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Abstract—With the development of deep learning, artificial
intelligence applications and services have boomed in the recent
years, including recommendation systems, personal assistant and
video analytics. Similar to other services in the edge computing
environment, artificial intelligence computing tasks are pushed to
the network edge. In this paper, we consider the multi-user edge-
assisted video analytics task offloading (MEVAO) problem, where
users have video analytics tasks with various accuracy require-
ments. All users independently choose their accuracy decisions,
satisfying the accuracy requirement, and offload the video data
to the edge server. With the utility function designed based on the
features of video analytics, we model MEVAO as a game theory
problem and achieve the Nash equilibrium. For the flexibility of
making accuracy decisions under different circumstances, a deep
reinforcement learning approach is applied to our problem. Our
proposed design has much better performance compared with
some other approaches in the extensive simulations.

Keywords—edge computing; video analytics; task offloading;
decentralized algorithm; game theory; Markov decision process;
deep reinforcement learning;

I. INTRODUCTION

With the emergence of smart devices and numerous new
applications, network traffic is growing rapidly. The conven-
tional centralized network architecture cannot meet the needs
of users due to high transmission delay and heavy loads on the
backhaul links. Therefore, a new emerging paradigm, called
mobile edge computing (MEC), has been proposed. The main
characteristic of MEC is to bring the computation and storage
resources to the edge of networks (e.g., base stations and
access points). It connects users directly to the nearest service-
enabled edge networks and provides computing and caching
capabilities. In the past years, lots of issues [1]–[3] related to
edge computing have been studied, such as multi-user resource
allocation, optimal network control, etc.

Meanwhile, with the development of deep learning, artifi-
cial intelligence (AI) applications and services have boomed in
the recent years, including recommendation systems, personal
assistant and video surveillance [4], [5]. Since 2009, Microsoft
has conducted continuous research on what kinds of AI
applications should be transferred to the edge, ranging from
real-time video analytics, VR/AR, voice command recognition,
interactive cloud gaming, etc. Among them, real-time video
analytics is envisioned as a killer application in the edge
computing environment. Most of video analytics applications
running at MEC servers process the video data to detect
some specific configurable events, such as causing-trouble

Fig. 1: Multi-user edge-assisted video analytics task offloading

vehicle, abandoned luggage, lost child. Video analytics tasks
continuously collect a tremendous amount of high-definition
videos, and it requires high bandwidth, high computation
and low latency. Thus, the edge computing is regarded as a
promising solution to meet the strict requirements.

In the edge computing environment, a large number of
users offload their video data to the network edges for the video
analytics services. In video analytics tasks, video frames are
extracted at various sampling rates, compressed into different
resolutions, and processed by convolutional neural network
(CNN) models [6]. Same as the works in [7], [8], we refer to
the combination of frame rate and resolution as a configuration.
Obviously, different configurations lead to different accuracies
and resource consumptions. In our previous work [7], we study
the specific relationship between the analytics accuracy and
configuration. To obtain high video analytics accuracy, users
have incentives to raise the frame rate and resolution, which
results in more video data offloaded to the edge.

For different users, they may have different requirements
on the accuracy of video analysis results. Some applications
involving privacy protection, like phone unlocking by face
identification, may require extremely high accuracy of video
analysis. However, other applications don’t, like recording traf-
fic flow with surveillance cameras. Usually, the edge network
resources are limited, and users interact with others to obtain
a stable allocation of network resources and meet the video
analytics service requirements. At this point, the approach of
game theory (GT) can be applied to enhance the usage of
the networking edge resources. It can be used to analyze the
interactions among multiple self-interested and independent
players [9], [10], and helps to design a decentralized system,
where no player will deviate unilaterally.



Game theory is a branch of applied mathematics, and it has
been used to formulate, design and optimize the operations in
many networking scenarios [11]–[13]. Usually, these scenarios
involve multiple players with conflicting goals, and we know
from some research [14], [15] that GT has an important role
in analyzing the network algorithms and optimizing the con-
figuration parameters. However, to the best of our knowledge,
little existing work has focused on applying the game theory
method to the video analytics task offloading problem so far.

