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Abstract—Mobile crowdsensing is a new paradigm in which a
requester can recruit a group of mobile users via a platform and
coordinate them to perform some sensing tasks by using their
smartphones. In mobile crowdsensing, each user might perform
multiple tasks with different sensing qualities. An important
problem is recruiting the minimum number of users while
achieving a satisfactory sensing quality for each task. Meanwhile,
in order to ease users’ worries about privacy disclosures, the user
recruitment process needs to protect each user’s sensing quality
information from being revealed to other users or to the platform.
We prove that this problem is NP-hard. To solve this problem,
we first propose a Basic User Recruitment (BUR) protocol based
on a greedy strategy, which can recruit nearly the minimum
amount of users while ensuring that the total sensing quality
of each task is no less than a given threshold. Based on BUR,
we further propose a Secure User Recruitment (SUR) protocol
by using secret sharing schemes. We analyze the approximation
ratio and prove the security of the SUR protocol in the semi-
honest model. Moreover, we extend SUR to deal with a more
general case where the total sensing quality of each task might
be an increasing submodular function. Finally, we demonstrate
the significant performance of the proposed protocol through
extensive simulations and execution in real smartphones.

Index Terms—Mobile crowdsensing, privacy, sensing quality,
secret sharing, user recruitment

I. INTRODUCTION

Mobile crowdsensing refers to a group of mobile users
being coordinated to perform large-scale sensing tasks over
urban environments through their smartphones. Since mobile
crowdsensing can perform sensing tasks that individual users
cannot cope with, it has stimulated many applications such
as urban WiFi characterization, traffic information mapping,
noise pollution monitoring, wireless indoor localization, and
so on, attracting much attention [3]. A typical mobile crowd-
sensing system consists of a collection of mobile users and
a platform residing on the cloud. The platform accepts the
sensing tasks from some requesters and recruits mobile users
to perform these sensing tasks by using their smartphones.
After accomplishing the sensing tasks, mobile users will return
the corresponding results to the requesters. In a mobile crowd-
sensing system, user recruitment or task allocation is one of
the most important components. So far, many user recruitment
or task allocation algorithms have been proposed [6], [7], [9].
Also, many incentive mechanisms such as [12], [18]–[20] have
been designed for the user recruitment component.

In this paper, we focus on the privacy-preserving user
recruitment problem in sensing-quality-aware mobile crowd-
sensing systems. Consider that a requester wants to recruit
a group of mobile users to perform some sensing tasks via
a crowdsensing platform, while ensuring that each task can
be accomplished with a satisfactory quality. For example, the
sensing tasks might be taking some time-relative photos at
many locations for air quality analysis. Sensing quality can
be measured by the number, time, and clarity of the photos.
During the user recruitment process, each mobile user needs to
tell the platform which tasks he/she can deal with and how well
he/she can perform each task. This might reveal some private
sensitive information. The tasks that a user can perform will
reveal which locations the user might visit. The corresponding
sensing quality will reveal the frequency, time, distance of the
visit, and so on. In order to avoid privacy disclosures, it is
necessary to protect each user’s private sensitive information
from being revealed during the user recruitment process.

Existing crowdsensing works rarely discuss privacy issues.
Only a few works, such as [2], [8], [17], [21], studied the
problem of protecting the privacy of sensing results collected
by mobile users. Furthermore, none of them investigate the
privacy-preserving problem in the user recruitment process. In
the privacy-preserving user recruitment problem, the platform
and mobile users need to jointly make the user recruitment
decision by conducting computations over their inputs. Mean-
while, each user needs to protect his/her inputs from being
revealed to the platform or to other users. Moreover, the
recruited users should make all sensing tasks be performed
with satisfactory sensing qualities. The differential privacy
schemes in existing works are not competent for this problem
since many complex and precise computations need to be
conducted over users’ private inputs. Although the homomor-
phic encryption and garbled circuit protocols can solve this
problem, they will result in a huge computational overhead
that is unacceptable to mobile users.

To solve the privacy-preserving user recruitment problem,
we design a Basic User Recruitment (BUR) protocol based on
a greedy strategy and apply secret sharing techniques in BUR
to propose a Secure User Recruitment (SUR) protocol. More
specifically, our major contributions include:

1) We consider a mobile crowdsensing system in which
the total sensing quality of each task is the sum of the
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sensing quality of each user performing this task. We
prove that the user recruitment problem in this system
is NP-hard. Then, we design the BUR protocol based
on a greedy user recruitment strategy for this problem.
Moreover, we prove that BUR can produce a solution
with a logarithmic approximation ratio.

2) We propose the SUR protocol based on secret sharing.
SUR adopts the same user recruitment strategy and can
achieve the same result as BUR. Meanwhile, by using
secret sharing schemes, SUR can protect the inputs of
each user from being revealed to the platform or to other
users, even if they might collude. Moreover, SUR is a
lightweight secure protocol, which does not depend on
encryption/decryption operations and any trusted third-
party.

3) We extend the SUR protocol to a more general case,
where the total sensing quality of each task is a func-
tion about the sensing qualities of the recruited users.
Moreover, we prove that if the function is increasing
and submodular, SUR can still produce a solution with
a logarithmic approximation ratio.

4) We conduct extensive simulations to verify the signif-
icant performances of the proposed SUR protocol. We
also realize and run the SUR protocol in real smart-
phones which demonstrates that SUR can work well in
real applications.

The remainder of the paper is organized as follows: We
introduce the models, problem, and preliminary in Section II.
The BUR and SUR protocols are proposed in Sections III
and IV. We extend the SUR protocol in Section V. In Sec-
tion VI, we evaluate the performances of SUR. After reviewing
the related work in Section VII, we conclude the paper in
Section VIII. Some complex proofs are moved to the Appendix.

