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Abstract—Mobile CrowdSensing (MCS) is a promising
paradigm that recruits mobile users to cooperatively perform
various sensing tasks. When assigning tasks to users, most
existing works only consider the fairness of users, i.e., the user’s
processing ability, with the goal of minimizing the assignment
cost. However, in this paper, we argue that it is necessary to
not only give full use of all the users’ ability to process the
tasks (e.g., not exceeding the maximum capacity of each user
while also not letting any user idle too long), but also satisfy
the assignment frequency of all corresponding tasks (e.g., how
many times each task should be assigned within the whole system
time) to ensure a long-term, double-fair and stable participatory
sensing system. Hence, to solve the task assignment problem
which aims to reasonably assign tasks to users with limited
task processing ability while ensuring the assignment frequency,
we first model the two fairness constraints simultaneously by
converting them to user processing queues and task virtual
queues, respectively. Then, we propose a Fair Task Assignment
Strategy (FTAS) utilizing Lyapunov optimization and we provide
the proof of the optimality for the proposed assignment strategy
to ensure that there is an upper bound to the total assignment
cost and queue backlog. Finally, extensive simulations have been
conducted over three real-life mobility traces: Changchun/taxi,
Epfl/mobility, and Feeder. The simulation results prove that the
proposed strategy can achieve a trade-off between the objective of
minimizing the cost and the fairness of tasks and users compared
with other baseline approaches.

Keywords-Task assignment, Lyapunov optimization, Fairness,
Mobile CrowdSensing

I. INTRODUCTION

With the rapid development of smart devices embedded with
various sensors, Mobile CrowdSensing (MCS) [1] has become
a hot sensing paradigm in recent years and has facilitated
large-scale data collection [2]. In MCS, the mobile users
with smart devices (e.g., smartphones) [3] can ubiquitously
collect information and perform various sensing tasks, such
as monitoring traffic, air quality, and wireless signal strengths
[4] [5] [6]. In most cases, in order to complete more tasks
with less cost, we should assign tasks to suitable users, which
raises the fundamental task assignment problem in MCS.

So far, there has been a large amount of research [7] [8]
[9] devoted to task assignment with the optimization objective
of maximizing the amount of assigned tasks or minimizing
assignment cost. Obviously, assigning more tasks leads to
a higher assignment cost. Hence, some studies focus on
making a trade-off between assignment cost and the amount
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Fig. 1: An example to illustrate the task assignment problem
with the purpose of minimizing total assignment cost while
taking both task’s and user’s fairness into consideration.

of assigned tasks [10] [11] [12]. However, the task assign-
ment approaches in these studies only pay attention to total
assignment cost and the total amount of assigned tasks, and
do not consider each task’s required assignment frequency
or each user’s processing ability, which we regard is unfair
to both the task and the user. In other words, the user’s
processing ability is usually limited which means that too
many tasks assigned to him in a certain period may cause
overload and of course is unfair to the user. On the other hand,
the large number of assigned tasks does not indicate that each
task has good assignment frequency, which means that these
approaches also cannot guarantee the fairness of the task. In
order to address the above problems, some researches consider
the fairness in task assignment [13] [14] [15] [16], however,
they only consider the fairness of users such as cost-fair and
participation-fair and ignore that of tasks.

Consider a crowdsensing scenario as shown in Fig. 1. The
platform publishes some location-based tasks and we regard
the distance between user and task as the cost of completing
a task. The whole system time is divided into t time slots,
and each task needs to be assigned a certain number of times
within the whole system time in order to collect enough data
to satisfy each task’s assignment frequency. At the same time,
in a time slot, each user can be assigned a limited number
of tasks, which cannot exceed user’s processing ability. In



order to minimize the assignment cost, an easy idea is that
we could assign tasks (such as task1) which are nearest to
users in each time slot. However, in this way, some tasks
may be assigned too many times, while the other tasks have
no chance to be assigned, which breaks the fairness of tasks.
Similarly, some users may be continuously assigned tasks and
overloaded soon. This also breaks the fairness of users. Fig. 1
provides an example for the fairness of users and tasks, instead
of assigning task1, we first assign task2 and task3 because
they have more tasks in the assignment queue (task fairness).
When assigning task2, we prefer to assign it to user3 rather
than user2, even though user2 is closer to task2 than user3.
This is because that the number of tasks assigned to user2
almost exceeds his processing ability (user fairness). Above
all, the problem to be addressed in this paper is to propose a
fair task assignment strategy in each time slot with the purpose
of minimizing the total assignment cost while taking both the
user and task fairness into consideration.

To deal with the proposed fair task assignment problem, we
need to address the following challenges. Firstly, considering
the objective of minimizing the total assignment cost, it is
hard to model the fairness of users and tasks simultaneously.
Second, our problem is actually a three-objective optimization
problem, i.e., a trade-off between the assignment cost mini-
mization and the fairness of users and tasks. It is not easy to
find a solution to minimize the cost while maintaining fairness.
Furthermore, it is more challenging to find a bound for the
three-objective optimization problem between our approach
and the optimal solution.

