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Optimal, and Reliable Communication in Hypercubes
Using Extended Safety Vectors
Jie Wu, Feng Gao, Zhongcheng Li, and Yinghua Min, Fellow, IEEE

Abstract—We propose a new coding method of limited global
fault information in an -cube. First, each node collects precise
fault information within distance- , and then fault information
about nodes that are more than distance- away is coded in a spe-
cial way. Specifically, in our approach, each node in a cube-based
multicomputer of dimension is associated with an extended
safety vector of bits. In the extended safety vector model, each
node knows fault information within distance-2; fault information
outside distance-2 is coded in a special way based on the coded
information of its neighbors. The extended safety vector of each
node can be easily calculated through 1 rounds of information
exchanges among neighboring nodes. Therefore, each extended
safety vector is an approximated measure of the number & distri-
bution of faults in the neighborhood. Optimal unicasting between
two nodes is guaranteed if the th bit of the safety vector of the
source node is one, where is the Hamming distance between
the source & destination nodes. In addition, the extended safety
vector can be used as a navigation tool to direct a message to its
destination through a minimal path. A simulation study has been
conducted based on different selections of , and results have
shown a significant improvement under the proposed model over
the safety vector model in handling link faults, even for a small
value of as in the extended safety vector model where = 2.

Index Terms—Fault-tolerant routing, generalized hypercubes,
multicomputers, reliable communication, safety vectors.

ACRONYMS1

OP Optimal
SubOP Sub-optimal
VLSI Very Large Scale Integration
MIMD Multiple Instructions and Multiple Data

NOTATION

-dimensional hypercubes ( -cubes)
, Nodes ,

Source node
Destination node
Message
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1The singular and plural of an acronym are always spelled the same.

Neighbor of along dimension
Safety level of
Safety vector of
Extended safety vector of
A set of faulty paths of length 2 initiated from node
Hamming distance between &
Exclusive OR operation

Navigation vector

I. INTRODUCTION

MANY experimental, and commercial multicomputers
use direct-connected networks with the grid topology.

The binary hypercube is one of the most popular grid structures.
An -dimensional hypercube ( -cube) consists of exactly
processors that can be addressed distinctly by -bit binary
numbers. Two nodes are directly connected by a link iff their
binary addresses differ in exactly one bit position. Several
research systems have been built in the past two decades,
including NCUBE-2 [2], Intel iPSC [10], and the Connection
Machine [6]. The more recently built SGI Origin 2000 uses a
variation of the hypercube topology.

Efficient interprocessor communication is vital to the perfor-
mance of a multicomputer. Unicasting is one-to-one communi-
cation between two nodes; one is called the source node, and
the other the destination node. With the rapid progress in VLSI
& hardware technologies, the size of computer systems has in-
creased tremendously, and the probability of processor failure
has also increased. As a result, building a reliable multicom-
puter has become as desirable as building an efficient multicom-
puter, particularly in the subsystem that handles interprocessor
communication. Among different routing (unicast) schemes, the
classical -cube routing is simple to implement and provides
high throughput for uniform traffic; however, it cannot handle
even simple node or link faults due to its nonadaptive routing.
Bypassing faulty components (nodes/links) in a system when
routing a message is an important aspect of reliable communi-
cation. Adaptive & fault-tolerant routing protocols have been
the subject of extensive research [4], [5], [9]. A general theory
of fault-tolerant routing is discussed in [3].

Limited-global-information-based routing is a compro-
mise between local-information-based, and global-informa-
tion-based approaches. In a local-information-based approach,
each node makes its decision based on local information; that is,
it uses fault information from its neighborhood. In a global-in-
formation-based approach, each node makes its decision based
on global information. In a limited-global-information-based
approach, each node makes its decision based on a limited
amount of global fault information. Depending on how limited
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global information is defined & collected, a routing algorithm
of this type normally obtains an optimal or suboptimal solution,
and it requires a relatively simple process to collect & maintain
fault information in the neighborhood. Such information is
called limited global information. By optimal routing, we mean
that each unicast reaches each destination through a minimal
path (i.e., the length of each path is equal to the Hamming
distance between the source, and destination). Therefore, an
approach of this type can be more cost effective than the ones
based on global information [11], or local information [1], [7].