We study the Multi-user Edge-assisted Video Analytics
task Offloading (MEVAO) problem (shown in Fig. 1), where
users have the video analytics tasks with various accuracy
requirements. Since different video analytics configurations
lead to different accuracies, all users independently choose
their accuracy decisions, satisfying the accuracy requirements,
and offload the video data with corresponding configuration to
the edge server. To obtain a stable situation where none of them
have an incentive to change the accuracy decision unilaterally,
we formulate the MEVAO problem as a GT problem. For
it, we design the appropriate utility function for each user
based on the video analytics features. We first propose a
decentralized algorithm for MEVAO, which can achieve Nash
equilibrium (NE) with information sharing (e.g. connection
bandwidth, accuracy requirement). However, users in the real
world may be unwilling to share their personal information
because of security and privacy concerns. Thus, we apply the
deep reinforcement learning (RL) approach to our problem,
and extend it to the scenario without information sharing. By
using the Advantage Actor Critic (A2C) model , we propose
the RL-based decentralized algorithm to tackle the problem.

The contributions of this paper are summarized as follows.

• We study the multi-user edge-assisted video offloading
and analyzing problem, and formulate it as a GT
problem by designing the appropriate utility function
based on the video analytics features. We propose the
algorithm which achieves the NE to solve the problem.

• We apply the deep reinforcement learning approach
to our problem without information sharing, and pro-
pose the RL-based algorithm to tackle the problem.
Based on the A2C model, users adjust their accuracy
decisions and finally achieve the converged reward.

• By extensive simulations, our design has better perfor-
mance when compared with some other approaches,
and we study how the parameters in our design
influence the simulation results in various settings.

The remainder of this paper is organized as follows. We
discuss the related works in Section II. Section III presents the
description and formulation of our problem. In Section IV, we
give the algorithm design for our problem based on the game
theory. In Section V, we apply the deep RL approach to our
problem without information sharing. Section VI evaluates the
performance of our design and compares it with other existing
approaches using extensive simulations. Finally, Section VII
concludes the paper and discusses some possible future work.

II. RELATED WORK

Mobile edge computing. Many research efforts in the past
years have been carried out in the field of MEC, with respect

to storage, latency and computational offloading. Jalali et al.
[16] propose a time-based and flow-based energy consumption
model, and conduct a number of experiments using centralized
nano data centers, which can lead to energy savings. Jarar-
weh et al. [17] design a software defined system for MEC
(SDMEC) and software defined storage is the focus of the
proposed framework that enables applications requiring storage
resources to benefit from SDMEC. Kumar et al. [18] propose a
smart grid data management scheme based on vehicular delay-
tolerant network, with which the data is transmitted to multiple
smart grid devices in the MEC environments.

Video analysis and processing. Some existing work has
studied the video analytics in MEC. Instead of processing
the video analytics in the central cloud [19], the system can
avoid the network congestion caused by video uploading, and
benefit from the low latency by offloading the video analytics
task to the edge. Ren et al. [20] propose a multiuser video
compression offloading approach and minimize the latency
in local compression, partial compression and edge cloud
compression offloading scenarios. Kang et al. [21] design the
NoScope to accelerate video analysis by using a difference
detector that highlights temporal differences across frames.

Game theory application. There are some works that
apply the game theory to the multiuser computation offload-
ing problem and provide a solution by achieving the Nash
equilibrium. Chen et al. [22] propose an efficient computation
offloading model based on the game theory, which simulta-
neously helps connected users to decide the correct wireless
channels based on the strategic interactions. Zhan et al. [23]
design a decentralized offloading game in which each user
decides the portion of task offloaded to the edge server. Hu et
al. [24] design a minority game based scheme, where the tasks
are divided into subtasks to form some groups, and the subtasks
left are scheduled to adjust the decisions in a probabilistic way.

To the best of our knowledge, very little existing work
has focused on applying the game theory method to the
problem of video analytics task offloading. We study the multi-
user edge-assisted video offloading and analyzing problem,
where all users independently choose their accuracy decisions
satisfying the accuracy requirement, and offload the video data
to the edge server. Our problem MEVAO is formulated as a
game theory problem, and we design the appropriate utility
function for each user based on the features of video analytics.
Furthermore, we finally solve it by using the RL approach.