II. MODELS, PROBLEM, AND PRELIMINARY

A. Crowdsensing Model

Consider a mobile crowdsensing system in which a re-
quester has many sensing tasks to deal with, denoted by S=
{s1, s2,· · ·, sm}. Some mobile users, denoted by U={u1,· · ·,
un}, are willing to participate in the crowdsensing. Each
user might perform one or more tasks. When they perform
sensing tasks, the data collected by them might be of different
qualities due to their heterogeneous smart devices and mobile
behaviors. In general, multiple users need to be recruited to
perform a common task so as to achieve a satisfactory sensing

quality. We use qi,j ∈ Zp to indicate the sensing quality of
user ui (1 ≤ i ≤ n) performing task sj (1 ≤ j ≤ m), where
Zp is a prime field. Specially, qi,j = 0 means that user ui
cannot deal with task sj . Here, we assume that each user ui
knows his/her sensing qualities qi,1, · · ·, qi,m since he/she can
determine the value of each sensing quality qi,j by evaluating
the corresponding sensing data according to a predetermined
criterion. For example, each user can map a sensed image to a
sensing quality value in Zp according to the clarity and size.

Fig. 1 shows the execution process of the mobile crowd-
sensing. First, the requester publishes all sensing tasks in S to
the users in U via a crowdsensing platform. Then, each user
ui determines the values of qi,1, · · ·, qi,m and sends them to
the platform. Next, the platform recruits some users from U
to perform the tasks in S while ensuring that the total sensing
quality of each task is no less than a given threshold. Finally,
each recruited user will go to perform the tasks in S and return
the results to the requester.

B. Security Model

When each user ui participates in the crowdsensing, his/her
sensing quality values might reveal his/her private sensitive
information. In order to avoid privacy disclosures, we need to
protect each user’s sensing qualities from being revealed to the
platform or to other users. For this privacy-preserving issue,
we consider a typical security model, i.e., the semi-honest
model [5]. In this model, each user will follow the whole user
recruitment protocol, showing the honest aspect. On the other
hand, the user will also try to derive the extra information
from the received data, showing the dishonest aspect. The
semi-honest model is reasonable since the user is generally
willing to follow and accomplish the secure protocol so as
to benefit from participating. Because of this, the semi-honest
model is widely-used [4], [5], [10], [11]. The privacy under
the semi-honest model can formally be defined as follows:

Definition 1 (Privacy under the Semi-honest Model [5]):
Let F(x1, · · · , xn) = (F1, · · · ,Fn) be an n-ary functional-
ity, where xi (∈ Zp) and Fi are the i-th user’s input and
output (1 ≤ i ≤ n). For I = {ui1 , · · · , uiκ} ⊂ U , we let
FI denote the subsequence Fi1 , · · · ,Fiκ . Consider an n-
party protocol for computing F . The view of the i-th user
during an execution of this protocol, denoted as V IEWi,
is (xi, r,mi) where r represents the outcome of the i-th
user’s internal coin tosses and mi represents the messages
that the user has received. For I = {ui1 , · · · , uiκ}, we let
V IEWI , (I, V IEWi1 , · · · , V IEWiκ). We say that the
protocol privately computes F if there exists a polynomial-
time algorithm, denoted as A, such that for every I above

A(I, (xi1 , · · · , xiκ ,FI))=V IEWI . (1)

Here, Eq. 1 asserts that the view of the users in I can be
efficiently simulated based solely on their inputs and outputs.
In other words, they cannot derive extra information during
the execution of the protocol.



TABLE I
DESCRIPTION OF MAJOR NOTATIONS

Variable Description
U , S the set of all users, and the set of all tasks.
ui, sj the i-th user, and the j-th task.
qi,j ,
Qj ,
θ

the sensing quality of ui performing sj , the total
sensing quality of sj , and the threshold of the re-
quired total sensing quality of each task.

Φ the set of recruited users.
f(Φ),
∆if(Φ)

a utility function about recruited users and the incre-
mental utility for adding ui into Φ. (Definition 3).

bi a bit number that indicates whether ui is recruited.
V IEWi,
mi

the view and the set of received messages of ui in
the whole protocol execution process (Definition 1).

s[i], [s] ui’s share of a secret s, and all shares of s (Eq. 7).
Zp, l a prime field, and l=dlog2 pe.
κ a security parameter, i.e., the degree of the random

polynomial in Shamir’s scheme (Definition 2).

C. Problem

We focus on the secure user recruitment problem in the
above mobile crowdsensing under the semi-honest model. That
is, how to privately recruit the users in U to perform the tasks
in S so that we can minimize the number of recruited users,
while ensuring that the total sensing quality of each task is
no less than a given threshold, denoted by θ. We use set Φ to
denote a user recruitment solution where ui∈Φ indicates that
user ui is recruited. Moreover, we use Qj to denote the total
sensing quality of task sj :

Qj=
∑

ui∈Φ
qi,j . (2)

Then, the problem can be formalized as follows:
Minimize : |Φ| (3)
Subject to : Φ⊆U (4)

Qj≥θ, 1≤j≤m (5)
Security : Eq. 1 holds. (6)

Here, in Eq. 2, we define the total sensing quality Qj as the
sum of the sensing quality of each recruited user performing
task sj . In Section V, we will extend it to be a general function.
Additionally, for ease of presentation, we use an n-bit vector
(b1,· · ·, bi,· · ·, bn) to indicate the user recruitment solution
where bi=1 for ui∈Φ; otherwise, if ui 6∈Φ, we set bi=0.

D. Preliminary

In this paper, we address privacy-preserving issues by using
secret sharing schemes. A widely-used secret sharing scheme
is Shamir’s scheme [14]. Denote the shares of a secret s among
n users as

[s],(s[1], · · · , s[i], · · · , s[n]), (7)
where s[i] is the i-th user’s share. Then, Shamir’s secret

sharing scheme can be defined as follows:
Definition 2: Let p be an odd prime and Zp be a prime

field. To share a secret s (s ∈ Zp) among n users (n < p),
Shamir’s scheme determines a random polynomial gs(x) =
s+α1x+α2x

2 + · · ·+ακx
κ mod p with randomly chosen

αi ∈Zp for 1≤ i≤κ, κ<n. Then, the share of the i-th user
is s[i]=gs(i).

