can be compressed to achieve a sin-
gle bit per word average ratio. Memory-constrained peers can
also independently trade accuracy for storage by combining
several filters into one.

When the global index has been established and propagated
to the whole network, each peer uses a copy of global index
hosted at local storage to find the desired peers and appropriate
resources within one hop. In order to support queries that
contain a set of queries based on different attribute dimensions,
we can adopt MDDBF to summarize local content index and
construct global content index by a periodic gossiping update
operation.

VI. SIMULATION

In this section, we present a simulation-based evaluation
of the informed search protocol and compare its performance
with other blind search protocols.

We use PeerSim to design and implement our experimenta-
tions. PeerSim is delivered by the BISON project [28], and is
an open source, Java based, P2P simulation framework aimed
to develop and test any kind of P2P algorithm in a dynamic

environment. It supports both cycle based and event based
simulation. Our experiment is cycle based, which means that
the simulation runs in a sequential order and in each cycle
each protocol can run its behavior independently. It is easy
for PeerSim to simulate more than one protocol in the same
running context, and to compare many performance metrices
between different protocols.

A. Informed search protocol based on bloom filters

Basically, the informed search protocol is a forward-based
routing protocol. It has two major components, the construc-
tion and maintenance of a routing table, and a query forward
mechanism using the routing table. In our informed protocol,
the routing table is a set of dynamic bloom filters or multi-
dimension dynamic bloom filters, each corresponding to a
link. When a peer needs to forward a query, bloom filters
corresponding to each link will be scanned and desired links
will be filtered out as the forwarding directions.

In order to construct a routing table, Kumar et al have
presented a novel method in [29]. Each peer first constructs
the local bloom filter and sends a routing advertisement (in the
form of a dynamic or multi-dimension dynamic bloom filter)
to the neighbor during a connection setup. Then, the neighbor
can construct a routing entry for the link from itself to the new
peer. The initial advertisement is created by taking the decay
union of all advertisements received from neighbors other than
the target neighbors and the union of local bloom filters. It
would be better for the method in [29] to adopt the gossiping
protocol [30] to exchange advertisements between the source
and sink peer instead of push or pull. The experiment shows
that the convergent speed of the gossiping protocol is faster
than that of a single push protocol.

However, the mechanism in [29] alone is not enough
to ensure that each routing entry contains whole summary
information of the reachable data along the corresponding link
direction. In fact, the majority of early arriving peers have little
information about the later peers, although the later peers have
enough information about the early peers. Thus, we should
pay more attention to update the routing table. Kumar et al
have presented a push protocol in which each peer constructs
and pushes the update advertisement for each neighbor during
a given interval. In our experiment, we found that it is not
necessary to update all link directions. We also adopt the
asynchronous gossiping update protocol, and each peer creates
an update advertisement for a random link direction at each
gossiping round, and exchanges update advertisements in that
direction.

The query forward mechanism is tightly coupled with the
bloom filter corresponding to each link. Before the bloom filter
of a given peer has propagated through the whole P2P network
without any information loss, queries with payload contained
by the peer may be issued at any time from any other peer.
In reality, the search protocol may be designed to decay the
bloom filter of a given peer during the propagation process in
order to save bandwidth and make the protocol more scalable,
such as the protocol mentioned in [29].

= = Flooding
— Informed Search

Recall

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
The ratio of visited peers to total peers

Fig. 9. The ratio of visited peers for one query to total peers vs. recall.

In order to overcome information uncertainty, we combine
the informed search protocol based on bloom filters with the &
random walker protocol. After a peer receives a query, it will
process the query and check whether to terminate the query.
If the check result is true, the peer does not forward the query
to any neighbor. Otherwise, the peer will forward the query
to part of or all neighbors selected according to its routing
table and Algorithm 2(or Algorithm 4). If there is no satisfied
neighbor, the k& random walker will be used as the assistant
query forward protocol. This policy is also suitable when a
peer initiates a query.

B. Simulation result analysis

In this section, we present simulation results using
Gnutella0.4, £ random walk, and informed search based on
bloom filters in a random P2P network with 5,000 nodes.
There are multiple replications of some objects at different
locations. The model we use for replication of content is
based on the zipf distribution, frequently used to model the
replication of objects on the web. The ¢th most popular
elementary object of a space will have 1/i® times as many
replicas as the most replicated object. In our experiment, the
size of the entire object space is 50, 000, the size of elementary
object space is 5,000, and the parameter a used by the zipf
law is set to 0.5. The total number of queries is 10,000, and
the distribution of query’s payload also obeys the zipf law, and
the parameter a is set to 0.5.

