Minimum Latency Broadcasting with Conflict Awareness in Wireless Sensor Networks

Presenter: Zhen Jiang
Department of Computer Science
West Chester University
West Chester, PA 19335, USA
E-mail: zjiang@wcupa.edu
Outline

- Introduction
- Target Problem
- Our Approach
- Experimental Results
- Conclusion & Future Work
Introduction

- Apply pipeline to optimize the broadcasting performance in wireless sensor networks
 - Broadcasting is not a new problem
 - Existing methods adopt hop distance based flooding
- Broadcasting in wireless sensor networks
 - Conflict (by interference)
 - Color scheme
 - Color selection
 - Back-off delay
Sample of back-off delay and its impact
The problem is not trivial!

- Cannot be solved by using
 - Neighbor node degree
 - Pre-determined pair of sender and receiver
 - Network diameter or hop distance
Target Problem

- Can we pipeline the relays so that the back-off delay along the critical path can be reduced?
Goals

• The optimal solution for minimum latency broadcasting, by given the network deployment?
 ◦ Greedy color scheme?
 ◦ \((1 + \varepsilon)\)–estimation?
 ◦ Hop distance?

• A more effective solution in the localized & distributed manner
Our approach

- Heuristic method is needed to find an optimal solution.
- To find a propagation in a color so that no other color selection can achieve better (faster) solution

\[P(S) = \min\{t\} \]

subject to:
\[t = M(\{s\}, ts) \]
\[M(N, t) = t - 1, \text{ activity ends} \]
\[M(W, t) = M(W + A(W, t), t + 1) \] where A is the receivers of selected color relays
\[A(W, t) = \{N(u) \mid \forall u \in C_s(w) \land 1 \leq j \leq \lambda(W) \} \]
\[M(W + C_s(W), t+1) \leq M(W + C_j(W), t+1) \]
• Color scheme: (e.g., Cs, Cj)
 ◦ A valid progress in information propagation
 ◦ Interference-freedom among all nodes in the same color
 ◦ Conflict with a node in other colors (necessity of being labeled).
(a) data sending/receiving (b) color node (c) interference block/wait

<table>
<thead>
<tr>
<th>Task $B(W, t)$, # of rounds</th>
<th>$\bigcup C_i$</th>
<th>$\bigcup B$ in consideration</th>
<th>C_S</th>
<th>$S(W, t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$B({1}, 1)$</td>
<td>$C_1 : {1}$</td>
<td>$B({1, 2, 3}, 2)$</td>
<td>C_1</td>
<td>${2, 3}$</td>
</tr>
<tr>
<td>$B({1, 2, 3}, 2)$</td>
<td>$C_1 : {2}$</td>
<td>$B(N, 3)$</td>
<td>C_1</td>
<td>${4, 5}$</td>
</tr>
<tr>
<td>$B(N, 3) = 2$</td>
<td>$C_2 : {3}$</td>
<td>$B({1, 2, 3, 4}, 3)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B({1, 2, 3, 4}, 3)$</td>
<td>$C_1 : {2}$</td>
<td>$B(N, 4)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$B(N, 4) = 3$</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Properties

- Optimal performance
- \(2 + \text{(hop distance)}\)
Extension under the greedy coloring scheme:

- A new constraint:
 - The more receivers it connected, the earlier this sender will be labeled in the color scheme.
Duty cycle system

- Round -> slot
<table>
<thead>
<tr>
<th>Task $\mathbb{B}(W, t)$, # of rounds</th>
<th>$\bigcup C_i$</th>
<th>$\bigcup \mathbb{B}$ in consideration</th>
<th>C_S</th>
<th>$S(W, t)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathbb{B}({1}, 2)$</td>
<td>$C_1 : {1}$</td>
<td>$\mathbb{B}({1, 2, 3}, 3)$</td>
<td>C_1</td>
<td>${2, 3}$</td>
</tr>
<tr>
<td>$\mathbb{B}({1, 2, 3}, 3)$</td>
<td>N/A</td>
<td>$\mathbb{B}({1, 2, 3}, 4)$</td>
<td>N/A</td>
<td>ϕ</td>
</tr>
<tr>
<td>$\mathbb{B}({1, 2, 3}, 4)$</td>
<td>$C_1 : {2}$</td>
<td>$\mathbb{B}(N, 5) = 4,$</td>
<td>C_1</td>
<td>${4, 5}$</td>
</tr>
<tr>
<td></td>
<td>$C_2 : {3}$</td>
<td>$\mathbb{B}({1, 2, 3, 4}, 5)$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{B}({1, 2, 3, 4}, 5)$</td>
<td>N/A</td>
<td>$\mathbb{B}({1, 2, 3, 4}, 6)$</td>
<td>N/A</td>
<td>ϕ</td>
</tr>
<tr>
<td>...</td>
<td>...</td>
<td>...</td>
<td></td>
<td></td>
</tr>
<tr>
<td>$\mathbb{B}({1, 2, 3, 4}, \xi + 3)$</td>
<td>$C_1 : {2}$</td>
<td>$\mathbb{B}(N, \xi + 4) >> 4$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
• Costly?
• A cost-effective method is needed (in both round-based and duty cycle systems).
Each node has four regions

For each region, a node has a metric value H (i.e., distance to the edge of network in this region): $H(u) = 1 + \min \{ H(v) \}$
To find C_s

$$B(W + C_s(W), t + 1) \leq B(W + C_j(W), t + 1)$$

$C_s = C_j$ where $u \in C_j$ has the largest H in neighborhood
Experimental Results

- Round based system

![Experimental Results Graph](chart.png)
Experimental Results

- Duty cycle system (10%)
Conclusion

- Some new insights brought by pipeline
 - Effectiveness of greedy coloring scheme
 - Consideration of hop distance
 - Problem in pre-determined end set in process
- Optimal solution
- A better estimation solution with the consideration of the computational complexity and cost
Future Work

- Localized color scheme
- A more effective localized & distributed solution
- The broadcasting optimization with other constraints such as energy and traffic throughput
- Extension in other cyclic network deployments (e.g., vehicle networks)
Thank you!

- Questions and Comments