III. PROBLEM DESCRIPTION

In this section, we present the description of our problem.
We design the utility function based on the features of video
analytics task offloading and formulate the problem. Some
important notations are listed in Table I.

We consider a set of N users, denoted by {1, 2, ..., N},
each of which has a video analytics task to be executed. They
are connected to the same edge server nearby, on which the
video analytics applications are deployed. As shown in Fig. 1,
each user offloads the data of its video analytics task to the
edge server. Some applications involving privacy protection,
like phone unlocking by face identification, require very high
accuracy of video analysis. However, other applications don’t,
like recording traffic flow using surveillance cameras. For



TABLE I: List of Important Notations
Notation Description
N Number of users
Mn Minimum requirement on accuracy for user n
an Accuracy decision of user n
a−n Accuracy decisions of users except n
F (an) Frame rate when accuracy decision is an

rn, sn, tn Fitting parameters related to user n in function F
T (an) Transmission cost when accuracy decision is an
K Size of each video frame
bn Network bandwidth assigned to user n

C(an) Computation allocation when accuracy decision is an
E Amount of computation resource at edge server

Sat(an) Accuracy satisfaction when accuracy decision is an
αn, βn, γn Weight of T (an), C(an) and Sat(an) in utility for user n
un(an,a−n) Utility for user n

different users, they may have different minimum requirements
on the accuracy of video analysis results. We let Mn denote
the minimum requirement on the video analysis accuracy
for user n. The user n can choose the accuracy decision
an satisfying the accuracy requirement, which means that
Mn ≤ an ≤ 1. For instance, when user n choose the an = 1,
the video analysis result has the highest accuracy. However,
when an does not exceed Mn, the result fails to meet the
minimum accuracy requirement. More generally, if user n has
no requirement on the analysis result, we can set Mn = 0.

A. Utility Function Design

1) Transmission cost:
Same as the existing works [7], [8], we refer to the

combination of frame rate and resolution as a configuration,
and different configurations lead to different accuracies and
resource consumptions. In some video analysis applications,
the video data is captured from the surveillance cameras [8],
where the video resolution is fixed and frame rate can be
adjusted. In this paper, we mainly focus on the influence of
the frame rate on the analysis accuracy.

In our previous work [7], the specific relationship between
the analytics accuracy and the frame rate is derived from
our real experiments. We implement YOLO [25], an object
detector CNN on NVIDIA Jetson TX2 (shown in Fig. 2) to
perform vehicle counting on the clips from surveillance videos.
The results are plotted in Fig. 3, and the relationship between
the analytics accuracy and the frame rate can be formulated as
a fitted convex function

F (an) =
1

rn
(ean−sn − tn), (1)

where rn, sn and tn are the fitting parameters for user n. For
example, we vary the frame rate from 2fps to 30fps, and the
blue line in Fig. 3 can be fitted as 1

0.348 (ean−1.828 + 7.177).

To obtain high video analytics accuracy, users have incen-
tives to improve the frame rate, which results in much more
video data offloaded to the edge server. And we formulate the
transmission cost as

T (an) =
K · F (an)

bn
=
K · 1

rn
(ean−sn − tn)

bn
, (2)

where K is the size of each video frame, and bn is the network
bandwidth assigned to user n. It is clear that when the accuracy
decision is raised, the transmission cost will increase.

Fig. 2: We implement YOLO on NVIDIA Jetson TX2

2) Computation allocation:
We let E denote the amount of computation resource at the

edge server. Following the works in [26], [27], the edge server
allocates the computational resource to the users depending
on the proportion of their uploaded video data amount on the
server. Thus, the computation allocation for user n is

C(an) = E ·
1
rn

(ean−sn − tn)∑N
i=1

1
ri

(eai−si − ti)
. (3)

As shown in (3), the more video data user n offloads to
the edge server, the more computation resources it can obtain.
Specifically, when the user number is 1, the only user can get
all the computation resources from the edge server.