Performance issues in actual P2P networks are extremely
complicated. In addition to issues such as load on the network,
load on network participants, delay and success rate of query,
there is a host of other metrices. In our experiment, we focus
on efficiency aspects of algorithms, and use the following
simple metrics.

o Pr(success): the probability of finding the queried object
before the search terminates. Different algorithms have
different criteria for terminating the search; it depends
on the search semantics.

o Recall: the ratio of the number of relevant documents
presented to the user to the total number of relevant
documents in the P2P network.

o Nodes visited: the number of peers that a query’s search
message travel through. This is an indirect measure of

o.9f

o8l

07

06

0.5

0.4

% of queries answered

0.3

o02f

01

o 0.02 0.04 0.06 0.08 0.1 0.12 0.14
The ratio of visited peers to total peers

Fig. 10. The ratio of visited peers to total peers vs. % of queries.

the impact that a query generates on the whole network.

The simulation result of search for all copies (i.e., to get all
the copies of a given object) under protocol Gnutella0.4 and
our informed search based on bloom filters is illustrated in
Figure 9. For any query, informed search protocol can obtain
high recall without visiting a large portion of the whole P2P
network in order to process the query, while the Gnutella-like
protocol can obtain relatively lower recall with the cost of
visiting a large portion of the whole P2P network. It is shown
that the informed search based on bloom filters can avoid the
message flooding problem.

The simulation result of search for one copy (i.e., to get
at least one copy of a given object) under the random walker
protocol and our informed search based on bloom filters is
illustrated in Figure 10. For any query, the informed search
protocol can obtain high Pr(success) compared to random
walker with the same ratio of visited peers in the whole
network. When there are multiple replications distributed
randomly among the whole P2P network for any object, the
Pr(success) of both protocols can almost reach 1 after visiting
less than 10% of the whole network. It also explains that
informed search based on bloom filters possesses advantages
over blind search.

The overhead of our informed search protocol is the need
to exchange information between peers at a given gossiping
rate. This operation can be merged with the stabilization
operation, which is used to manage the neighbor relationship
and maintain the P2P network. Furthermore, the transitive size
can become small by adopting bloom filters and compressed
bloom filters.

VII. CONCLUSION

A bloom filter is a simple, space-efficient, randomized data
structure for concisely representing a static data set in order
to support approximate membership queries. As the actual
size of the set increases continuously after deployment, a
bloom filter should scale well in order to avoid too much
deviation between the actual false positive probability and
the predefined threshold. In order to deal with this problem,
we present dynamic bloom filters to support concise repre-
sentation and approximate membership queries of dynamic
sets. It has been proved that dynamic bloom filters not only

possess the advantage of standard bloom filters, but also have
better features than standard bloom filters when dealing with
dynamic sets. False positive probability of dynamic bloom
filters can be controlled at a low level, and space complexity
is also acceptable if the estimation of the threshold of the
dynamic set does not deviate too much. In addition, we
present multi-dimension dynamic bloom filters to support
concise representation and approximate membership queries
of dynamic sets from multiple attribute dimensions.

We have explored three kinds of representative applications
of dynamic bloom filters: bloom joins, informed search, and
implementation of global index. These applications also illus-
trate that dynamic bloom filters and their variations scale well
and are practical for representing dynamic sets. Finally, we
have simulated the informed search protocol based on bloom
filters in unstructured P2P networks. Our simulation shows
that informed search based on bloom filters can obtain high
recall and success rate of query than the blind search protocol.

In future work, we will further enhance dynamic bloom
filters in order to support the removal operation, and compare
the space/time trade-off of both dynamic and standard bloom
filters.

ACKNOWLEDGMENT

The authors would like to thank Yongbo Wu for the help
to prove a theorem, Kang Chen for the help to design related
experiments, and Yang Ren and Yanli Hu for their constructive
comments.

REFERENCES

[1] B. Bloom. Space/time tradeoffs in hash coding with allowable errors.
Commun. ACM, 13(7):422-426, 1970.

[2] J. K. Mullin. Optimal semijoins for distributed database systems. IEEE

Trans. Software Eng., 16(5):558-560, 1990.

J. Kubiatowicz, D. Bindel, Y. Chen, S. Czerwinski, P. Eaton, and

D. Geels. Oceanstore: An architecture for global-scale persistent storage.

ACM SIGPLAN Notices.

J. Li, J. Taylor, L. Serban, and M.Seltzer. Self-organization in peer-

to-peer system. In Proc. the 10th ACM SIGOPS European Workshop,

Saint-Emilion, France, September 2002.

[5] F. M. Cuena-Acuna, C. Peery, R. P. Martin, and T. D. Nguyen. Plantp:
Using gossiping to build content addressable peer-to-peer information
sharing communities. In Proc. the 12th IEEE International Symposium
on High Performance Distributed Computing, pages 236-249, Seattle,
WA, USA, June 2003.

[6] S. C. Rhea and J. Kubiatowicz. Probabilistic location and routing. In
Proc. IEEE INFOCOM, pages 1248-1257, New York, NY, United States,
June 2004.

[71 T. D. Hodes, S. E. Czerwinski, and B. Y. Zhao. An architecture for

secure wide-area service discovery. Wireless Networks, 8(2-3):213-230,

2002.