It has been proven that in Shamir’s scheme, any h shares
with h≤κ give no information on s (called κ-privacy) while
any h shares with h>κ can uniquely disclose s (called (κ+
1)-reconstruction). Additionally, we list the main notations in
Table I.

III. BASIC USER RECRUITMENT PROTOCOL

In this section, we first analyze the complexity of the
user recruitment problem. Then, we propose a Basic User
Recruitment (BUR) protocol followed by the correctness and
approximation ratio analysis.

A. Problem Hardness Analysis
Before the solution, we first prove the NP-hardness of the

user recruitment problem, as shown in the following theorem.
Theorem 1: The user recruitment problem is NP-hard.
Proof: We consider a special case of the user recruitment

problem: given a mobile crowdsensing, where the user set is U ,
the task set is S, each sensing quality is qi,j ∈{0, 1}, and the
threshold of the total sensing quality is θ=1, determine a user
recruitment solution Φ, such that the platform can minimize
|Φ|, while the total sensing quality of each task is no less than
θ. Here, if a user ui can perform a task sj , i.e., qi,j = 1, we
say that ui can cover sj . Moreover, once a task is covered
by a user, the total sensing quality of this task must be no
less than θ. Then, when we replace each ui in U by using
the set of tasks that ui can cover, denoted by Si (⊆S), this
problem can be equivalently seen as a set cover problem, a well
known NP-hard problem: given a task set S, a collection of
subset {Si|1≤ i≤n}, find a minimum size of subcollection of
{Si|1≤ i≤n} that covers all tasks in S . Thus, the special user
recruitment problem is NP-hard. Consequently, the general
user recruitment problem is also at least NP-hard. �

B. The Greedy User Recruitment Strategy
Since the user recruitment problem is NP-hard, we adopt a

greedy strategy to recruit users. The greedy criterion is that the
user who can improve the total sensing qualities of all tasks
the most will be recruited first. More precisely, the greedy
strategy is based on the following utility function:

Definition 3: Utility function f(Φ) indicates the total sens-
ing qualities of all tasks in S contributed by the users in set
Φ, until they reach the threshold θ, defined as follows:

f(Φ)=
∑m

j=1
min{Qj , θ}=

∑m

j=1
min{

∑
ui∈Φ

qi,j , θ}. (8)

Moreover, for a given user set Φ, we denote the incremental
utility of recruiting a new user ui into Φ as

∆if(Φ)=f(Φ∪ {ui})−f(Φ). (9)

The greedy user recruitment strategy is based on the above
defined utility. The whole user recruitment process contains
multiple rounds of iterations. At the beginning, the set of
recruited users is an empty set, i.e., Φ = ∅. Then, in each
round of iteration, the user who can improve the utility f(Φ)
the most, i.e., the user ui who can maximize the value of
∆if(Φ), is recruited and added into Φ. The user recruitment
process terminates when f(Φ)=mθ.



Protocol 1 The BUR Protocol
Input: U , S, {qi,j |ui∈U , sj ∈S}, θ
Output: Φ, b1, · · · , bn
Phase 1: the requester publishes S to U via the platform;
Phase 2: users input their sensing quality values;
1: for i=1 to n do
2: user ui sends {qi,1, · · · , qi,m} to the platform;

Phase 3: the platform makes the decision of user recruitment;
3: Φ=∅; f(Φ)=0;
4: while f(Φ)<mθ and |Φ|<n do
5: Select a user ui∈U\Φ to maximize ∆if(Φ);
6: Φ=Φ ∪ {ui};

Phase 4: the platform returns the results to users;
7: for i=1 to n do
8: if ui∈Φ then
9: the platform returns bi=1 to user ui;

10: else
11: the platform returns bi=0 to user ui;

C. The Detailed BUR Protocol

The BUR protocol mainly includes four phases, as shown
in Protocol 1. In the first phase, the requester generates tasks
and publishes them to mobile users via the platform. Then,
mobile users report their sensing qualities to the platform in
the second phase. Next, in the third phase, the platform makes
the user recruitment decision based on the greedy strategy. In
Step 3, the platform first initializes the recruited user set as the
empty set, and the corresponding utility value is zero. Then,
from Step 4 to Step 6, the platform greedily selects the user
who can improve the utility the most and adds it into the
recruited user set until the utility value of the recruited users
f(Φ) becomes mθ or until all users are recruited. After this
process, the user recruitment result is produced. In the fourth
phase, the platform will notify each user of the result.

D. The Correctness and Approximation Performance

In this subsection, we prove the correctness and analyze
the performance of BUR. First, we prove three important
properties of the defined utility function f(Φ).

Theorem 2: f(Φ) is an increasing function with f(∅)=0.
Proof: First, if Φ = ∅, then min{

∑
ui∈Φ qi,j , θ} = 0

for each j ∈ [1,m]. Thus, f(Φ = ∅) = 0, according to
Definition 3. Second, without loss of generality, we con-
sider two user sets, Φ1 and Φ2, where Φ1 ⊆ Φ2. Then,
we have min{

∑
ui∈Φ1

qi,j , θ} ≤min{
∑
ui∈Φ2

qi,j , θ}. Con-
sequently, we have f(Φ1) =

∑m
j=1 min{

∑
ui∈Φ1

qi,j , θ} ≤∑m
j=1 min{

∑
ui∈Φ2

qi,j , θ} = f(Φ2). Therefore, f(Φ) is an
increasing function with f(∅)=0. �

Theorem 3: f(Φ) =mθ iff Φ is a feasible solution to the
user recruitment problem.