One simple but ineffective limited-global-information-based
approach is to use distance- information whereby each node
knows the status of all components within distance- . However,
optimality cannot be guaranteed, as a routing process could pos-
sibly go to either a state where all minimal paths are blocked
by faulty components or a dead end where backtracking is re-
quired. In addition, each node has to maintain a relatively large
table containing distance- information.

Another limited-global-information-based approach is based
on coded fault information, where each node has the exact in-
formation for adjacent nodes, and information for other nodes
is coded in a special way. Then an optimal/suboptimal routing
algorithm is proposed based on the coded information associ-
ated with each node. The following is a summary of different
coding methods in an -cube, all primarily designed to cover
node faults.

• Lee & Hayes’ [8] safe, and unsafe node concept. A Non-
faulty node is unsafe iff there are at least two unsafe or
faulty neighbors. Therefore, each node is labeled (coded)
faulty, unsafe, or safe.

• Wu & Fernandez’ [14] extended the safe node concept.
This relaxes certain conditions of Lee & Hayes’ defi-
nition. Each node is still labeled faulty, unsafe, or safe.
However, a different definition is given: A nonfaulty
node is unsafe iff there are two faulty neighbors or
at least three unsafe or faulty neighbors. Xiang [15]
applied the Lee & Hayes’ model to each -cube,
generating safety states for each node.

• Wu’s safety level [13] concept. Each node is assigned a
safety level , . A node with a safety level

is called safe, and a faulty node is assigned with
the lowest level 0. Therefore, there are possible
labels for a node in the safety level model.

• Wu’s safety vector [12] concept. Each node is associ-
ated with a binary vector. The bit value of the th bit
corresponds to the routing capability to nodes that are
distance- away. The safety vector is a refinement of the
safety level model.

The effectiveness of a coding method is measured by the fol-
lowing:

1. How fast fault information can be collected (coded) at
each node.

2. How accurately the coded fault information represents
the real fault distribution in terms of optimal routing ca-
pability.

Both safe/unsafe, and extended safe/unsafe models require
rounds of information exchanges in an -cube to label

(code) all the nodes. Both safety level, and safety vector need
only rounds of information exchanges. The order, in
terms of accurately representing fault information, is the fol-
lowing: safe/unsafe, extended safe/unsafe, safety level, and
safety vector. The safety vector is the latest model that has
the merits of simplicity, and a wide-range of fault coverage.
Optimal unicasting between two nodes is guaranteed if the th
bit of the safety vector of the source node is one, where is the
Hamming distance between the source & destination nodes.
In addition, the safety vector can be used as a navigation tool
to direct a message to its destination through a minimal path.
However, this model is still relatively inefficient at handling
link faults. Basically, a link fault is considered by other nodes
as node fault(s) by treating the two end nodes of the link as
faulty. Each end node of a faulty link treats the other one as
faulty, but they do not consider themselves faulty. This overly
conservative approach generates many faulty nodes, which
severely diminish the routing capability of the system. Note
that there are many types of link faults. One type is the network
link fault, and another type is the network interface fault, e.g.,
a failure in a particular network port in the router.

In this paper, we propose a new coding methodology. It is
assumed that each node has precise information for the fault
distribution within a given distance . Fault information out-
side distance is coded as in the safety vector model. We select

as an example, and the corresponding model is called an
extended safety vector. Simulation results show a significant im-
provement when using the proposed model in terms of optimal
routing capability in a hypercube with faulty links, compared
with the one using the original safety vector model. We also
show that the selection of is an effective choice, and its
results stay very close to that of using global fault information,
i.e., . It is assumed that the hypercube multicomputer is
operated in an asynchronous MIMD mode. The extended safety
vector at each node is determined based on those of its neigh-
bors through asynchronous exchanges, and updates.

