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Abstract—Deploying city-wide 802.11 access points has mademanage AP association in this type of “Vehicular Networks”.
possible internet access in a vehicle, nevertheless it is challengingCompared with a static network, this type of network is
to maintain client performance at vehicular speed especially ¢3mnn6sed of continuously moving clients that may consgantl
when multiple mobile users exist. This paper considers thet t iat ith th by APs. Algorith that sol
association control problem for vehicular networks in drive- ry 1o assoua.e.Wl € nearby S gon .ms at solve
thru Internet scenarios. In particular, we aim to improve the for the association control problem in a static network are
overall throughput and fairness for all users. We design efficient not suitable because (1) a vehicular network is a much larger
algorithms to achieve the objectives through several techniqse network composed of thousands of cars and APs compared
including approximation. Our simulation results confirm the \\ih 4 rather small indoor network, and (2) the existing algo
performance of our algorithms. . . .

rithms are unable to accommodate the dynamic creation and
|. INTRODUCTION removal of the possible communication links in the network

Ad d technologies i ication h d b.graph. Algorithms which are designed for the cellular nekvo
vanced technologies in communication have made Ublze” 5155 ot suitable, because (1) the cell site has a much

uitous network connectivity - anywhere, anytime - a resftiy larger coverage, and (2) the cells are devised to have small

mobile users. Wi-Fi technology is one of them, which pros'deoverlapping areas, and the mobile clients usually do noé hav

users easy access to the Internet through nearby WLAN accﬁﬁﬁtiple candidate cell sites to choose. Hence the handjf o

p?fmtf.' WL_AII\I—baTetd ac;:ess pomtih(AP)h car:j prowdzmco%—ccurs when a mobile client moves out of the original cell or
elfective wireless Internet access with a shared grossre&a |, o« into a new cell. The association control for “Vehicula

that ranges from 10 to 50 Mbits/sec and can be scalable to hﬂﬂa’tworks" is much more complicated and has more urgent

dreds of concurrently-active users. Not limited to corporg real-time demand than the cellular network because a client

office, or home use for comparably stationary user, the 8CCR3n have multiple candidate APs to select most of the time and

points, in theDrive-thru Internefl][2], are rece_ntlly propo_sed in a very short interval (20-30s), the client may move out of

H¥e range of the current AP and switch to a new AP for better
erformance. We believe that a thorough theoretical study o
5 problem is highly necessary for the future deploymént o
fhis type of networks. Some pitfalls can be avoided in real
@eployment if we have a better understanding about it first.
) - . This paper aims to define a theoretical framework to analyze
Iq order to achieve reasonab_le efficiency among m_UIt'p{Fie performance of a vehicular network in ti#ive-thru
vehicular users for the abov@rlve_-thru Internet scenario, Internet scenario, in particular to investigate the association
several prqblgms should be cons@ered, €.g. ratg adaptg ontrol scheme. Considering both the long-term efficiemay a
and association control. Association control defines, avhi aifess metrics, we propose optimized schemes to associat
multiple users are driving along the road, how to intelligen mobile users wi:th APs, and approximation algorithms to re-

assoma’get tlhese rgoa”ﬁ uzer; tof SAp:C';'C APS a?d_whend e computation complexity of calculating optimal sauas.
appropriately conquct handofis o s for users 1o Imlorov&Ithough there is some previous work related to this topic

the overall system performanpe. Compare.d b adap[tf]'[Z][S], they all focus on the measurement study on velaicu
tion, association conFroI cop5|ders the entire nergrlmfra) internet access. To the best of our knowledge, this is the firs
macro-level perspectl\{e, which shqws hqw to optimize SPSt&yqretical work that investigates the optimization peobifor
performan_ce from a h|g_her level viewpoint. ... association control over vehicular users in Wi-Fi networks
We notice that, albeit some re_cen_t work on assoclatiofy, being distinct from the previous research works, sihee t
control for static networks, there is little work on how 0, ssociation solutions are updated in a frequent approad wh

This work was done when the first author worked as a visitingpke at the users are driving along the roa_ds* this paper _'S. conderne
the College of William and Mary. about the long-term performance in terms of efficiency and

network connectivity to mobile users in vehicles. Howeve
for outdoor access of mobile users at high vehicular spee
due to the dynamically changing network structure of APrus
pairing and contentions among mobile users, it is still a b
challenge to maintain a good client performance.