Proof: According to Eq. 8, f(Φ)=mθ iff min{
∑
ui∈Φqi,j , θ}

=θ holds for each j∈ [1,m]. In fact, min{
∑
ui∈Φ qi,j , θ}=θ

and
∑
ui∈Φ qi,j ≥ θ are equivalent. Therefore, we have that

f(Φ) =mθ iff
∑
ui∈Φ qi,j ≥ θ holds for each j ∈ [1,m]. This

means that the users in Φ can perform each task in S with a

total sensing quality of no less than θ. Thus, the theorem is
correct. �

Theorem 4: f(Φ) is a submodular function. More specif-
ically, for two arbitrary user sets Φ1 and Φ2, Φ1 ⊆ Φ2, and
∀uh∈U\Φ2, the submodular property holds, i.e.,

f(Φ1 ∪ {uh})− f(Φ1)≥f(Φ2 ∪ {uh})− f(Φ2). (10)
Proof: See Appendix A. �
Based on the above properties of the utility function, we

can prove the correctness of the proposed protocol.
Theorem 5: Protocol 1 is correct. That is, it will produce a

feasible solution for the user recruitment problem, as long as
the problem is solvable.

Proof: Consider the user recruitment phase in Protocol 1. In
each round of iteration, a user will be added into the user set
Φ. Moreover, according to Theorem 2, the utility f(Φ) will
increase along with the expansion of the user set Φ. Hence,
the iteration processes will terminate for sure. According to
Protocol 1, when the iteration processes terminate, there must
be f(Φ)=mθ or Φ=n. If the iteration processes terminate for
f(Φ) =mθ, we can conclude that Φ is a feasible solution
for the user recruitment problem according to Theorem 3.
Otherwise, if the iteration processes terminate for Φ = n, it
means that the problem is not solvable, even though all users
are recruited. Taking both cases into consideration, we can get
that the theorem is correct. �

Additionally, we can derive the approximation performance
of the BUR protocol.

Theorem 6: BUR can produce a (1+ln γ)-approximation
solution, where γ=maxui∈U f({ui}).

Proof: See Appendix B. �
Theorems 5 and 6 show that if the user recruitment problem

is solvable, BUR will produce a nearly optimal solution;
otherwise, BUR will recruit all users as the solution.

IV. SECURE USER RECRUITMENT PROTOCOL

Based on BUR, we propose a Secure User Recruitment
(SUR) protocol by using secret sharing schemes. First, we
introduce the secret sharing schemes adopted in this paper.
Then, we propose the SUR protocol, followed by performance
and security analyses.

A. The Building Blocks
In the SUR protocol, each sensing quality is turned into

a secret shared among all users. When the users make the
user recruitment decision, they need to jointly conduct some
mathematical operations on the shared secrets, which are
defined as follows:

Definition 4: Let x, y∈Zp be two secrets shared by n users
and [x], [y] be the corresponding polynomial shares. Then, the
secure mathematical operations are defined as follows:

[z1]← SecAdd([x], [y]), [z2]← SecSub([x], [y]),
[z3]← SecMulti([x], [y]), [z4]← SecCmp([x], [y]),
[z5]← SecMax([x], [y]), [z6]← SecMin([x], [y]),

(11)

where z1 = x+y mod p; z2 = x−y mod p; z3 = xy mod p;
z4 = 1 if x≤ y, or z4 = 0 when x> y; z5 = max{x, y}, and
z6 =min{x, y}.



In Definition 4, the SecAdd and SecSub operations can
be conducted efficiently without any communication among n
users. For SecAdd, each user ui can locally compute his/her
share by letting z1[i]=x[i]+y[i]. For example, assume x[i]=
x+α1i+α2i

2 + · · ·+ακi
κ mod p and y[i]=y+β1i+β2i

2 +
· · ·+βκi

κ mod p, where α1, · · · , ακ, β1, · · · , βκ are randomly
chosen from Zp. Then, z1[i]=x+y+(α1+β1)i+· · ·+(ακ+βκ)iκ

mod p. Likewise, the SecSub operation can also be locally
conducted by letting each user compute z2[i]=x[i]−y[i].

In contrast, the SecMulti and SecCmp operations are a
bit more complex, and they require users to communicate with
one another. In this paper, we realize the two operations by
using the secure multi-party multiplication protocol in [10] and
the secure multi-party comparison protocol in [11], respective-
ly. The multiplication protocol in [10] is a well-known and
efficient protocol built on a verifiable secret sharing scheme.
It requires O(n2l) bit-operations per user (l = dlog2 pe) and
one round of communication. The comparison protocol in [11]
is one of the most efficient secure comparison protocols. The
computation complexity is dominated by 15 rounds of invo-
cations of the multiplication protocol, and the communication
complexity is 279l+5 times of the multiplication protocol.

The SecMin and SecMax operations can be realized by
usingSecMulti andSecCmp. More specifically, we can let

SecMax([x], [y]),SecAdd([x], SecMulti(SecCmp([x], [y]),

SecSub([y], [x]))) (12)
SecMin([x], [y]),SecAdd([x], SecMulti(SecSub(1−

SecCmp([x], [y])), SecSub([y], [x]))). (13)

Eq. 12 is correct since the right part will beSecAdd([x], [0])
if x>y; otherwise, it will be SecAdd([x], SecSub([y], [x])).
Likewise, Eq. 13 is also correct. Moreover, the SecMin
and SecMax operations can be extended to support more
than two operands. For example, SecMin([x1], [x2], [x3])←
SecMin([x1], SecMin([x2], [x3])). Additionally, all of these
secure operations can support the computation between secret
and public values.

B. The Detailed SUR Protocol

The SUR protocol adopts the same utility function and
greedy strategy to recruit users as BUR. The difference lies
in that all inputs and computations are conducted by using
the secret sharing techniques. First, each input qi,j is seen as
a secret, and it is replaced by its polynomial shares [qi,j ] in
SUR. Second, when users jointly make recruitment decisions,
all computations are conducted by using the secure operations
in Definition 4, and all intermediate results are produced in the
manner of shared secrets. To ensure this, we replace ui ∈ Φ
and ∆if(Φ) by using [bi] = [1] and

∑m
j=1 min{qi,j , θ−Qj}.