This paper is organized as follows: Section II defines some
notation, and preliminaries. The safety level, and safety vector
models are also reviewed. Section III proposes the concept
of extended safety vector. Section IV illustrates this concept
through several examples, and provides several related prop-
erties. Section V presents an optimal/suboptimal unicasting
algorithm based on the extended safety vector concept. Sec-
tion VI shows the results of our simulation study.

II. PRELIMINARIES

A. Hypercubes

An -cube is a graph having nodes labeled from 0
to . Two nodes are joined by a link if their addresses, as
binary numbers, differ in exactly one bit position. More specif-
ically, every node has an address with

, , and is called the th bit (dimen-
sion) of the address. We denote node as the neighbor of
along dimension . is calculated by setting or resetting the
th bit of . For example, . This notation can

be used to set or reset the th bit of any binary string. A faulty
-cube includes faulty nodes and/or links. A faulty -cube may
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or may not be disconnected depending on the number, and lo-
cation of faults. A path connecting two nodes & is called a
minimal path (also called a Hamming distance path) if its length
is equal to the Hamming distance between these two nodes. An
optimal (or minimal) routing is one that always generates a min-
imal path. In general, optimal routing has a broader meaning
that signifies it always generates a shortest path, not necessarily
a minimal one, among the available ones. It is possible that all
minimal paths are blocked by faults. In this case, a shortest
(available) path is not a minimal one. In this paper, the above
situation will never occur, and we use the terms shortest & min-
imal interchangeably.

The distance between two nodes & is equal to the
Hamming distance between their binary addresses, denoted
by . Symbol denotes the bitwise exclusive OR op-
eration on the binary addresses of two nodes. Clearly,
has value 1 at bit positions corresponding to
distinct dimensions. These dimensions are called pre-
ferred dimensions, and the corresponding nodes are termed
preferred neighbors. The remaining dimensions
are called spare dimensions, and the corresponding nodes are
spare neighbors. A minimal path can be obtained by using
links at each of these preferred dimensions in some
order. For example, suppose , and ; then

. Therefore, dimensions 4, 3, 2
are preferred dimensions, and dimension 1 is a spare dimen-
sion. Among neighbors of , nodes 1101, 0001, and
0111 are preferred neighbors; node 0100 is a spare neighbor.
Any path from to that uses links at
dimensions 4, 3, and 2 in some order is a minimal path, e.g.,

is a minimal path from 0101
to 1011. The above path can be simply represented as (0101,
0001, 1001, 1011).

B. Safety Level, and Safety Vector

Let us first review the concepts of safety level, and safety
vector. Safety level, and safety vector are respectively the scalar,
and the vector associated with each node in a given -cube. They
provide coded information about faults in the neighborhood.

Definition 1 [13]: The safety level of a faulty node is 0. For
a nonfaulty node , let ,

, be the nondecreasing safety level sequence of node ’s
neighboring nodes in an -cube, such that ,

. The safety level of node , , is defined as: if
,2 then

; else if
, then .

In the above definition, it is assumed that all faults are node
faults. To extend this definition to cover link faults, both end
nodes of a faulty link have to be assigned a safety level of 0
in order to be consistent with the original safety level definition.
The safety vector concept is a refinement of the safety level con-
cept by providing routing capability to destinations at different
distances. More specifically, each node in an -cube is as-
signed a safety vector . Assume that

2seq � seq iff each element in seq is greater than or equal to the corre-
sponding element in seq .

is the safety vector , ’s
neighbor along dimension .

Definition 2 [12]:

• The safety vector of a faulty node is . If node
is an end node of a faulty link, the other end node will

be registered with a safety vector of at node
.

• Base for the first bit:

if node u is an end-node of a faulty link
otherwise.

• Inductive definition for the th bit:

otherwise.

Note that in the safety vector model, faulty links are treated
as follows. Each end node of a faulty link treats the other one
as faulty, but it does not consider itself faulty. This faulty link
model is called the conservative faulty link model.