In this paper, to model the two fairness constraints simulta-
neously while minimizing the cost, we convert the fairness of
users and tasks into user processing queues and task virtual
queues, respectively. Then we change the fairness problem
of assigning the tasks to users with fairness into assigning
the tasks while maintaining the double queues stability. Thus,
we formulate a Fair Task Assignment Problem (FTAP), which
aims to minimize the cost and stabilize the double queues.
Then, to solve the above three-objective optimization problem,
we introduce Lyapunov optimization technical, which can
make control decisions in a dynamic system with no prior
knowledge of the platform and can achieve the objective
while maintaining the queue stability. We jointly consider
the double queues by expanding the traditional single queue
based on original optimization model and propose a Fair Task
Assignment Strategy (FTAS) to achieve a trade-off between
minimizing the total assignment cost while maintaining the
queue stability. Finally, to show the gap between our approach
and the optimal solution, we achieve an upper bound between
them through a rigorous mathematical proof, which also
illustrates that the approach is effective at minimizing the
assignment cost as well as maintaining the queue stability.

Our contributions can be summarized as follows:
• We model the two fairness constraints of users and tasks

simultaneously through converting them to user process-
ing queues and task virtual queues, respectively. We
formulate a Fair Task Assignment Problem (FTAP) which

aims at minimizing the objective of assignment cost and
maintaining the double queues stability simultaneously.
As far as we know, this is the first work taking both
fairness of users and tasks into consideration.

• We propose a Fair Task Assignment Strategy (FTAS)
utilizing Lyapunov optimization to achieve a trade-off
between minimizing the assignment cost and maintain-
ing the queue stability by jointly addressing the double
queues.

• We analyze the performance of the proposed fair task
assignment strategy. We also find the upper bound of the
total cost and queue backlog.

• Extensive simulations are conducted on three realistic
data sets. Compared with the baseline approaches, the
proposed approach is proven to achieve cost minimization
while maintaining queue stability.

The remainder of this paper is organized as follows: in
Section II, we review some related work. We introduce the
system model and formulate the problem in Section III. In
Section IV, we design a Fair Task Assignment Strategy (FTAS)
to address the problem with the objective of minimizing the
assignment cost. Section V illustrates the performance of the
proposed strategy and simulations are evaluated in Section VI.
Finally, a brief conclusion is given in Section VII.

II. RELATED WORK

A. Fairness in mobile crowdsensing

There has been some effort to solve the fairness problem
for task assignment in mobile crowdsensing and mobile social
networks. Peng et al. [13] presented a novel fair energy-
efficient assignment framework which focused on both energy
efficiency and fairness by making one control decision in each
time slot. Sun et al. [14] concentrated on the cost-fair task
assignment (CFA) problem in nondeterministic MCS scenar-
ios, and designed two algorithms to balance the sensing cost
of users and satisfy the data reliability requirement. In order
to provide the long-term participation incentive, Gao et al.
[15] proposed a Lyapunov-based VCG auction policy for the
on-line sensor selection. Sooksatra et al. [16] formulated the
sustainability problem as an optimization problem maximizing
providers proportionally fair utilities with respect to their
multi-dimensional fairness factors, and designed a fairness-
aware auction mechanism to incentive sensory-data providers.
However, these studies only consider unilateral fairness, either
the platform or users. Different from the above research, we
consider the fairness for both users and tasks. Furthermore, we
also utilize Lyapunov optimization technique in a novel way
in which we deal with the problem of fair task assignment.

B. Lyapunov-optimization-based resource assignment strategy

In recent years, there has been much research which aims at
solving resource assignment problems by utilizing Lyapunov
optimization. Combining Lyapunov optimization technique
with the weight perturbation, Fang et al. [17] introduced a
stochastic control algorithm to achieve both profit optimality
and system stability. Zhang et al. [18] proposed a Top-Down



TABLE I: Main Notations Throughout The Paper

Symbol Meaning
S,U the sets of tasks and users, respectively.
k the number of tasks.
u the number of users.
t the t-th time slot.
Pi(t), Qj(t) the task virtual queue backlog of task si and the user

processing queue backlog of user uj in time slot t.
si, uj the i-th task , the j-th user.
Yi invalid threshold for si.
xij [t] whether to assign task si to user uj .
dj(t) the processing ability of user uj .
Z(t) the vector of all queue backlogs in time slot t.
cij(t) the distance between the location of task si and

mobile user ui in time slot t.
u(t) the total assignment cost quantified by distance in

time slot t.
L(t) Lyapunov function to measure the size of the joint

queue backlog.
∆L(t) the one-slot conditional Lyapunov drift function.

Optimal Control Module (TDOC) based on Lyapunov opti-
mization to address the task assignment problem for Quality of
Service (QoS) objective of the application in edge computing
systems. Tian et al. [19] used a Lyapunov optimization frame-
work for their online control policy in crowdsensing system
to optimize the time average sensing utility as well as system
stability. Yao et al. [20] proposed a two time scale control
algorithm based on Lyapunov optimization, which aims at
reducing power cost and optimizing the trade-off between
the power cost and delay in geographically distributed data
centers. Liu et al. [21] utilized a schedule algorithm based
on Lyapunov drift -plus-penalty framework to maximize the
system throughput of the secondary user (SU), while satisfying
different kinds of constraints to be involved under the time-
varying channel and traffic conditions. To solve the problem of
mobile users’ workload offloading, Liu et al. [22] proposed a
Lyapunov optimization framework to maximize the offloading
utility while ensuring the queue stability. Fang et al. [23]
designed an online control algorithm based on Lyapunov
optimization framework to optimize the trade-off between
system throughput and energy consumption. Han et al. [24]
proposed a profit maximizing algorithm for crowdsensing
platforms by utilizing Lyapunov optimization technique. It
achieves a time average profit which is arbitrarily close to the
optimum and maintains strong stability. The above research
either only considered just one queue, or even if there were
double queues, the control strategy was made independently
for each queue. Different from the above research, we consider
double queues, i.e., the user processing queue and the task
virtual queue. We make one control decision in each time slot
to simultaneously keep both queues stable.