Moreover, in order to prevent the selected user from being
revealed in each round of iteration, we hide the maximum in-
cremental utility and the selected user in a SecMax operation
and a SecCmp operation. Only in the final phase, each user ui
can collect the corresponding shares to reconstruct the value
of bi so as to know whether he/she is recruited.

Protocol 2 The SUR Protocol
Input: U , S, {qi,j |ui∈U , sj ∈S}, θ
Output: b1, · · · , bn
Phase 1: the requester publishes S to U via the platform;
Phase 2: users input their sensing quality vectors;
1: for i=1 to n do
2: user ui determines the sensing qualities qi,1, · · · , qi,m;
3: for j=1 to m do
4: user ui generates the polynomial sharing [qi,j ];
5: user ui sends the share qi,j [i′] to user ui′ ;

Phase 3: users jointly make the decision of user recruitment;
6: for i=1 to n do
7: [bi]← [0];
8: for j=1 to m do
9: [Qj ]← [0];

10: for round=1 to n do
11: for i=1 to n do
12: [∆if ]← [0];
13: for j=1 to m do
14: [δ]←SecMin([qi,j ], SecSub(θ, [Qj ]));
15: [∆if ]←SecAdd([∆if ], [δ]);
16: [∆if ]←SecMulti([∆if ], SecSub([1], [bi]));
17: [∆maxf ]←SecMax([∆1f ], · · · , [∆nf ]);
18: for i=1 to n do
19: [z]←SecCmp([∆maxf ], [∆if ]);
20: [bi]←SecAdd([bi], SecMulti(SecSub([1], [bi]), [z]));
21: for j=1 to m do
22: [δ]←SecMin([qi,j ], SecSub(θ, [Qj ]));
23: [Qj ]←SecAdd([Qj ], SecMulti([z], [δ]));
Phase 4: the users reconstruct the results;
24: for i=1 to n do
25: user ui collects all shares of [bi];
26: user ui derives bi=

∑m
j=1 bi[j];

The detailed SUR protocol is shown in Protocol 2. In Steps
3-5, users construct the polynomial secret shares of their
sensing quality values as the inputs. Steps 6-9 initialize for the
user recruitment decision process. In Steps 11-17, users jointly
find the maximum incremental utility value, i.e., ∆if(Φ). In
Steps 18-23, users determine the recruited user and update
the corresponding Qj . The computation and communication
complexity of the whole protocol is dominated by the SecMin
operations in Steps 14 and 22, which are O(mn2) invocations
of secure multiplication operations. Consequently, the protocol
will result in O(mn4l) bit-operations per user and O(mn2l)
rounds of communication, where a round of communication
means that users communicate with one another once.

C. Example

To better understand Protocol 2, we use an example to il-
lustrate the secure user recruitment procedure. In the example,
there are two tasks and three users with six sensing qualities,
as shown in Fig. 2. The protocol is conducted as follows:
• First round: The three users jointly compute their incre-

mental utility values, of which [∆1f ]=[10] is the largest.
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round 1 round 2 [ ] = 10[ ] = 	9	[ ] = [	8	]
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[ ] 			= 	1	[ ] 			= [	1	][ ] 			= [	0	][ ] 	= 	 	5	[ ] 	= 	 	5	 [ ] 			= 	8	[ ] 			= 	8	

(b) Intermediate results
Fig. 2. Illustration of the SUR protocol (θ=8)

Thus, user u1 is recruited, i.e., [b1]=[1]. Accordingly, we
have [Q1]=[Q2]=5.

• Second round: The users jointly compute their incremen-
tal utility values again, based on [Q1] = [Q2] = 5. Since
[b1] = [1], [∆1f ] is set as [0]. This time, [∆2f ] = [6]
becomes the largest value. Thus, user u2 is recruited,
i.e., [b2] = [1]. Accordingly, [Q1] = [Q2] = θ = 8. No
more users will be recruited.

D. The Correctness and Security Analysis

Essentially, SUR is the BUR protocol combined with secret
sharing schemes to protect users’ sensing quality privacy.
Therefore, SUR can achieve the same user recruitment result
as BUR. We can straightforwardly get the following theorem:

Theorem 7: SUR is correct, and it can also produce a (1+
ln γ)-approximation solution, where γ=maxui∈Uf({ui}).

Moreover, we can also prove that the SUR protocol is secure
against any semi-honest adversaries.

Theorem 8: SUR can protect the sensing qualities of each
user from being revealed to any κ semi-honest adversaries and
the platform, even if they might collude, where κ (i.e., the
degree of polynomial sharing) may be any integer less than n.

Proof: First, SecMulti and SecCmp are secure according
to [10], [11]. Further, according to Eqs. 12 and 13 and the com-
position security theorem in [5], SecMax and SecMin are
also secure. Thus, we only need to prove that SUR is secure by
itself. Without loss of generality, we consider any κ users, de-
noted by I={ui1 , · · · , uiκ}⊂U , and construct the view of each
user uit ∈I, i.e., V IEWit . Going through the whole protocol,
we have mit = {qi,j [it], bi[it], Qj [it], x[it], y[it], z[it], xz[it]}
and V IEWit =({qit,j , n,m, θ}, r,mit). Consider all received
messages mi1 , · · · ,miκ in V IEWi1 , · · · , V IEWiκ where the
number of shares of each secret is no larger than κ. According
to Shamir’s secret sharing scheme, these shares cannot give
any information about the secrets. That is to say, each received
message can be simulated by a number randomly chosen
from Zp. Thus, Eq. 1 holds for SUR. Then, according to the
composition security theorem in [5], the whole protocol is
secure. Thus, this theorem is correct. �

V. EXTENSION

Although the total sensing quality of a task in many ap-
plications can be seen as the sum of the sensing quality of
each recruited user performing this task, as calculated in Eq.
2, there still are some cases in which the total sensing quality
of a task might be calculated in other ways. For generality,

we extend the total sensing quality to be a general function,
denoted by Qj(Φ):

Qj(Φ),Q(qi,j |ui∈Φ), (14)

where Q(·) is a general function about qi,j . For example, if
the sensing quality qi,j represents the probability of successful
sensing, Q(·) may be defined as their joint probability, i.e.,
Qj(Φ)=1−

∏
ui∈Φ(1−qi,j).