In the safety level (vector) model, a node in an -cube is said
to be safe if its safety level is (i.e., ); otherwise,
it is unsafe. Two properties are related to safety levels & safety
vectors:

Property 1: If the safety level of a node is ,
then there is at least one Hamming distance path from this node
to any node within Hamming-distance- .

Property 2: Assume that is the safety
vector associated with node in a faulty -cube. If ,
then there exists at least one Hamming distance path from node

to any node that is exactly Hamming-distance- away.
Based on the above two properties, it is clear that a safe node

in both models can reach any destination node (which is within
Hamming distance , the diameter of the cube) through a min-
imal path. The safety vector model is an improvement on the
safety level model. It can provide more information, which is
also more accurate, about the number, and distribution of faults
in an -cube. In terms of the number of safe nodes, any given
cube contains at least as many safe nodes under the safety vector
model as under the safety level model. Both safety vectors, and
safety levels, are calculated through rounds of information
exchanges among neighboring nodes. An optimal unicasting be-
tween two nodes is guaranteed if the th bit of the safety vector
of the source node is one (this bit is set), where is the Ham-
ming distance between the source & destination nodes. Again,
unicasting based on the safety vector model can also be used
in disconnected hypercubes by distinguishing infeasible routing
from feasible ones. In [12], it is shown that the safety vector con-
cept can be extended to other cube-based multicomputers, such
as generalized hypercubes. However, the safety vector concept
still cannot effectively present faulty link information. Actually,
it is not clear that an efficient coding method exists under the as-
sumption that each node has only neighbor information.

Fig. 1 shows an example of a 3-cube with one faulty node, and
two faulty links. In this example, the safety level of each node is
either 0 or 1, i.e., a source node can only send a message to its
neighbors. Clearly, by inspection, the safety level information is
not accurate.
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Fig. 1. An example of a faulty 3-cube with its safety level, and safety vector
assignments.

Node 111 should be able to send a message to node 100
through a shortest path (111-101-100). When node 101 (with
an adjacent faulty link) is treated as faulty (labeled 0), such
a shortest path cannot be identified. Therefore, a conservative
node labeling scheme is more likely to disable some shortest
paths. In fact, nodes 110, 101, and 111 can send messages to any
nodes that are distance-2 or -3 away through minimal paths. Ide-
ally, these nodes should be labeled with a safety level of 2. This
problem is partially resolved in the safety vector model, where
the safety vectors associated with nodes 110, and 111 are (0, 1,
0), and (1, 0, 1), respectively. Nodes 001, 100, and 101 still have
the lowest safety level (0, 0, 0). The reason that node 101 has a
0-bit at the 2nd bit of its safety vector is that it has two neighbors
100, and 001 that both have a 0-bit as the 1st bit of their safety
vectors. However, the two corresponding faulty links (100, 110),
and (101, 001) do not span on the same dimension, and hence
these two faulty nodes will not block all the minimal paths ini-
tiated from node 101 to a node that is distance-2 away. Based
on the above analysis, the direction of each fault (especially link
fault) is needed to provide accurate information about fault dis-
tribution. However, this approach will dramatically increase the
requirements for memory space, and the complexity of code. A
compromise is therefore needed.

III. EXTENDED SAFETY VECTORS

A. Proposed Model

In this paper, we propose a new approach to code fault in-
formation. In general, a good coding method is generated on
the soundness of its base. In all existing approaches, the base
is founded on neighbor information only. For both the safety
level, and safety vector models, the above method is proved to
be effective for node faults, but not for link faults. Our approach
consists of the following two steps (see Fig. 2):

1. Each node knows the exact fault information within dis-
tance- .

2. Fault information about nodes that are outside distance-
is coded in a special way.

In this paper, we show an application of the proposed model
on ; that is, each node knows fault information within dis-

Fig. 2. A new approach to code information.

tance-2. Information about faults that are more than distance-2
away are coded. We show that is sufficient to handle link
faults, and there is no need to select a larger . This statement
will be confirmed by our simulation results later. This approach
is called extended safety vectors, where the first two bits of an
extended safety vector (for a node) represent accurate fault in-
formation, and other bits are coded based on the th
bit of its neighbors. Note that the regular safety vector model
is a special case of this approach where . However, the
regular safety vector model cannot accurately represent a faulty
link with one end node adjacent to the current node, and the
other end node distance-2 away. The location of such a faulty
link can be precisely determined in the model where . Re-
sults of our simulation show a dramatic improvement for this
approach over the safety vector model in handling link faults.