III. SYSTEM OVERVIEW AND PROBLEM
FORMULATION

A. System overview

First of all, we consider a system model in mobile crowd-
sensing which aims at task assignment and also takes the
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Fig. 2: An example of the system model in our fair MCS
scenario.

concept of fairness into consideration. We assume that the
platform produces a set of tasks which are denoted by
S = {s1, s2, . . . , sk}, and these tasks will be geographically
mapped into different locations and there are a set of users
with mobile devices U = {u1, u2, . . . , un}.

As shown in the left part of Fig. 2, we divide the whole
system into t time slots, t ∈ {0, 1, 2, . . .}. In the system, the
platform continuously generates tasks and each task can only
be assigned to one user in each time slot t. We let xij [t] denote
whether to assign task si to user uj in time slot t, if the task is
assigned, xij [t] = 1, otherwise 0. cij(t) denotes the cost that
user uj processes task si which is quantified by the distance
between user uj’s location and task si’s location. Notably, the
cost can be measured in various ways, such as the length of
time a user takes to process a task, user’s expertise for a task,
etc. We just use the distance between tasks and users as a
measurement for simplicity to prove the universality of our
theory. First, we define the total cost of the task assignment
for mobile users in time slot t as follows:

u(t) =

k∑
i=1

n∑
j=1

cij(t) · xij [t]. (1)

As discussed above, we concentrate on the fairness of tasks
and users. For tasks, with the objective of minimizing the
assignment cost, a task may suffer from the scenario where
it is not assigned in time slot t because of its high cost. If
this scenario continues, the tasks’s assignment frequency will
not be satisfied and it thus causes unfairness. In this paper,
we use an indicator called assignment probability to reflet the
task assignment frequency, which is the probability of each
task being assigned. Specifically, there exists a threshold Yi
called the invalid threshold of task si. If task si’s assignment
probability is smaller than Yi, we consider the collected data
of task si is invalid. Therefore, to ensure the assignment
frequency of each task, the assignment probability of each
task should be no smaller than the invalid threshold, which is
described as follows:

Yi ≤ Di(Xi) =
1

T

∑
t∈T

n∑
j=1

xij [t],∀i ∈ k, (2)

where xij [t] ∈ {1, 0} and Xi represents the whole assignment



distribution of task si in all time slots and Di(Xi) denotes the
time average assignment probability of task si.

For users, as shown in the right part of Fig. 2, we use Qj(t)
to denote the processing queue backlog of user uj in time slot
t. The queue dynamic is defined as follows:

Qj(t+ 1) = max[Qj(t)− dj(t), 0] +

k∑
i=1

xij [t], (3)

where dj(t) denotes the processing ability of user uj in time
slot t, which is the amount of tasks data that the user uj
can deal with in time slot t. It is worth noting that although
the number of processed tasks in time slot t for each user
may be different, due to the computing restriction of the same
devices and the assumption that each task’s amount of data is
the same, we consider dj(t) is a fixed value for each user. As
dj(t) is limited, there exists dmax so that dj(t) ≤ dmax for
all users and all time slots.

∑k
i=1 xij [t] denotes the amount

of tasks assigned to user uj in time slot t. By the queue
stability theorem [25], the queue Qj(t) is stable only if the
amount of assigned tasks of user uj is less than or equal to
his processing ability in each time slot. This establishes an
equivalence between the constraint of users’ fairness and the
user queue stability. Thus, to maintain the fairness of users, we
need to ensure that the corresponding user processing queue
is stable under the proposed strategy. The main notations used
throughout this paper are illustrated in Table I.

B. Conversion of assignment frequency

As Lyapunov optimization is a widely used technique for
solving stochastic optimization problems with time average
constraints, we can utilize it to solve the problem in this paper,
i.e., the assignment cost minimization problem is a stochastic
optimization problem and the task assignment frequency con-
straint is a time average constraint. Therefore, similar to the
user processing queue, we use Lyapunov optimization tech-
nique to convert the constraint of task assignment frequency
into the task virtual queue. Furthermore, by maintaining the
stability of the task virtual queue, the constraint of task
assignment frequency is satisfied.

Firstly, we introduce the virtual queue Pi for task si. As
shown in the middle part of Fig. 2, the virtual queue is used
to buffer the virtual assignment request of each task. Here,
the virtual request is not actually initiated by tasks, it is used
to represent the requirement of the task assignment frequency
constraint. That is to say, one virtual request represents that
“to satisfy the constraint of task assignment frequency, the
task should be assigned in one additional time slot”. Thus,
the backlog of a task virtual queue denotes the total amount
of virtual requests in the queue (which may not actually be
an integer), which is also the total number of additional time
slots that the task should be assigned to users.

As mentioned above, each virtual request of task si will
come into the queue with a constant arrival rate of Yi.
We let x[i] denote whether task si is assigned or not in
time slot t, and its value is either 1 or 0. As previously

designed, the average assignment probability of task si is
Di(Xi) = 1

T

∑
t∈T

∑n
j=1 xij [t]. Once a request of task si

leaves the queue in time slot t, x[i] = 1, otherwise, x[i] = 0
and we let Di(Xi) denote the average departure rate.