P. Reynolds and A. Vahdat. Efficient peer-to-peer keyword searching.

In Proc. ACM International Middleware Conference, pages 21-40, Rio

de Janeiro, Brazil, June 2003.

[9] D. Bauer, P. Hurley, R. Pletka, and M. Waldvogel. Bringing efficient

advanced queries to distributed hash tables. In Proc. IEEE Conference

on Local Computer Networks, pages 6—14, Tampa, FL, United States,

November 2004.

L. Fan, P. Cao, J. Almeida, and A. Broder. Summary cache: A scalable

wide-area web cache sharing protocol. IEEE/ACM Trans. Networking,

8(3):281-293, 2000.

C. Jin, W. Qian, and A. Zhou. Analysis and management of streaming

data: A survey. Journal of Software, 15(8):1172-1181, 2004.

[3

=

[4

=

[8

[t}

[10]

[11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]
[19]

[20]

(21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

C. D. Peter and M. Panagiotis. Bloom filters in probabilistic verification.
In Proc. the 5th International Conference on Formal Methods in
Computer-Aided Design, pages 367-381, Austin, Texas, USA, Novem-
ber 2004.

M. Mitzenmacher. Compressed bloom filters.
Networking, 10(5):604-612, 2002.

A. Kirsch and M. Mitzenmacher. Distance-sensitive bloom fil-
ters. http://www.eecs.harvard.edu/ michaelm/postscripts/Isbf.ps, January
2006.

A. Kirsch and M. Mitzenmacher. Building a better bloom filter.
http://www.eecs.harvard.edu/ michaelm/postscripts/tr-02-05.pdf, January
2006.

A. Kumar, J. Xu, J. Wang, O. Spatschek, and L. Li. Space-code
bloom filter for efficient per-flow traffic measurement. In Proc. IEEE
INFOCOM, pages 1762-1773, Hongkong, China, March 2004.

S. Cohen and Y. Matias. Spectral bloom filters. In Proc. ACM
International Conference on Management of Data (SIGMOD), pages
241-252, San Diego, CA, United States, June 2003.

M. Xiao, Y. Dai, and X. Li. Split bloom filters. Chinese Journal of
Electronic, 32(2):241-245, 2004.

A. Broder and M. Mitzenmacher. Network applications of bloom filters:
A survey. Internet Mathematics, 1(4):485-509, 2005.

L. F. Mackert and G. M. Lohman. R* optimizer validation and
performance evaluation for distributed queries. In Proc. the 12th
International Conference on Very Large Data Bases (VLDB), pages 149—
159, Kyoto, Jpn, August 1986.

Z. Li and K. A. Ross. Perf join: An alternative to two-way semijoin
and bloomjoin. In Proc. International Conference on Information
and Knowledge Management, pages 137-144, Baltimore, MD, USA,
November 1995.

X. Li and J. Wu. Searching techniques in peer-to-peer networks. In
J. Wu, editor, Handbook of Theoretical and Algorithmic Aspects of Ad
Hoc, Sensor, and Peer-to-Peer Networks. Auerbach, New York,USA,
2006.

B. Yang and H. Garcia-Molina. Improving search in peer-to-peer net-
works. In Proc. the 22th IEEE International Conference on Distributed
Computing, pages 5-14, Vienna, Austria, July 2002.

Q. Lv, P. Cao, E. Cohen, K. Li, and S. Shenker. Search and replication in
unstructured peer-to-peer networks. In Proc. the 16th ACM International
Conference on Supercomputing, pages 84-95, Marina Del Rey, CA,
United States, June 2002.

A. Crespo and H. Garcia-Molina. Routing indices for peer-to-peer
systems. In Proc. the 22th International Conference on Distributed
Computing, pages 23-32, Vienna, Austria, July 2002.

D. Tsoumakos and N. Roussopoulos. Adaptive probabilistic search in
peer-to-peer networks. In Proc. the 3th International Conference on
Peer-to-Peer Computing, pages 102-109, Sweden, September 2003.

K. Shanmugasundaram, H. Bronnimann, and N. Memon. Payload
attribution via hierarchical bloom filters. In Proc. the 11th ACM
Conference on Computer and Communications Security, pages 31-41,
Washington, DC, United States, October 2004.

G. D. Caro, F. Ducatelle, P. Heegaard, M. Jelasity, R. Montemanni, and
A. Montresor. Evaluation of basic services in ahn,p2p and grid networks.
http://www.cs.unibo.it/bison/deliverables/D07.pdf, February 2005.

A. Kumar, J. Xu, and E. W. Zegura. Effcient and scalable query routing
for unstructured peer-to-peer networks. In Proc. IEEE INFOCOM, pages
1162-1173, Miami, FL, United States, March 2005.

S. Boyd, A. Ghosh, B. Prabhakar, and D. Shah. Gossip algorithms:
Design, analysis and applications. In Proc. IEEE INFOCOM, pages
16531664, Miami, FL, United States, March 2005.

IEEE/ACM Trans.