B. Extended Safety Vectors

Let be the extended safety vector
of node , and be the extended
safety vector of node , ’s neighbor along dimension . We
have the following inductive definition of extended safety vector

.
Definition 3:

• The safety vector of a faulty node is . If node
is an end node of a faulty link, the other end node will

be registered with a safety vector of at node
.

• Base for the first bit: if node can reach any
neighbor, i.e.,

if node is an end-node of a faulty link
otherwise.

• Base for the second bit: if node can reach
any nonfaulty, and faulty nodes that are two hops away
through a minimal path (a decision process will be dis-
cussed later); otherwise, .

• Inductive definition for the th bit, where :

otherwise.

In the extended safety vector model, in addition to the in-
formation of adjacent links & nodes, each node has complete
information about the adjacent links of its neighbors.
(or ) indicates the existence of a minimal path to non-
faulty nodes that are one hop (or two hops) away. For the case
of (or ), such a minimal path may or may not
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exist; but for a given source-destination pair one or two hops
apart, its existence can be easily verified based on distance-2 in-
formation. We use coded information for destinations that are
more than two hops away. Therefore, for the case of
with , the actual existence of a minimal path for a given
source-destination pair cannot be verified; that is, pro-
vides a sufficient condition for the existence of a minimal path
to a distance- node, but not a necessary condition.

To determine , node needs to keep faulty paths of length
2 initiated from node , i.e., a path along which there exists at
least one faulty link or node. A faulty path can
be simply represented by a dimension sequence . Clearly,
an adjacent faulty link or node along dimension can be repre-
sented as , where . That is, any

path , where , is a faulty path of length
2. If both the adjacent link, and the node along dimension are
healthy[41], but there are adjacent faulty links along dimensions
in , where is a subset (including empty set) of , the cor-
responding faulty paths can be represented as . Note that
information about is passed from node to node . In
general, each node in an -cube has exactly pairs of ,
denoted as . Some
correspond to healthy paths, where is an empty set.

Note that the complexity of the safety vector, and the ex-
tended safety vector models are the same in term of the number
of rounds of message exchanges. The only difference is in the
second round for determining the second bit. In the extended
safety vector model, each node exchanges the adjacent link set
of each neighbor. Therefore, the size of that particular message
is . The size of the corresponding message in the regular
safety vector model is .

Theorem 1: for node iff there exist &
in such that & , where
is an empty set.

Proof: There are two node-disjoint paths from node to
another node that is distance-2 away. Suppose these two nodes
“span” on dimensions & . Clearly, a path of length 2 from
node to node is , and another is . cannot reach

iff is in (i.e., that path is faulty), and is in
. In this case, we have , and .

Fig. 3 shows the value of node for four sample fault
distributions. In the example of Fig. 1, if , then

. Based on the above theorem,
the second bit of the safety vector associated with node 111
is 1. The extended safety vector of node in an

-cube can be calculated through rounds of information
exchanges among neighboring nodes.

Calculating extended safety vectors:
1. In the first round, node determines based on the

statuses of its adjacent links, and then exchanges ad-
jacent link & node status with all its neighbors.

2. In the second round, node constructs , which is
a list of faulty paths of length 2 based on the informa-
tion collected in the first round. is determined based
on , and then exchanges with all its neighbors.

3. In the th round , node uses all the in-
stances of collected in the previous round to de-

Fig. 3. The u value for different fault distributions: (a) u = 0, (b) u = 1,
(c) u = 1, and (d) u = 0.

termine , and then exchanges with all its neigh-
bors.

4. In the th round, node uses all the instances of
collected in the previous round to determine .

Theorem 2: The extended safety vector of each node in an
-cube can be determined through rounds of information

exchanges between adjacent nodes.