Therefore, we convert the task assignment frequency con-
straint into a task virtual queue based on Lyapunov optimiza-
tion technique and let Pi(t) denote the queue backlog of
task si in time slot t. For task si, we combine the virtual
request (also called arrival rate) and the result of assignment
(departure) in each time slot t, so we have the following task
virtual queue dynamic:

Pi(t+ 1) = max[Pi(t)−
n∑
j=1

xij [t], 0] + Yi. (4)

Similar to the user processing queue, the queue Pi(t) is
stable only if the task arrival rate is less than or equal to
the departure rate, i.e., Yi ≤ Di(Xi). This establishes the
equivalence between the task assignment frequency constraint
and the queue stability. That is to say, to satisfy the task
assignment frequency constraint, we need to ensure the task
virtual queue is stable under our strategy. Besides, we use
Pi(t) = {Pi(t),∀i ∈ k} to represent the queue vector backlog
of all tasks.

Next, we improve the traditional Lyapunov optimization
technique by taking both the task virtual queue and the user
processing queue into consideration in this paper. We use Pi(t)
and Qj(t) to denote the queue backlog of task si and user
uj in time slot t, respectively. Let Z(t) = (Pi(t), Qj(t), i =
1, . . . , k, j = 1, . . . , n), t = 0, 1, . . . , denote all the queue
backlogs in time slot t. We use the following definition of
queue stability:

Z , lim
T→∞

sup
1

T

T−1∑
t=0

(

k∑
i=1

E{Pi(t)}+

n∑
j=1

E{Qj(t)}) <∞. (5)

Obviously, there is a necessary condition to maintain the
stability of the queue. According to the queue stability theorem
[25], the queue is stable if and only if the time average arrival
rates of all the tasks are no larger than the time average task
processing ability of all the users. If not, no matter what the
strategy is, the queue will never be stable. Thus, we have the
following condition:

lim
T→∞

1

T

T−1∑
t=0

k∑
i=1

Yi ≤ lim
T→∞

1

T

T−1∑
t=0

n∑
j=1

dj(t). (6)

In view of the previous description just consider the three
parts of Fig. 2 separately, we now describe the overall process
of it to make the structure of the entire system more clear. As
the platform generates tasks in each time slot t, there are two
fairness constraints for tasks (task assignment frequency) and
users (user processing ability) in the system. We first convert
these two fairness constraints to double queues, namely, the
task virtual queue and the user processing queue, according
to Lyapunov optimization. Then, we transform the problem
of satisfying the two fairness constraints into the problem



of satisfying the stability of the double queues, i.e., the task
virtual queue and the user processing queue, and we further
demonstrate the rationality of this conversion. At last, we
combine the double queues to form a joint queue, and we
propose the optimization problem in next part.

C. Problem formulation

After introducing the system model and converting the two
constraints of fairness to a joint queue, we focus on the task
assignment problem in fair mobile crowdsensing. First, we
define a time average assignment cost function:

u = lim
T→∞

1

T

T−1∑
t=0

E{u(t)}. (7)

u is the optimization objective which should be minimized
with the constraint of the joint queue stability as mentioned
above, and we formulate a Task Fair Assignment Problem
(FTAP) as follows:

Min : u (8)
s.t. xij [t] ∈ {1, 0}, ∀i,∀t

Z ≤ ∞.

Thus, according to the above optimization objective func-
tion, our primary goal is to find a task assignment strategy
by determining all the values of xij [t] in each time slot to
minimize the time average assignment cost, subject to the
above two constraints. The first constraint shows that the
values of xij [t] can only be 0 or 1. The second constraint
guarantees the stability of the joint queue which consists of
the task virtual queue and the user processing queue.

IV. THE LYAPUNOV OPTIMIZATION BASED
METHOD

After defining the problem above, in this section, we give
a Fair Task Assignment Strategy (FTAS) based on Lyapunov
optimization in detail. As previously described, Lyapunov opti-
mization [25] is widely used to solve problems which consider
both the system stability and the optimization objective. In re-
ality, it just makes the decision according to the current queue
backlog. To achieve the optimization objective of minimizing
the assignment cost while maintaining the queue stability,
in brief, the main approach is to first construct a drift-plus-
penalty function which consists of the queue backlog and the
optimization objective function. Then, we find its upper bound
theoretically. Lastly, this paper makes the assignment decision
to minimize the upper bound in each time slot.