3) Accuracy satisfaction:
If we use the deep learning approach like CNN for video

analysis, the accuracy will be more difficult to improve when
it is close to 100% [7]. Thus, the user will feel more satisfied
with the analysis result if the accuracy can increase from 95%
to 100%, compared to that from 85% to 90%. This property of
accuracy satisfaction is consistent with the convex functions,
so we use a convex function to formulate it. In this paper, we
describe the accuracy satisfaction as

Sat(an) = ean . (4)

We should mention that the exponential function (4) is
taken as an example to formulate the accuracy satisfaction
in the paper, but actually we can also use any other convex
function to formulate accuracy satisfaction for utility function.

B. Problem Formulation

In terms of transmission cost, computation allocation and
accuracy satisfaction, user n’s utility function is defined as

un(an,a−n) = −αnT (an) + βnC(an) + γnSat(an), (5)

where a−n = (a1, ..., an−1, an+1, ..., aN ) is the accuracy
decisions from all users except user n. The three positive
coefficients αn, βn and γn mean the weights of transmission
cost, computation allocation and accuracy satisfaction for user
n. Usually, we set the parameters αn, βn and γn satisfying
αn + βn + γn = 1. From (5), we can intuitively see that more
computation allocation, higher accuracy satisfaction and less
transmission cost lead to the higher utility for each user.

Given other users’ decisions a−n, each user n will choose
the optimal accuracy decision an ∈ [Mn, 1] to maximize its
utility defined in Eqn. (5). Thus, for each user n,

max un(an,a−n)

s.t. an ∈ [Mn, 1].
(6)
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Fig. 3: Fitting the relationship between analytics accuracy and frame
rate as a convex function

In the following two sections, we propose the GT-based and
RL-based approaches to solve the formulated problem (6).

IV. GT-BASED ALGORITHM DESIGN

In this section, we introduce the definition of Nash equi-
librium, figure out the accuracy decision an∗ for each user n
at the Nash equilibrium, and propose the GT-based algorithm
to achieve the Nash equilibrium of the MEVAO problem.

A. Achieving Nash equilibrium

Definition 1. (Nash equilibrium): For each user n, the
strategy set {a1∗, a2∗, ..., aN ∗} constitutes a Nash equilibrium
in the game of MEVAO problem if the individual utility cannot
be improved by changing the accuracy strategy, i.e.,

un(an
∗,a−n

∗) ≥ un(an,a−n
∗). (7)

Usually, the edge network resources are limited, and users
interact with others to obtain a stable allocation of network
resources and meet the video analytics service requirements.
Game theory and Nash equilibrium can be used to analyze the
interactions among multiple self-interested and independent
users, and helps to design a decentralized system, where no
users will change their accuracy decisions unilaterally.

1) Determining an∗ corresponding to a−n∗:
For convenience, we set xn = ean−sn−tn

rn
and On =∑

i6=n
eai−si−ti

ri
. By Eqn. (5), we define the function

Un(xn) = un(an,a−n)

= −αnKxn
bn

+
βnExn
xn + On

+ γne
sn(rnxn + tn),

(8)

and our objective is to maximize Un(xn) for each user n. The
first-order derivative of Un with respect to xn is

∂Un
∂xn

=
βnEbnOn

(xn + On)2
+ (−αnK + γne

snrnbn),

and the second-order derivative of Un with respect to xn is

∂2Un
∂xn2

=
−2βnEbn

2On
(xn + On)3

< 0.

Thus, the function Un is strictly concave in xn. If

−αnK + γne
snrnbn ≥ 0, (9)

Un is monotone increasing. When (9) holds, the size of each
video frame K is small enough. Thus, users have the incentives
to offload more video data to the edge server, and then the
optimal accuracy decision an is 1. Otherwise, i.e.,

−αnK + γne
snrnbn < 0, (10)

we set
∂Un
∂xn

=
βnEbnOn

(xn + On)2
+ (−αnK + γne

snrnbn) = 0. (11)

By solving Eqn. (11), we obtain

xn =

√
βnEbnOn

αnK − γnesnrnbn
−On. (12)

For each user n, if an ∈ [Mn, 1], i.e.,

eMn−sn − tn
rn

≤

√
βnEbnOn

αnK − γnesnrnbn
−On ≤

e1−sn − tn
rn

,

(13)
we have

xn
∗ =

√
βnEbnOn∗

αnK − γnesnrnbn
−On∗, (14)

where xn∗ = ean
∗−sn−tn
rn

, and On∗ =
∑
i 6=n

eai
∗−si−ti
ri

.