IV. EXAMPLES AND PROPERTIES

In the example of Fig. 1, the extended safety vectors for nodes
0 to 7 are (1, 1, 1), (0, 1, 1), (1, 1, 1), (0, 0, 0), (0, 1, 1), (0,
1, 1), (0, 1, 1), and (1, 1, 1), respectively. Fig. 4 shows an ex-
ample of a faulty 4-cube with two faulty nodes 0001, and 1011;
and two faulty links (0000, 0010), and (1100, 1101). The safety
vector of each node is shown for both the safety vector, and ex-
tended safety vector (on top) models. The safety level of each
node is placed inside each node. Nodes 0001, and 1011 have an
extended safety vector (0, 0, 0, 0); nodes 0010, 1100, and 1101
have an extended safety vector (0, 1, 1, 1); 0011 has (1, 0, 1,
1); 0000 has (0, 0, 1, 1); and the remaining nodes have a safety
vector (1, 1, 1, 1). Table I shows a round-by-round calculation
of the safety vector, and extended safety vector of each node in
Fig. 4. Note that for this example, three rounds (including the
initial assignment) of information exchanges are needed for the
safety vector model, and two rounds of information exchanges
are needed for the extended safety vector model.
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TABLE I
THE CALCULATION OF THE SAFETY VECTOR, AND EXTENDED SAFETY VECTOR OF EACH NODE IN THE 4-CUBE OF FIG. 4. (a) INITIAL EXTENDED SAFETY VECTOR

ASSIGNMENTS; (b) EXTENDED SAFETY VECTORS AFTER THE FIRST ROUND; (c) EXTENDED SAFETY VECTORS AFTER THE SECOND ROUND

Fig. 4. A faulty 4-cube with two faulty nodes, and two faulty links.

In the following, we show several properties related to ex-
tended safety vectors.

Theorem 3: Assume that is the extended
safety vector associated with node in a faulty -cube. If

, then there exists at least one Hamming distance path from
node to any node which is exactly Hamming-distance- away.

Proof: We prove this theorem by induction on . If
(where ), then there is no adjacent faulty link. Clearly node

can reach all the neighboring nodes, faulty, and nonfaulty. If
(where ), based on the definition of , there is a

minimal path to any destination that is distance-2 away from the
source. Assume that this theorem holds for ; i.e., if
there exists at least one Hamming distance path from node
to any node which is exactly Hamming-distance- away. When

, if , then , which
means that there are at most neighbors which have 0 at the
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th bit of their safety vectors. Therefore, among preferred
neighbors, there is at least one neighbor, say node , that has its
th safety bit set. Based on the induction assumption, there is at

least one Hamming distance path from node to any destination
node, say , which is Hamming-distance- away. Connecting the
link from node to node to the path originated from node to
destination node , we construct a Hamming distance path from
node to destination node which is Hamming-distance-
away.

Next, we show that the extended safety vector is better than
the regular safety vector in terms of accurately representing
fault information (Fig. 4 is such an example). Consider a vertex

in an -cube with safety vector ,
and extended safety vector . The ex-
tended safety vector is said to cover the safety vector at node if

for all . Intuitively, if covers at
the th bit, then the routing based on the extended safety vector
has at least the same routing capability as one based on the safety
vector to all destinations that are distance- away.

Theorem 4: For any given -cube, covers for
any node in the cube.

Proof: We assume that a general node in a given cube
is represented as , with as ex-
tended safety vector, and with as
safety vector. We prove the theorem by induction on in bit

for all nodes in the cube. When , has the same defi-
nition as for all nodes. Clearly, . When , based
on Property 2, means that there is a minimal path to any
node that is distance-2 away. On the other hand, iff there
is a minimal path to any node that is distance-2 away. Hence, if

, then . The reverse condition normally does
not hold. [43]Therefore, covers . Assume that the theorem
holds for , i.e., for all . When ,

, if , and if

. Based on the fact that

for all , where ,

implies , i.e., implies
.