Firstly, we define a Lyapunov function L(t) as follows:

L(t) ,
1

2
(

k∑
i=1

[Pi(t)]
2 +

n∑
j=1

[Qj(t)]
2). (9)

This function represents not only a scalar measure of the
task virtual queue congestion, but also the user processing
queue. Then, we introduce a one-slot conditional Lyapunov
drift, which represents the change in Lyapunov function from
one slot to the next, as follows:

∆L(t) , E{L(t+ 1)− L(t)|Z(t)}. (10)

The expectation here is taken over by the randomness of the
task request’s arrival rate and the assignment control action
in each time slot. Next, according to Lyapunov optimization,
we combine the Lyapunov drift with the objective function to
achieve a drift-plus-penalty term in time slot t:

∆L(t) + V · E{u(t)|Z(t)}. (11)

The control parameter V ≥ 0 is an important weight on
how much we emphasize the assignment cost minimization
compared to the system stability, which enables various trade-
offs between queue backlog stability and assignment cost min-
imization. Intuitively, the smaller the ∆L(t) and E{u(t)|Z(t)}
is, the better our expectations are. In the following part of this
section, we prove the upper bound and have the following
theorem according to the drift-plus-penalty function:

Theorem 1. (Drift-plus-penalty bound). In each time slot t,
for a given parameter V > 0, under any feasible control
decisions, the drift-plus-penalty expression has the following
upper bound :

∆L(t) + V · E{
k∑
i=1

n∑
j=1

cij(t) · xij [t]|Z(t)}

≤ D + E{
k∑
i=1

Pi(t)Yi|Z(t)} − E{
n∑
j=1

Qj(t)dj(t)|Z(t)}

+ E{
k∑
i=1

n∑
j=1

(Qj(t)−Pi(t) + V ·cij(t)) ·xij [t]|Z(t)}, (12)

where D = k
2 ·{(R

max
i )

2
+(Yi)

2}+ n
2 ·{(Xmax)2+(dmax)2}.

Proof: It is a ground truth in math that for any x ≥ 0, y ≥
0, z ≥ 0, (max[x− y, 0] + z)2 ≤ x2 + y2 + z2 − 2x(y − z).
according to this, we square both sizes of (4), and then we
can get:

P 2
i (t+ 1)− P 2

i (t)

= (max[Pi(t)−
n∑
j=1

xij [t], 0] + Yi)
2 − P 2

i (t)

≤ (

n∑
j=1

xij [t])
2 + (Yi)

2 − 2 · Pi(t)(
n∑
j=1

xij [t]− Yi)

≤ (Rmaxi )
2

+ (Yi)
2 − 2 · Pi(t)(

n∑
j=1

xij [t]− Yi). (13)

It is worth noting that
∑n
j=1 xij [t] ≤ Rmaxi = 1 and we

assume Yi is a constant. Then, similar to Pi(t), according to
(3) and the assumptions that 0 ≤

∑k
i=1 xij [t] ≤ Xmax and

0 ≤ dj(t) ≤ dmax, we have:



[Qj(t+ 1)]2 − [Qj(t)]
2

= (max[Qj(t)− dj(t), 0] +

k∑
i=1

xij [t])
2 −Q2

j (t)

≤ (dj(t))
2 + (

k∑
i=1

xij [t])
2 − 2Qj(t)(dj(t)−

k∑
i=1

xij [t])

≤ (Xmax)2 + (dmax)2 − 2Qj(t)(dj(t)−
k∑
i=1

xij [t])). (14)

Combining the above two equations, we can have the
following result:

{∆L(t)|Z(t)} ≤ D + E{
n∑
j=1

Qj(t)(

k∑
i=1

xij [t]− dj(t))|Z(t)}

+ E{
n∑
i=1

Pi(t)(Yi −
n∑
j=1

xij(t)|Z(t)}. (15)

D =
k

2
· {(Rmaxi )

2
+(Yi)

2}+n

2
· {(Xmax)2+ (dmax)2}.

(16)

Then, we take expectations on both sides of (15), and add
the term V · E{

∑k
i=1

∑n
j=1 cij(t) · xij [t]|Z(t)} to both sides

and simplify the terms. Theorem 1 is proven.
In order to minimize the time average cost while main-

taining the system stability, the objective is now to minimize
the upper bound of Theorem 1. The controller can observe
the current queue backlog of task virtual queues and user
processing queues, and Yi and dj(t) are known. We just need
to take the control action to minimize the last function to
minimize the upper bound:

E{
k∑
i=1

n∑
j=1

(Qj(t)− Pi(t) + V · cij(t)) · xij [t]|Z(t)}. (17)

We design a strategy called Fair Task Assignment Strategy
(FTAS) to minimize (17) as shown in Algorithm 1 and here,
we give a detailed illustration of it. For each task i ∈ T , we
need to find j∗ = argminj∈U (Qj(t) − Pi(t) + V · cij(t))
in time slot t. If (Qj∗(t) − Pi(t) + V · cij∗(t)) ≤ 0, we set
xij∗ [t] = 1, which means that the task si will be assigned to
user uj∗ in time slot t, otherwise, xij∗ [t] = 0. Meanwhile, for
other users j ∈ U−j∗ except j∗, we set xij [t] = 0.

This task assignment approach makes the control decision
in each time slot to guide the platform to assign tasks to the
most suitable users to minimize the time average assignment
cost while meeting the condition of the system stability. After
the assignment of all the tasks in time slot t, we update the
task virtual queues and the user processing queues.

Algorithm 1 Fair Task Assignment Strategy (FTAS)
Input: t: current time slot, S: a set of tasks, U : a set of

users with their mobility, Pi(t): the task virtual queue in
current time slot, Yi: the request rate in task virtual queue,
Qj(t): the user processing queue in current time slot.

Output: j∗: the user we selected to assign the task in time
slot t, xij∗ [t]: whether task i is assigned in time slot t.