According to Eqn. (14), we obtain the accuracy decision
an
∗ corresponding to other users’ accuracy decisions a−n∗

when (13) holds. Next we figure out an∗.

2) Figuring out an∗:
By moving the terms in Eqn. (14) and squaring both sides

of the equation, we obtain

βnEbn(
∑N
i=1 xi

∗ − xn∗)
αnK − γnesnrnbn

= (

N∑
i=1

xi
∗)2. (15)

Further moving the terms in Eqn. (15), we have
N∑
i=1

xi
∗ − xn∗ =

αnK − γnesnrnbn
βnEbn

(

N∑
i=1

xi
∗)2. (16)

By adding
∑N
n=1 to both sides of Eqn. (16), we get

(N − 1)

N∑
i=1

xi
∗ =

N∑
n=1

Sn(

N∑
i=1

xi
∗)2,

where Sn = αnK−γnesnrnbn
βnEbn

, and it is a constant. Thus,

N∑
i=1

xi
∗ =

N − 1∑N
n=1 Sn

. (17)

Plugging Eqn. (17) into Eqn. (16), we obtain

xn
∗ =

N − 1∑N
n=1 Sn

(1− Sn(N − 1)∑N
n=1 Sn

), (18)

and since xn = ean−sn−tn
rn

, we have

an
∗ = ln(

rn(N − 1)∑N
n=1 Sn

(1− Sn(N − 1)∑N
n=1 Sn

) + tn) + sn (19)



Algorithm 1 GT-based Algorithm

1: for each user n = 1, 2, 3, ..., N do
2: Prepare user n’s information including rn, sn, tn, bn,

αn, βn, γn, Mn.
3: Publish information to a specified shared storage area.
4: repeat
5: Gather other users’ information except user n.
6: until All of other users’ information is collected.
7: Calculate the optimal accuracy decision an∗ according

to Eqn. (19).
8: end for

if (10) and (13) hold for each user n. From the analytical
solution (19), we can intuitively observe that when the fitting
parameters rn, sn and tn in the relationship between analytics
accuracy and frame rate is large enough, the transmission cost
in (2) will get small. And consequently, users will choose a
higher accuracy decision an∗ and offload more video data to
the edge server. Note that the solution (19) does not apply to
scenarios with a single user because (10) is not satisfied, and
it is reasonable in the multi-user video offloading problem.

B. Game Theory-based Algorithm

Given the fact that each user’s private information (e.g.,
rn, sn and tn) satisfies (10) and (13), we propose Algorithm
1 to figure out the optimal accuracy decision an∗ for each user
n at the Nash equilibrium.

As shown in Algorithm 1, each user n firstly publishes its
private information. Usually, users send their information to a
specified shared storage area. Then each user gathers all of the
other users’ information. With all the information collected,
each user n finally calculates the optimal accuracy decision
an
∗ through Eqn. (19). It is worth mentioning that Algorithm 1

can also be applied to online situations. For example, when the
users change their requirements on analytics accuracy, we only
need to rerun Algorithm 1, and then obtain the new decision.

V. RL-BASED ALGORITHM DESIGN

Although the optimal accuracy decision can be calculated
through Algorithm 1, it is unrealistic for users in the real
world to share their private information because of security and
privacy concerns. The motivation of utilizing reinforcement
learning is to improve the flexibility of making video analysis
accuracy decisions under different circumstances, and finally
obtain the nearly optimal accuracy decision after a long time
running without knowing other users’ information. In this
section, we model the Markov decision process for the video
analysis accuracy decision making. Based on the Markov
decision process, we utilize the A2C model to design the RL-
based decentralized Algorithm 2 for each user.