When we extend the total sensing quality from Qj to Qj(Φ),
the second constraint in the problem formalization, i.e., Eq.
5, will become Qj(Φ) ≥ θ, the utility function will be-
come f(Φ)=

∑m
j=1min{Qj(Φ), θ}, and [Qj ], SecMin([qij ],

SecSub(θ, [Qj ])) in Protocol 2 will be replaced by [Qj(Φ)],
SecMin([Qj(Φ∪{ui,j})−Qj(Φ)], and SecSub(θ, [Qj(Φ)])),
respectively. After the extension, Eq. 5 becomes a non-linear
constraint, and computing the utility function f(Φ) becomes a
little complicated. Despite this, Protocol 2 can still work well.
More specifically, we have:

Theorem 9: When Qj(Φ) in Protocol 2 is a trivial function
that can be securely computed by using the secure operations
in Definition 4, Protocol 2 will still be secure.

Proof: In Theorem 8, all parts except the process of comput-
ing Qj(Φ) in Protocol 2 have been proven to be secure. Now,
if Qj(Φ) can also be securely computed, the whole protocol
will be secure according to the composition security theorem
in [5]. �

Theorem 10: When Qj(Φ) is an increasing submodular
function with Qj(Φ=∅)=0, we have: 1) the utility function
f(Φ) is still submodular; 2) Protocol 2 can still produce a
(1+ln γ)-approximation solution where γ=maxui∈Uf({ui}).

Proof: See Appendix C. �

VI. EVALUATION

We evaluate the SUR protocol mainly from two aspects.
One is the user recruitment performance, i.e., the number of
recruited users. Another is the time efficiency. Here, we will
not evaluate the security and communication time of SUR
since the security has been verified by theoretical analysis,
and the communication time depends on the communication
delay of wireless networks and communication rounds, which
have also been precisely derived by theoretical analysis.

A. Evaluate the User Recruitment Performance

To evaluate the user recruitment performance, we conduct
the SUR protocol and two compared protocols on syntheti-
cal traces. The compared protocols, simulation settings, and
results are presented as follows:

Compared Protocols. Existing user recruitment protocols or
algorithms involve various crowdsensing models, constraints,
and optimization objectives. Most of them adopt the greedy
strategy to recruit users (e.g., [6], [7], [9]). In these works, the
users who can accomplish all sensing tasks with minimum
costs are recruited first. Meanwhile, these users are subject
to the constraints of some mobility models. A few works
have also discussed the issues of sensing quality (e.g. [15]),
however, they are still different from ours. For comparison,
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Fig. 3. Number of recruited users vs. number of users and tasks (p = 30,
σ=0.4, θ=100, and ρ=20)

TABLE II
EVALUATION SETTINGS

parameter name default range
number of users n 200 100-500
number of tasks m 100 50-250
average sensing quality p 30 10-90
variance of sensing qualities σ 0.4 0.2-1.0
sensing quality threshold θ 100 50-250
largest number of tasks per user ρ 20 15-35

we borrow the basic strategy by ignoring the other constraints
in these works to design two compared user recruitment
protocols, which are applicable to our model. We call the
first protocol MCUR, in which the user who can perform the
most tasks is recruited first. Another protocol is denoted as
MQUR, in which the user who performs tasks with the most
sensing qualities is recruited first. Together, the two compared
protocols and our SUR protocol constitute the three most
typical greedy user recruitment strategies.

Simulation Settings. For the simulations, synthetical traces
are adopted, in which we can evaluate the user recruitment
performance with different parameters as needed, while ig-
noring users’ mobility models. More specifically, we consider
six parameters, including the number of users n, the number
of tasks m, the average sensing quality (denoted by p), the
variance of sensing qualities (denoted byσ), the sensing quality
threshold θ, and the largest number of tasks performed by
each user (denoted by ρ). In each simulation, we change one
parameter while keeping the other parameters fixed. The range
and default values of each parameter are illustrated in Table
II. In all simulations, each user ui randomly selects a value
from (0, ρ] as the number of tasks that he/she can perform.
For each selected task sj , the sensing quality qi,j is set as a
value randomly chosen from a range [(1−σ)p, (1+σ)p].

Evaluation Results. Fig. 3 depicts the number of recruited
users vs. different numbers of users and tasks. The results show
that the number of users recruited by SUR is much smaller
than MCUR and MQUR. Moreover, when the number of tasks
increases, more users are recruited. When we increase the
number of users, less users are recruited. This is because when
more candidate users emerge, there may be better selections
than before, so fewer users are required to accomplish the
same tasks. We record the number of recruited users while
changing the other four parameters, as shown in Figs. 4 and
5. The results also prove that SUR has a much better perfor-
mance than MCUR and MQUR. Moreover, when we increase
either the average sensing quality or the largest number of
tasks performed by each user, the number of recruited users
decreases.
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Fig. 4. Number of recruited users vs. average sensing quality and variance
(n=200, m=100, θ=100, and ρ=20)
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Fig. 5. Number of recruited users vs. sensing quality threshold and largest
number of tasks performed by each user (n= 200, m= 100, p= 30, and
σ=0.4)

B. Evaluate the Time Efficiency

To evaluate the time efficiency of SUR, we run SUR and
two compared protocols on real smartphones. The compared
protocols, settings, and the results are presented as follows:

Compared Protocols. Besides the secret sharing schemes,
the homomorphic encryption and garbled circuit protocols can
also be utilized to solve the privacy-preserving user recruit-
ment problem [5]. Therefore, we design two other secure
user recruitment protocols for comparison: Homomorphic-
Encryption-based User Recruitment (HEUR) protocol and
Garbled-Circuit-based User Recruitment (GCUR) protocol. In
HEUR and GCUR, we turn each secure multi-party mul-
tiplication operation among n users to n(n−1)

2 secure two-
party multiplication operations, and we use the homomorphic
encryption and garbled circuit protocols to conduct these
secure two-party multiplication operations.