1: for i ∈ T do
2: Find j∗ ∈ U which makes j∗ = argminj∈U (Qj(t)−
Pi(t) + V · cij(t));

3: if (Qj∗(t)− Pi(t) + V · cij∗(t)) ≤ 0 then
4: Set xij∗ [t] = 1;
5: else
6: Set xij∗ [t] = 0;
7: For other users j ∈ U−j∗ , we set xij [t] = 0;
8: Update Pi(t) and Qj(t);
9: return xij∗ [t]

V. OPTIMAL PERFORMANCE ANALYSIS
In this section, the performance analysis analyzes the gap

between the solution obtained by the proposed drift-plus-
penalty algorithm and the optimal solution (optimality gap).
Thus, to demonstrate the performance analysis, we first de-
scribe the optimal solution of the problem. Next, we analyze
our strategy’s performance in depth from the perspective of
the objective function of time average assignment cost and
the stability of double queues. To start, we define a strategy
for the problem:

Lemma 1. (U-only policy). This policy is also called the
stationary randomized algorithm, which makes the optimal
control action only based on the system current state and
hence is independent of the queue backlog [25]. In other
words, the stationary randomized algorithm in this paper
determines the value of xij [t] according to a conditional
probability distribution which depends on the task producing
rate, but is independent of the queue backlog Z(t).

Thus, it is obvious that the following theorem exists, which
can obtain the optimal time average assignment cost based on
u-only policy.

Theorem 2. (Optimal u-only policy). The optimal u-only
policy is a u-only policy, which means there is a policy θ
that can determine the values of all the xij [t] for i ∈ S and
j ∈ U in time slot t, while meeting the following conditions,
where α is a given task producing rate:

E
{
uθ(t)

}
= u∗(α), (18)

E{
n∑
j=1

xθij [t]} ≥ E {Yi} , (19)

E {dj(t)} ≥ E{
k∑
i=1

xθij [t]}. (20)



In reality, we assume that there exists an optimal u-only
policy for problem (8). This is a crucial assumption which
at least means that this problem has an optimal solution,
and the optimal u-only policy is a construction method that
provides the optimal solution. Actually, M.J.Neely [25] has
demonstrated that if the problem (8) has a solution, there
must be an optimal u-only policy. Here, we omit the proof
for brevity.

It is worth noting that in Theorem 2, (19) denotes that the
invalid threshold of the task should be less than or equal to the
assigned times, and (20) shows that the number of assigned
tasks for user uj should be less than or equal to user uj’s
processing ability. In addition, there also exists an arbitrary
u-only policy which is demonstrated in the lemma below:

Lemma 2. (Arbitrary u-only policy). We assume that there
exists an arbitrary u-only policy σ, which does not require
optimally that can determine the values of all the xij [t] for
i ∈ S and j ∈ U in time slot t, while meeting the following
conditions:

E {uσ(t)} = u?(α) ≥ u∗(α), (21)

E{
n∑
j=1

xσij [t]} − E{Yi} ≥ ε, (22)

E{dj(t)} − E{
k∑
i=1

xσij [t]} ≥ ε, (23)

where ε is a small positive number, u?(α) is the total assign-
ment cost under the arbitrary u-only policy σ, and uσ(t) is a
bounded function which satisfies that umin ≤ u?(α) ≤ umax.

Theorem 3. (Queue stability performance of the proposed
strategy). If we are given a task producing rate vector α
and an arbitrary u-only policy σ, then, we have the following
bounds of the queue stability, where u? is the time average cost
that can be achieved by arbitrary u-only policy that stabilizes
the queue:

Z , lim
T→∞

1

T
(

k∑
i=1

E{Pi(t)}+

n∑
j=1

E{Qj(t)}) ≤
D′

ε
, (24)

where D′ = D + V · (umax − umin).

Proof: According to Lemma 2, for α, there exists an
arbitrary u-only policy σ that satisfies the following:

∆L(t) + V · E{u(t)|Z(t)}

≤ D + E{
k∑
i=1

Pi(t)Yi|Z(t)} − E{
n∑
j=1

Qj(t)dj(t)|Z(t)}

+ E{
k∑
i=1

n∑
j=1

(Qj(t)− Pi(t) + V · cij) · xσij [t]|Q(t)}. (25)

Substituting the corresponding parts in (25) with (21), (22)
and (23), we have:

∆L(t) + V · E{u|Z(t)} ≤ D + V · E{u?(α)|Z(t)}

− εE{
k∑
i=1

Pi(t)|Z(t)} − εE{
n∑
j=1

Qj(t)|Z(t)}. (26)

As mentioned above that umin ≤ u?(α) ≤ umax, we
rearrange the terms and get:

E{L(t+ 1)− L(t)}+ εE{
k∑
i=1

Pi(t)}+ εE{
n∑
j=1

Qj(t)}

≤ D + V · (umax − umin). (27)

Here, we set D′ = D+V ·(umax−umin). D+V ·(umax−
umin) is a constant. So we have:

E {L(t+ 1)− L(t)}

≤ D′ − εE{
n∑
j=1

Qj(t)} − εE{
k∑
i=1

Pi(t)}. (28)

Summing (28) from t = 0 to T − 1, we get:

E {L(T )} − E {L(0)}

≤ T ·D′ − ε
T−1∑
t=0

E{
k∑
i=1

Pi(t)} − ε
T−1∑
t=0

E{
n∑
j=1

Qj(t)}. (29)

Due to the fact that L(0) = 0 and L(T ) ≥ 0, we rearrange
(29) and get:

ε

T−1∑
t=0

E{
k∑
i=1

Pi(t)}+ ε

T−1∑
t=0

E{
n∑
j=1

Qj(t)} ≤ T ·D′. (30)

By dividing both sides of (30) by ε · T and taking a limit as
T −→∞, we can obtain (24).