A. Modeling Markov Decision Process

The Markov decision process is represented as M =
〈A,ST ,R,P〉, which consists of an action space A =
{An|n = 1, 2, ..., N}, a state space ST = {ST n|n =
1, 2, ..., N}, a reward space R = {Rn : ST n×An×ST n →
R}n∈{1,...,N} and a state transition probability function set
P = {Pn : ST n ×An × ST n → [0, 1]}n∈{1,...,N}.

Fig. 4: Advantage actor critic network structure

Action space A: The action space is denoted as A =
{An|n = 1, 2, ..., N}, where An = {akn|k ∈ N}. At time k,
the user n makes the accuracy decision akn. Similar to some ex-
isting works [23], [28], users can only acquire their own private
information and the past strategy set {ak−1,ak−2, ...,ak−B}
in the Markov decision process, where B is the size of the
past strategy set.

State space ST : There is a state space ST = {ST n|n =
1, 2, ..., N}, where ST n = {stkn|k ∈ N} and stkn =
[akn,a

k
−n, ..., a

k−B
n ,ak−B−n ]. The state of user n at time k is

denoted by stkn, and it consists of the accuracy decisions made
by all users at the current time and previous B time slots. D0

n
denotes the initial state probability distribution of user n.

Reward space R: We have a reward space R = {Rn :
ST n×An×ST n → R}n∈{1,...,N}, where Rn = {rkn|k ∈ N}
and the reward for user n is calculated according to its utility
function. At time k, user n gets the reward rkn = un(akn,a

k
−n).

State transition probability function set P: The state
transition probability function set is denoted by P = {Pn :
ST n×An×ST n → [0, 1]}n∈{1,...,N}, and Pn(stk+1

n |stkn, akn)
is the probability of state stkn transiting to stk+1

n through action
akn at time k.

Video analytics task offloading policy set Π: We
have a video analytics task offloading policy set Π =
{πθn}n∈{1,...,N}, where πθn : ST n × An → [0, 1] is the
video analytics task offloading policy for user n and it is
parameterized by θn.

Thus, our objective is to obtain

θn
∗ = arg max

θn

E[V πθn (st0n)|D0
n]

= arg max
θn

E[Qπθn (st0n, a
0
n)|D0

n, πθn
],

(20)

where the value function V πθn (st0n) for observation and the
value function Qπθn (st0n, a

0
n) for observation and action are

defined as

V πθn (st0n) = E[

k∑
i=0

rin|st0n,P,Π], (21)

Qπθn (st0n, a
0
n) = E[

k∑
i=0

rin|st0n, a0n,P,Π]. (22)

After modeling the MEVAO problem as a multi-agent
Markov decision process, we apply the deep reinforcement
learning approach A2C to optimize the video analytics task
offloading policy for each user.



Algorithm 2 RL-based Algorithm

1: Initialize θn, wn, αθn , αwn and st0n.
2: for time slot k = 0, 1, 2, ... do
3: for each user n = 1, 2, 3, ..., N do
4: Acquire the past strategy set.
5: Update its state stkn into stk+1

n .
6: Input stkn into the Actor network πθn .
7: Obtain the accuracy decision akn from πθn

.
8: Calculate reward rkn = un(akn,a

k
−n) according to (5).

9: Update wn and θn according to (24), (25).
10: end for
11: end for

B. Reinforcement Learning-based Algorithm

The reinforcement learning approach of Advantage Actor
Critic (A2C) is based on the Actor-Critic network which
combines policy function πθn(akn|stkn;θn) and value function
V πθn (stkn,wn), where θn and wn are weights in the Actor-
Critic network. As shown in Fig. 4, in the A2C-based learning
approach, each user acts as an agent to make the video analysis
accuracy decision akn in the state stkn according to the policy
πθn

(akn|stkn;θn). The Critic network estimates the value of
the actions; meanwhile the Actor network optimizes the policy
with the value to maximize the future reward.

Specifically, when the Critic network estimates the value
of the action, the weight wn is updated as:

δ = Qπθn (stkn, a
k
n)− V πθn (stkn), (23)

wn = wn + αwnδ∇V πθn (stkn), (24)

where αwn means the step size.