Experiment Settings. To evaluate time efficiency, we realize
and run SUR and the compared protocols on a real smart
phone with a 2.0GB memory and a processor of 4-core 2.2GHz
plus 4-core 1.5GHz. We record the execution time of SUR,
HEUR, and GCUR in this smart phone, while ignoring the
communication time. During the execution, we use another
smart phone to simulate the remaining (n−1) users.

Evaluation Results. We run the SUR, HEUR, and GCUR
protocols in the smartphones by changing the number of users
from 5 to 9, while setting m= 6, p= 8, σ= 0.4, θ= 15, and
ρ=m. The results are depicted in Fig. 6(a). When the number
of users is larger than 8, HEUR cannot work well in the real
smartphone since its run time has exceeded 105 ms. GCUR
performs even worse than HEUR. Even 5 users can result in
a run time of over 106 ms. In contrast, the run time of SUR
is far less than that of HEUR and GCUR in magnitudes. As
shown in Fig. 6(b), when the number of users is 50 and the
number of tasks is 20, the execution time of SUR is less than
150s. It can work well in real smartphones.
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VII. RELATED WORKS

Most works about mobile crowdsensing focus on the user
recruitment or task allocation problems [6], [7], [9], [13]. For
example, M. Karaliopoulos et al. propose two greedy heuristic
algorithms to recruit some mobile users who can perform
location-related sensing tasks with a minimum cost [9]. Z.
He et al. in [7] propose a greedy approximation algorithm
and a genetic algorithm for the user recruitment problem in
vehicle-based crowdsensing, which can achieve nearly optimal
spatial and temporal coverage with a limited budget. S. He et
al. in [6] considered the maximum net reward task allocation
problem with the constraint of time budgets. L. Pu et al. in [13]
advocate a mobile crowdsourcing paradigm called Crowdlet in
which the service quality based on keywords is considered. A.
Chatterjee et al. in [1] studied the task allocation problem, in
which each task might include multiple steps, and each step
requires different skills.

So far, only a few works have studied the privacy issues
in mobile crowdsensing systems. For example, Q. Wang et
al. in [17] investigated the problem of continuous real-time
spatiotemporal crowd-sourced data publishing, and design a
privacy-preserving online data publishing scheme based on
differential privacy. G. Zhuo et al. in [21] propose a privacy-
preserving verifiable data aggregation and analysis scheme
based on homomorphic encryption for cloud-assisted mobile
crowdsourcing. In this scheme, the data is aggregated, en-
crypted, and stored in the cloud, which can be verified by
using homomorphic encryption techniques. X. Jin et al. in
[8] present a framework for a crowdsourced spectrum sensing
service provider that selects spectrum-sensing participants, in
which the differential privacy scheme is adopted to prevent the
locations of mobile participants from being revealed. However,
none of these investigate the privacy-preserving problem in the
user recruitment process.

VIII. CONCLUSION

We propose a secure user recruitment protocol, called SUR,
for sensing-quality-aware mobile crowdsensing systems. SUR
adopts a greedy strategy based on a utility function to recruit
users and uses secret sharing schemes to protect users’ privacy.
We prove that SUR can produce a solution with a logarithmic
approximation ratio, and it can protect the inputs of each user
from being revealed to the platform or to other users, even if
they might collude. The simulation results show that SUR can
work well in real smartphones.
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Appendix
A. Proof of Theorem 4

To prove the submodular property of f(Φ), we consider two
cases:

Case 1: user uh cannot deal with task sj , i.e., qh,j=0. For
this case, we have



min{
∑

ui∈Φ1∪{uh}
qi,j , θ}−min{

∑
ui∈Φ1

qi,j , θ}=

min{
∑

ui∈Φ2∪{uh}
qi,j , θ}−min{

∑
ui∈Φ2

qi,j , θ}=0 (15)

Case 2: user uh can perform task sj , i.e., qh,j>0. We divide
this case into two sub-cases:

∑
ui∈Φ1∪{uh} qi,j≤

∑
ui∈Φ2

qi,j
and

∑
ui∈Φ1∪{uh} qi,j>

∑
ui∈Φ2

qi,j .
For the first sub-case, since Φ1⊆Φ2, we have

∑
ui∈Φ1

qi,j≤∑
ui∈Φ1∪{uh} qi,j ≤

∑
ui∈Φ2

qi,j ≤
∑
ui∈Φ2∪{uh} qi,j . Then,

we can get:

min{
∑

ui∈Φ1∪{uh}
qi,j , θ}−min{

∑
ui∈Φ1

qi,j , θ}

=


qh,j , θ≥

∑
ui∈Φ2∪{uh} qi,j ;

qh,j ,
∑
ui∈Φ2∪{uh} qi,j>θ≥

∑
ui∈Φ2

qi,j ;

qh,j ,
∑
ui∈Φ2

qi,j>θ≥
∑
ui∈Φ1∪{uh} qi,j ;

θ−
∑
ui∈Φ1

qi,j ,
∑
ui∈Φ1∪{uh} qi,j>θ≥

∑
ui∈Φ1

qi,j ;

0 , θ<
∑
ui∈Φ1

qi,j .

(16)

min{
∑

ui∈Φ2∪{uh}
qi,j , θ}−min{

∑
ui∈Φ2

qi,j , θ}

=


qh,j , θ≥

∑
ui∈Φ2∪{uh} qi,j ;

θ−
∑
ui∈Φ2

qi,j ,
∑
ui∈Φ2∪{uh} qi,j>θ≥

∑
ui∈Φ2

qi,j ;

0 ,
∑
ui∈Φ2

qi,j>θ≥
∑
ui∈Φ1∪{uh} qi,j ;

0 ,
∑
ui∈Φ1∪{uh} qi,j>θ≥

∑
ui∈Φ1

qi,j ;

0 , θ<
∑
ui∈Φ1

qi,j .