V. FAULT-TOLERANT ROUTING

A. Basic Idea

The routing algorithm is similar to the one in [12]. Suppose
that source node , with safety vector , intends
to forward a message to a node that is Hamming-distance-
away. is the safety vector of neighbor .
Optimality is guaranteed if the th bit of its safety vector is 1

, or one of its preferred neighbors (along dimension )
has a th bit of 1, i.e., , . Routing
starts by forwarding the message to a preferred neighbor where
the th bit of its safety vector is one. This node in turn
forward the message to one of its preferred neighbors that has
1 in the th bit of its safety vector, and so on. If the opti-
mality condition fails but there exists a spare neighbor that has
one in the th bit of its safety vector, the message is first

forwarded to this neighbor, and then the optimal routing algo-
rithm is applied. In this case, the length of the resultant path is
the Hamming distance plus two. We call this result suboptimal.

B. Routing Algorithms

The routing process consists of two parts: unicas-
ting_at_source_node is applied at the source node to decide
the type of the routing algorithm, and to perform the first routing
step. unicasting_at_intermediate_node is used at an interme-
diate node. In the proposed routing process, a navigation vector,

, is used. It is the relative address between the source
& destination nodes. This vector is determined at the source
node, and it is passed to a selected neighbor after resetting or
setting the corresponding bit in . Upon receiving a routing
message, each intermediate node first calculates its preferred,
and spare neighbors based on the navigation vector associated
with the message. If this intermediate node is distance-
away from the destination node (this distance can be determined
based on the number of set bits in the navigation vector), a
preferred neighbor which has 1 in the th bit of its safety vector
is selected. When a node receives a message with an empty
navigation vector, it identifies itself as the destination node by
terminating the routing process, and by keeping a copy of this
message. Note that, at the source node, if the conditions for
both optimal & suboptimal routing fail, the proposed algorithm
cannot be applied. This failure state can be easily detected at
the source node. The cause of failure could be either too many
faults in the neighborhood or in a network partition.

Algorithm uni-casting_at_source_node
begin

; ;
if
( (or 2) a healthy 1-hop (or

2-hop) path along dimension exists)
then optimal_unicasting:

send to , where ,
and
else if

then suboptimal_unicasting:
send to , where

else failure
end.

Algorithm
unicasting_at_intermediate_node
begin
{at any intermediate node with mes-

sage , and navigation vector }
if
then stop
else send to , where
, and
end.

Note that if the th bit of the extended safety vector of the
source node is 0, it may still be possible to find a minimal path
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for a distance- destination, as long as one of its preferred neigh-
bors has its th bit set. In the example of Fig. 3, suppose
node 1000 sends a message to its distance-2 destination 1101.
The regular safety vector of node 1000 is (1, 0, 0, 1), and the ex-
tended safety vector is (1, 1, 1, 1). Clearly, there is no difficulty
finding a minimal path under the extended safety vector model.
The regular safety vector model can still find a minimal path in
this case, because one of the preferred neighbors of the source
has its 1st bit set. That is, the message reaches the destination
via node 1001 (with a safety vector of (1, 0, 0, 1)).

For , when source & destination are neighbors, as
long as their connecting link is healthy, optimal routing is still
possible even when in the extended safety vector of the
source. Similarly for , when optimal routing is decided
based on distance-1 & distance-2 information (rather than the
extended safety vector), optimal routing is possible if a healthy
2-hop path exists from to (even when , and
for all neighbors).

Consider another routing example with source 1000, and
destination 0011 (which is distance-3 away from the source).
A minimal path can be easily determined under the extended
safety vector model, because source 1000 is a safe node.
However, a minimal path cannot be found using the regular
safety vector model. This is because the 3rd bit of the safety
vector of the source is 0, and because the 2nd bit of the safety
vectors of all its preferred neighbors (1010, 0100, and 1001)
is 0. This example also demonstrates that the extended safety
vector model is strictly more powerful than the regular safety
vector model.

VI. PERFORMANCE EVALUATION

The simulation study focuses on the following four aspects.