The Actor network ascends the gradients of policy
πθn(akn|stkn;θn) by updating the parameters based on the
value from the Critic network. We calculate the gradient
accumulation of parameter θn as :

θn = θn + αθnδ∇ lnπθn(akn|stkn;θn), (25)

where αθn is the step size.

Note that the advantage function in the learning scheme of
Advantage Actor Critic is described as:

Aπθn (stkn, a
k
n) = Qπθn (stkn, a

k
n)− V πθn (stkn). (26)

Based on the above details of Advantage Actor Critic, we
propose the RL-based algorithm for each user n. As shown
in Algorithm 2, each user n firstly initializes the parameters
in the Actor-Critic network and its state. At the beginning
of each time slot, each user acquires the past strategy set
{ak−1,ak−2, ...,ak−B} and updates its state. Then user n
inputs its state into the Actor network and gets the video
analysis accuracy decision akn. According to its utility function
un, the reward rkn is calculated. After that, each user n opti-
mizes its Actor-Critic network. The Critic network estimates
the action value and updates wn through (24). The Actor
network ascends the gradients of policy πθn

(akn|stkn;θn) and
updates θn through (25).

VI. PERFORMANCE EVALUATION

In this section, we evaluate the performance of our algo-
rithms through simulations with various settings. Besides, we
compare our proposed designs with other existing approaches.

A. Simulation Settings

In the simulation, each user is allocated the network
bandwidth bn ∼ N(1, 0.1)Mb/s, and has the video analytics
task with various accuracy requirement Mn ∼ U(0, 1). We
set the computation capacity at edge server as E = 32Mb/s,
and there is K = 0.1Mb video data caused by each unit of
frame rate increase. We set the parameters αn, βn and γn in
the utility function, which satisfies αn +βn + γn = 1. Similar
to the existing work [20], the fitting parameters rn, sn and tn
are selected to formulate the relationship between frame rate
and accuracy as convex functions; meanwhile (8) and (11) are
satisfied. We select the hyper-parameters in Advantage Actor
Critic depending on the learning ability and performance.
Specifically, the Critic network and the Actor network both
have two fully-connected layers, each of which has 64 nodes.

Besides, we compare our work, which is referred to as
MA2C, with 4 other baseline approaches:

• MPPO: This is a modified PPO [29], which is imple-
mented for competitive multi-agent training.

• AccuracyPrior: Each user gives priority to the accu-
racy when making the decision in the task offloading
game.

• LatencyPrior: Each user gives priority to the latency
when making the decision in the task offloading game.

• Greedy: Each user makes the decision with the max-
imum reward for each time slot.

B. Results for GT-based Approach

We first study the performance of the proposed Algorithm
1 when the user number is 5, and we set M1 = 0.7, M2 = 0.9,
M3 = 0.8, M4 = 0.7 and M5 = 0.6. As shown in Fig. 5(a),
the optimal accuracy decision an

∗ and utility un
∗ for each

user are obtained with algorithm 1.

From Fig. 5(a), we observe that the optimal utilities for
the users are about 0.81, 0.98, 0.19, 0.76 and 0.88, and the
optimal accuracy decisions are about 0.71, 0.93, 0.81, 0.71 and
0.64. When an ∈ [Mn, 1], we find that un(an,a−n) is concave
and an∗ is locally optimal. The optimal accuracy decision an∗
and utility un∗ satisfy (7) in NE definition that each user has
no incentives to raise or lower its accuracy decision, and the
utility cannot be improved by changing the accuracy strategy.

C. Results for RL-based Approach

We investigate the convergence of the proposed RL-based
Algorithm 2. As shown in Fig. 5(b) and Fig. 5(c), each user’s
utility and accuracy decision converge at about 20000 time
slots. From Fig. 5(b) and Fig. 5(c), we observe that each user’s
utility and accuracy decision obtained from algorithm 2 are
consistent with the results shown in Fig. 5(a). Thus, we finally
get the the nearly optimal utility and accuracy decision in the
RL-based Algorithm 2.
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(b) Utility convergence
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(c) Accuracy convergence
Fig. 5: Simulation results of GT-based Algorithm and RL-based Algorithm
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(c) Influnece of weight γn
Fig. 6: Influence of weight αn, βn and γn on user’s optimal accuracy decision
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(a) Varying the past strategy set size
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(b) Varying the user number
Fig. 7: Average time slots for convergence
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(a) Users’ average utility