(17)

Comparing Eqs. 16 and 17, we have:

min{
∑

ui∈Φ1∪{uh}
qi,j , θ}−min{

∑
ui∈Φ1

qi,j , θ}≥

min{
∑

ui∈Φ2∪{uh}
qi,j , θ}−min{

∑
ui∈Φ2

qi,j , θ} (18)

Similarly, for the second sub-case, we can still derive Eq.
18. In summary, we can conclude that Eq. 18 holds for all
cases. Now, according to Eq. 8, we have:

f(Φ1 ∪ {uh})− f(Φ1)≥f(Φ2 ∪ {uh})− f(Φ2). (19)

Therefore, f(Φ) is a submodular function.

B. Proof of Theorem 6
To analyze the approximation ratio of the proposed protocol,

we first prove that our user recruitment can be re-formalized
as a Minimum Submodular Cover with Submodular Cost
(MSC/SC) problem.

Lemma 1: The user recruitment problem can be re-
formalized as an MSC/SC problem. Specifically, we have:

1) if the problem is solvable, it can be re-formalized as
Minimize{|Φ||f(Φ)=f(U),Φ⊆U}; (20)

2) both f(Φ) and |Φ| are polymatroid functions on 2U , i.e.,
both of them are increasing submodular functions, and
f(Φ)=0, |Φ|=0 when Φ=∅.

Proof: 1) If the user recruitment problem is solvable, the
user set U must be a feasible solution, since this set contains all
users. According to Theorem 3, f(Φ)=mθ iff Φ is a feasible
solution. Therefore, if Φ is another feasible solution, we must

have f(Φ)=f(U)=mθ. That is to say, the constraint in Eq. 5
can be equivalently replaced by f(Φ) = f(U). Therefore, the
user recruitment problem can be re-formalized as Eq. 20.

2) According to Theorems 2 and 4, f(Φ) is an increas-
ing submodular function with f(∅) = 0. Thus, f(Φ) is a
polymatroid function on 2U . On the other hand, for two
arbitrary user sets Φ1 and Φ2, |Φ| satisfies the equation:
|Φ1|+ |Φ2| = |Φ1∩Φ2|+ |Φ1∪Φ2|. This means that Φ| is a
modular function, which also implies the submodular property.
Moreover, it is easy to verify that |Φ| is an increasing function
with |Φ=∅|=0. Thus, |Φ| is also a polymatroid function.

Therefore, the lemma holds. �
Second, we introduce a lemma about the approximation

ratio of MSC/SC problems, which is derived from [16].
Lemma 2: For an MSC/SC problem like Minimize{|Φ|

|f(Φ)=f(U),Φ⊆U}, if f(Φ) is a polymatroid integer-valued
function on 2U and |Φ| is a modular function, the greedy
strategy in Protocol 1 can achieve a (1+ln γ)-approximation
solution, where γ=maxui∈Uf({ui}).

Now, we derive the approximation ratio of the proposed
protocol. According to Lemma 1, our user recruitment problem
can be re-formalized as an MSC/SC problem. Moreover,
according to Theorem 4, we have that f(Φ) is a polymatroid
integer-valued function on 2U . Additionally, in the proof of
Lemma 1, we have shown that |Φ| is a modular function.
Therefore, according to Lemma 2, the greedy strategy in
Protocol 1 can achieve a (1 + ln γ)-approximation solution,
where γ=maxui∈Uf({ui}). The theorem holds.

C. Proof of Theorem 10
1) Consider two arbitrary user sets Φ1 and Φ2, Φ1⊆Φ2, and

∀uh∈U\Φ2, we need to prove the submodular property holds,
i.e., f(Φ1∪{uh})−f(Φ1)≥f(Φ2∪{uh})−f(Φ2). To prove this, we
adopt the same method as that in Theorem 4: 1) for the case
qh,j=0, we have min{Qj(Φ1∪{uh}), θ}−min{Qj(Φ1), θ}=
min{Qj(Φ2∪{uh}), θ}−min{Qj(Φ2), θ}=0; 2) for the case
qh,j > 0 and Qj(Φ1)≤Qj(Φ1∪{uh})≤Qj(Φ2)≤Qj(Φ2∪
{uh}), when θ > Qj(Φ2 ∪{uh}), we have (min{Qj(Φ1 ∪
{uh}), θ} −min{Qj(Φ1), θ})− (min{Qj(Φ2 ∪ {uh}), θ} −
min{Qj(Φ2), θ}) = (Qj(Φ1 ∪{uh})−Qj(Φ1))− (Qj(Φ2 ∪
{uh})−Qj(Φ2)) > 0, due to the submodular property of
Qj(Φ); 3) for other cases, it is straightforward to get a
similar result as that in Theorem 4. Thus, we have that
(min{Qj(Φ1∪{uh}), θ}−min{Qj(Φ1), θ})−(min{Qj(Φ2∪
{uh}), θ}−min{Qj(Φ2), θ}) ≥ 0 holds for all cases, which
implies f(Φ1∪{uh})−f(Φ1)≥f(Φ2∪{uh})−f(Φ2). Therefore,
f(Φ) is submodular.

2) Since Qj(Φ) is an increasing submodular function with
Qj(Φ = ∅) = 0, f(Φ) is also an increasing function with
f(Φ = ∅) = 0 according to Eq. 8. Part 1 has proven that
f(Φ) is submodular. Therefore, when we replace Qj by using
Qj(Φ), the problem can still be re-formalized as an MSC/SC
problem. Moreover, f(Φ) is a polymatroid integer-valued
function on 2U . Further, according to Lemma 2, Protocols 1
and 2 can achieve a (1+ln γ)-approximation solution, where
γ=maxui∈Uf({ui}). The theorem is correct.