Theorem 4. (Cost performance of the proposed strategy). If
we are given a task producing rate vector α and an optimal
u-only policy θ, then, we have the following bounds of the
time average assignment cost, where u∗ is the optimal time
average cost that can be achieved by optimal u-only policy
that stabilizes the queue:

u , lim
T→∞

sup
1

T

T−1∑
t=0

E{u(t)} ≤ u∗ +
D

V
. (31)

Proof:
Similarly, using Theorem 1, Theorem 2 and the fact that

E {Qj(t) ≥ 0} for all j ∈ U and E {Pi(t) ≥ 0} for all i ∈ K,
we have:

E {∆L(t) + V · u(t)|Z(t)} ≤ D + V · E
{
uθ(t)|Z(t)

}
+ E{

k∑
i=1

n∑
j=1

xθij [t] ·Qj(t)|Z(t)} − E{
n∑
j=1

dj(t) ·Qj(t)|Z(t)}

+ E{
k∑
i=1

Pi(t) · Y in|Z(t)} − E{
k∑
i=1

n∑
j=1

xθij [t] · Pi(t)|Z(t)}.

(32)
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Fig. 3: Total cost with time slot on three data sets.
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Fig. 4: Total cost with task number on three data sets.

Furthermore, since the strategy does not depend on the
queue status, we have E

{
uθ(t)|Z(t)

}
= u∗(α), and based

on (19) and (20), we can get:

E {∆L(t) + V · u(t)|Z(t)} ≤ D + V · u∗(α). (33)

Summing (33) from t = 0 to T − 1, using the fact that
L(t) ≥ 0 for all t and dividing both sides by T · V , we have:

T−1∑
t=0

E {u(t)|Z(t)} ≤ D

V
+ u∗(α). (34)

Taking a limit as T →∞ for both sides of (34), we obtain
(31). Hence, Theorem 4 is proven.

By proving Theorem 3 and Theorem 4, we achieve the
upper bounds of the time average assignment cost and the
time average queue backlog. In addition, these two theorems
also illustrate that there is [O(1/V ), O(V )] trade-off between
the assignment cost and the queue backlog. Intuitively, with
a large enough V , the time average assignment cost achieved
by the proposed strategy can become infinitely close to the
optimum, but the queue backlog will be large.

VI. PERFORMANCE EVALUATION

A. Data sets

In this paper, we conduct simulations to evaluate the per-
formance of the task assignment strategies over three widely-
used real-world data sets: Changchun/taxi, Epfl/mobility, and
Feeder. For each user, we randomly select one GPS point
from his/her trajectory as the starting point in each time
slot. Moreover, we randomly select POI locations as the task
locations.
• Changchun/taxi contains the GPS data collected from

taxis in Chang Chun, China. We select 250 traces as used
data in our paper, each of which was collected from 8:00
to 20:00 in one day.

• Epfl/mobility [26] is a trace set of mobility data from
about 500 taxi cabs collected over 30 days in the San
Francisco Bay Area, USA.
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Fig. 5: Total cost with user number on three data sets.
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Fig. 6: Total cost with the change of V on three data sets.

• Feeder [27] contains four kinds of data: the smartphone
CDR data, smartcard data, taxicab GPS data, and bus
GPS data collected from Shen Zhen, China. We select
200 taxi traces as the data in this paper, each of which
has the continuous GPS records collected from the same
period of time, i.e., 8:00-18:00, for two days.

B. Baselines

To prove the effectiveness of our strategy, we utilize the
other following three task assignment strategies besides the
proposed strategy in the simulation:
• Fair Task Assignment Strategy (FTAS): The proposed

task assignment strategy in the paper, which is based on
Lyapunov optimization framework to guide the platform
to allocate the tasks in each time slot.

• Random Strategy (RANS): The platform randomly as-
signs each task to any user in each time slot.

• Lowest Queue Backlog Strategy (LQBS): The platform
assigns each task to the user with the lowest queue
backlog in each time slot.

• Lowest Cost Strategy (LCS): The platform assigns each
task to the nearest user in each time slot .

C. Simulation results

First, we analyze the indicator of the time average assign-
ment cost of the proposed strategy along with the time slot
t, the number of users, the number of tasks, and the growth
of V in Figs. 3-6. Fig. 3 shows that assignment cost changes
with the growth of time slot on three data sets. We observe
the queue backlog value in each of the 5 time slots. The
simulation results illustrate that LCS achieves the minimum
assignment cost as it guides the platform to assign the tasks to
their nearest users. Our proposed approach, FTAS, achieves
a higher cost than that of LCS, but much lower than that
of LQBS and RANS. Hence, FTAS maintains the system
stability with a low time average assignment cost. Next, we
investigate the impact of the number of tasks in Fig. 4 on the
time average assignment cost. Fig. 4(a) demonstrates the result
of the simulation conducted on Changchun/taxi, which shows
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Fig. 7: Total cost with user number and task number.
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Fig. 8: Task queue backlog with time slot on three data sets.

that the time average assignment costs of four task assignment
strategies increase along with the number of tasks. Similarly,
LCS achieves the lowest time average cost and FTAS incurs
more cost than that of LCS, but performs better than LQBS
and RANS, which aligns with our theoretical analysis. Since
the simulation results in Fig. 4(b) and Fig. 4(c) are similar to
that in Fig. 4(a), we do not give additional description here.
Finally, we give a description of the impact of the user number
on the time average assignment cost on three data sets. Taking
Fig. 5(a), which is conducted on Changchun/taxi as example,
we can observe that the time average assignment costs of
FTAS and LCS decrease with the growth of the number of
users. This is because as the number of users increases, there
are more chances for the platform to assign the tasks to nearer
users. LCS achieves the lowest time average assignment cost.
Because LQBS guides the platform to assign tasks to users
who have the lowest queue backlog, the assignment cost of it
changes slightly with the change of user number. The results
of Fig. 5(b) and Fig. 5(c) are similar to Fig. 5(a).