� ����� ����� ����� ����� �����
�#������"����!��"

���

���

��	

��


���

���

���

�
!�

 !
���

$�
 �

��
��

��
# 

��
%

���
����
��# ��%� �� 
��"���%� �� 
� ���%

(b) Users’ average accuracy
Fig. 8: Comparing the performance of 5 algorithms

We study the influence of weight αn, βn and γn. As
demonstrated in Fig. 6, each user’s optimal accuracy decision
changes when we vary αn, βn and γn. From the definition
of utility function (5), we observe that when we increase the
weight of αn, higher accuracy decision will result in higher
transmission cost and reduce the utility. Thus, As Fig. 6(a)
shows, users will choose lower accuracy decision when the
weight αn gets larger. Similarly, when we raise the weight of
βn and γn in (5), user n will obtain more computation allo-
cation from the edge server and higher accuracy satisfaction.
Thus, it is shown in Fig. 6(b) and Fig. 6(c) that when βn and
γn become larger, users will make higher accuracy decisions.

We vary the past strategy size B and the user number N
in the simulation of video analytics task offloading game. As

shown in Fig. 7(a), the number of time slots for convergence
decreases when we enlarge the past strategy set. Since more
information can be learned from the larger past strategy set, the
RL-based algorithm can converge to the Nash equilibrium after
fewer time slots. From Fig. 7(b), we observe that when the user
number ranges from 2 to 11, it will take more time slots to
reach the convergence of the RL-based algorithm. Competition
for limited computing resources will be more intense and users
will change their accuracy decisions more frequently when
more users are involved in the task offloading scenario.

We compare our work with 4 other baseline approaches
when the user number is 5. As shown in Fig. 8(a) and Fig.
8(b), our proposed algorithm converges at about 15000 time
slots, and we can obtain both the average of users’ optimal
utilities and the average of users’ optimal accuracy decisions.
However, it is hard for the MPPO algorithm to converge
within 50000 time slots, and the average utility obtained from
the MPPO algorithm fluctuates when the users change their
accuracy decisions. Meanwhile, we apply the AccuracyPrior
and LatencyPrior algorithm to our problem. When the users
give priority to the accuracy, they will choose the highest
accuracy decision (i.e., 100%), and the average utility is about
0.99. Similarly, when the users give priority to the latency,
they prefer to offload less video data to the edge sever, which
will result in the lowest accuracy decision (i.e., Mn), and the
average utility is about 0.76. Besides, we design a Greedy
algorithm, where users make the decisions with the maximum
utility for each time slot. From Fig. 8(a) and Fig. 8(b), we
observe that it is difficult for users to get steady rewards, and
they have the incentives to change their accuracy decisions.
Thus, our design has a better performance than others.

VII. CONCLUSION AND FUTURE WORK

We study the multi-user edge-assisted video offloading
and analyzing problem in this paper. All users independently



choose their accuracy decisions satisfying the accuracy re-
quirement and offload the video data to the edge server. With
the utility function designed based on the video analytics
features, we achieve the Nash equilibrium and the optimal
video analytics accuracy. To improve the flexibility of making
decisions under different circumstances, we propose the RL-
based algorithm to tackle the MEVAO problem without infor-
mation sharing. Based on the A2C model, users adjust their
accuracy decisions and finally achieve the converged reward.

However, there are a few limitations in our work that
demand future research effort. Firstly, we consider the MEVAO
problem in the special case where Nash equilibrium can be
obtained, and it can be our future work to extend the problem
to the general case. Secondly, video analytics tasks can be
offloaded to multiple edge servers or the edge server cluster in
the real world, and jointly considering the problem of video
analytics task offloading and resource allocation within the
edge cluster will be challenging. Finally, in the proposed RL-
based algorithm, each user updates its state based on the past
strategy set, which consists of all users’ strategies in the past B
time slots, and it is meaningful to set the appropriate size of the
past strategy set since it has an influence on the performance
of the RL-based algorithm.
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