1. Percentage of optimal/suboptimal routing.
2. Comparison of safety vector, and extended safety vector

in terms of routing capability.
3. Percentage of safe nodes, and safe neighbors.
4. Performance results when (other than ),

i.e., each node knows the exact fault information that is
within distance- .

The percentage of optimal routing is measured by the prob-
ability of an optimal routing using the proposed approach for
two randomly selected source, and destination nodes. Again, an
optimal routing to a distance- destination is possible if
for the source node, or for the source node’s preferred
neighbor along dimension . In addition, suboptimal routing is
feasible, if for the source node’s spare neighbor along
dimension . When the source & destination nodes are separated
by one or two hops, optimal routing can be decided directly from
the distance-1 & distance-2 information at the source node. Note
that a minimal path may exist even when & are both zero.

When a source node is safe, it indicates the existence of an
optimal routing from the source to any destination node. When
a neighbor is safe, at least there exists a suboptimal routing from
the source to any destination node.

The routing capabilities of the safety vector, and extended
safety vector models are compared mainly under the above two
measures. Tables II and III show simulation results for 8-cubes,

TABLE II
PERCENTAGE OF OPTIMAL, AND SUBOPTIMAL ROUTING UNDER DIFFERENT

MODELS. (a) WHEN ALL FAULTS ARE NODE FAULTS IN 8-CUBES. (b)
WHEN HALF FAULTS ARE NODE FAULTS IN 8-CUBES. (c) WHEN ALL

FAULTS ARE LINK FAULTS IN 8-CUBES

and 10-cubes, respectively. We did not include large cubes with
a dimension over 10, because most commercial systems do not
scale over dimension 10. In addition, we can deduce results
for large cubes from those of 8-cubes, and 10-cubes as will be
shown later. Each table contains three sub-tables for three dif-
ferent distributions of faults: (a) represents cases of all faults
being node faults; (b) for half faults being node faults, and the
other half being link faults; and (c) for all faults being link faults.
Within each cube, for a given number of faults, these faults
are randomly generated based on the specified distribution of
link & node faults. We selected 100 different fault distributions
for each case. For a given fault distribution, we randomly se-
lected 200 000 source & destination pairs. The percentage of
actual optimal routing is also reported (in the second column
of each sub-table). This also corresponds to cases when global
fault information is given, i.e., . The percentage of op-
timal routing, when distance-3 information is given, is shown in
the third column of each sub-table.

Based on the results in Tables II and III, the percentage of
optimal routing under the extended safety vector model (when

) stays very close to the one with global information (when
) for all cases. That is, the model for is sufficient.

Note that when all faults are node faults, the safety vector, and
the extended safety vector models are the same. However, as
the percentage of link faults increases, the results for the safety
vector model deteriorate quickly, especially for large numbers
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TABLE III
PERCENTAGE OF OPTIMAL, AND SUBOPTIMAL ROUTING UNDER DIFFERENT MODELS. (a) WHEN ALL FAULTS ARE NODE FAULTS IN 10-CUBES. (b) WHEN HALF

FAULTS ARE NODE FAULTS IN 10-CUBES. (c) WHEN ALL FAULTS ARE LINK FAULTS IN 10-CUBES

of faults. For example, when there are 75 link faults (no node
fault) in a 10-cube, the percentage of optimal routing is only
35.8212 percent. For the extended safety vector model, the per-
centage of optimal routing remains high, even when there is
a high percentage of link faults. The columns under “Total”
represent the summation of percentages of optimal, and sub-
optimal routings, i.e., the percentage of the applicability of the
proposed approach. It is expected that fault tolerance capability
increases as the dimension of the hypercube increases; that is,
for the same number of faults, the percentage of optimal, and
suboptimal routing increases as the dimension increases. In con-
clusion, the conservative faulty link model used in the regular
safety vector model does not handle faulty links effectively, es-
pecially when there is a large number of faults; whereas the pro-
posed extended safety vector can handle faulty links effectively
without increasing the complexity of the original safety vector
model.
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