We also investigate the trend of the total assignment cost of
FTAS with respect to the number of users and the number
of tasks jointly on three data sets in Fig. 7 by using three-
dimensional figures. The number of tasks varies from 40 to
180 and the number of users varies from 5 to 40. Fig. 7 shows
that the total assignment cost increases with the growth of task
number and the decrease of user number, which corresponds
to the theoretical analysis.

As we can see in Fig. 6, with the value of V increasing
from 1 to 10, all the time average assignment costs on the
three data sets decrease. As mentioned, V is an important
weight reflecting how much we emphasize minimizing the
primary objective (assignment cost), and because we find a
trade-off between system stability and the assignment cost
minimization, as the V value increases, the system will make
more contributions to minimizing the assignment cost. This
means that the platform would like to assign tasks to the
nearest users and thus, the assignment cost decreases.

Immediately after, we study the change of the average queue
backlog with the value of V . The average queue backlog here
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Fig. 9: User queue backlog with time slot on three data sets.
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Fig. 10: Average queue backlog with time slot.

represents the queue backlog value of all queues, including
both the task virtual queues and the user processing queues.
Similarly, the value of V varies from 1 to 10 and with each V ,
we observe the average queue backlog with the time slot from
1 to 100. Fig. 6 shows that the average queue backlogs increase
with the growth of the V value. Combining the description of
the assignment cost above, as V increases, the platform tries
its best to assign tasks to the nearest users. Thus, the platform
may buffer the task in the task virtual queue until the nearest
user is ideal, and the scene in Fig. 6 appears.

Next, we investigate the change of the task virtual queue
backlog, the user processing queue backlog, and the average
backlog with the growth of the time slot t in Figs. 8-10. We
observe the queue backlog every 5 time slots between the 1st
and 100th time slot. Fig. 8 shows that the task virtual queue
backlog of FTAS is higher than the other three strategies,
and the task virtual queue backlog of other three methods are
identical. This is because in the cases of LCS, LQBS, and
RANS, the platform assigns tasks that meet the assignment
frequency requirements in each time slot, therefore, the task
assignment rates in each time slot of all cases are identical.
By contrast, FTAS controls the amount of the tasks which
should be assigned to users to ease their burden. This means
that FTAS may not assign any tasks in some time slots if
there are too many tasks in the users’ queues. Hence, the task
virtual queue backlog of FTAS is higher. It is worth noting
that due to the fact that the assignment rate is stochastic in
our system, the task virtual queue backlogs of all the strategies
fluctuate in different time slots.

In Fig. 9, the user processing queue backlogs of the four task
assignment strategies on three data sets are ranked as follows:
LQBS < FTAS < RANS < LTCS. Since LQBS guides
the platform to assign tasks to the users who have the lowest
queue backlogs, the user processing queue backlog of LQBS
is the lowest. Although the user processing queue backlog of
FTAS is larger than that of LQBS, these two results are
very close and they are much smaller than that of RANS and
LCS. This proves that the user processing queue backlog of



LQBS and FTAS will not reach infinity over time, which
implies that our proposed approach can maintain the queue
stability. As for LCS strategy, due to the fact that a user may
be close to many tasks, the platform may assign different tasks
to him over time. Therefore, the performance of LCS is worse
than that of RANS. In Fig. 10, we study the average queue
backlog in relation to the change of the time slot. Since the
user queue backlog is much more than the task virtual queue
backlog, the trend of the average queue backlog is similar to
that of the user processing queue backlog.

VII. CONCLUSIONS
In this paper, we investigate the task assignment problem in

an MCS scenario which considers the fairness for both tasks
and users, where each task should be assigned by a assignment
frequency and each user’s processing ability is limited. With
the objective of minimizing the assignment cost, to satisfy
the fairness constraints, we first model each user’s processing
ability as a user processing queue and convert the constraint
of task assignment frequency to the task virtual queues. Then
a Fair Task Assignment Problem (FTAP), which aims at
minimizing the assignment cost and maintaining the double
queues’ stability simultaneously, is formulated. To solve the
problem, we propose a Fair Task Assignment Strategy (FTAS)
by utilizing Lyapunov optimization, which can make control
actions in each time slot to minimize the assignment cost while
maintaining the system stability. To analyze the performance
of the proposed assignment strategy, we find an upper bound of
the total assignment cost and the queue backlog. Finally, exten-
sive evaluations on Changchun/taxi, Epfl/mobility, and Feeder
verify the effectiveness of the proposed strategy. The results
of our simulation show that the proposed strategy outperforms
the other three baselines by simultaneously minimizing the
assignment cost and maintaining the system stability.
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