fairness, and proposes novel algorithms to achieve the- loragcess can be greatly improved [10]. Kim et al. present novel
term objective. The contributions are summarized as falowassociation control algorithms that minimize the freqyenc
1) We propose a theoretical framework for associatiosf handoffs occurred to mobile devices [11]. In the case of
control over vehicular networks. For the efficiency mettie a single user, the optimization of the total throughput with
problem is transformed into an optimization problem forteachandoff time taken into account is studied in [12].
shapshot over the long-term service duration, and forradlat
as an integral linear program. For the fairness metric, v fir
formulate the problem as a convex program in the offlin®- Models and Assumptions
setting, and further propose a dynamic weight based onlineln the Drive-thru Internet scenario, vehicular users are
algorithm to achieve proportional fairness. driving through a region covered with multiple roads, and
2) When the involved number of mobile users and APAPs are deployed along the roads in a nonuniform approach.
along the road is rather large, to reduce the computatisach AP has a limited coverage range and it can only serve
complexity, we propose an approximation algorithm to brealsers that reside in its coverage area. Conventionally each
the large contention group into smaller sub-groups, adfgev user on the roads may have one or more candidate APs to
a tradeoff between accuracy and computation complexity. associate with at any time, and each time the user can only
The rest of the paper is organized as follows. We preseagsociate with exactly one AP. Furthermore, contentioms fo
related work in Section Il. We define the performance metri¢gansmission may exist among users if they associate with th
and introduce our model and assumptions in Section Ill. Vgame AP. If a large number of users associate with the same
illustrate our overall optimization and snapshot solution AP, their allocated bandwidths will be greatly reduced. We
Section 1V, respectively for efficiency and fairness. We imassume that different users have various velocities (ietu
troduce our group-based methodology to simplify assamiatispeeds and directions) which may vary over the time. Thus
control in Section V. We discuss the practical utilization iwhile users are driving along the roads, at different time
realistic settings in Section VI. We show simulation resift instants and positions, they may be contending with differe
Section VII, and we conclude the paper in Section VIII.  users for bandwidth from different APs. Each user assiate
with the first AP after first entering the Wi-Fi deployment
area, then goes through a series of hand-offs among differen
Association control and scheduling solutions for Wireles&Ps while driving along the roads, and disconnects at the las
LANs have been intensely studied, mainly targeting the effissociated AP before leaving the Wi-Fi deployment area.
ciency and fairness metrics. Tassiulas et al. considermmax- We denote the set of APs a$ indexed by1,...,m and
fair allocation of bandwidth in wireless ad-hoc network$, [4 denote the set of users &indexed byl, ...,n. We consider
and propose a fair scheduling system which assigns dynaragsociation control over the time interj@) 7']. For each user-
weights to the flows. Bejerano et al. present an efficieAP pair (j,i), we assume that the effective bit ratg;(¢) of
solution to determine the user-AP association for max-min f the link betweery andi at time¢ is known. We usé;(¢) to
bandwidth allocation [5], by leveraging the strong cortiela denote the bandwidth allocated to ugeat time ¢. Both bit
between fairness and load balancing. To balance aggregatie and bandwidth can be measured in bits per second (bit/s)
throughput while serving users in a fair manner, Li et akor bandwidth allocation inside each AP, we use time-based
consider proportional fairness over wireless LANs [6]. ¥hefairness for scheduling. Once an AP is associated to some
propose two approximation algorithms for periodical offlinusers, each user is assigned an equal-sized time slot ieggrd
optimization. its effective bit rate, and is supposed to use all the alkxtat
Internet access with roadside WiFi access points for vehigandwidth. Thus if»’ users are associated with ARat time
ular users under vehicular speeds has been studied in recettien the bandwidth of usgris b;(t) = r; ;(t)/n’.
research works [7][8]. Bychkovsky et al. study the case for For the effective bit rate setting in tHerive-thru Internet
vehicular clients to connect to open-access residentiglegds scenario, we adopt the model proposed in [2]. Fig. 1 depicts
802.11 access points in Boston [1]. Giannoulis et al. addrabree different connectivity phases with respect to eiffect
the problem of maintaining client performance at vehiculdit rate and relative distance. The entry phase and exitephas
speeds within city-wide multi-hop 802.11 networks [3]. Otprovide very weak connectivity, only the production phase
and Kutscher report on measurements for the use of IEBEovides a window of useful connectivity. As the connection
802.11 networks in thdrive-thru Internet scenari¢2]. They is built between a user and an AP, it will maintain a constant
measure transmission characteristics in vehicles moving bét rate in the production phase, which mainly depends on
different speeds, and provide analysis on the expectedmperthe AP’s signal strength and the user’s driving speed. The bi
mance. Mahajan et al. deploy a modest-size testbed to analyate can basically keep fixed while the user's speed does not
the fundamental characteristics of WiFi-based connegtivichange too much. Therefore for each specified user we can
between base stations and vehicles in urban settings [@bproximately model the bit rates of APs as square waves. As
Hadaller et al. give a central message that wireless canditi Fig. 2 shows, we allow nonuniform AP deployments along
in the vicinity of a roadside access point are predictablé aany user’s driving trajectory which include effective rasg
that by exploiting this information, vehicular opportuiiis neighbor distances and effective bit rates. We then divide

Ill. PERFORMANCEMODELS AND METRICS

II. RELATED WORK



these regions into non-overlappdequivalence Classesas in the allocation must have a negative average change. It has
Eq, Eqs, ..., Eq,. Each Eq; denotes a section of the roadsheen proved that the unique proportionally fair allocatiam

and within each section the candidate AP set and correspohé-obtained by maximizing(B) = >_;In(B;) over the set

ing effective bit rates will keep fixed for the specified user. of feasible allocations [14].

Since all APs are deployed by the same organization, a
centralized control scheme is possible as proposed in [15].
Therefore based on the above models and assumptions, we aim
to build a centralized association control system and oaf go
is to continuously construct optimized assignments of APs t
users as they are driving along the roads, respectivelyngaki
the efficiency and fairness metrics into consideration. We

| | | consider both offline and online settings of the optimizatio
2o~  som —— 2eom—] problem. In the offline setting, we assume that we know the
pistance (m) mobility patterns and trajectories of vehicular users iveate,
in other words, we are given the candidate AP 4eft) for
Fig. 1. Three connectivity phases each usey at each time < [0, T as part of the problem input.
In the online setting, eacH;(t) is revealed only at time, at
. ‘ which time instant, we have to instantaneously select an AP
Effective Bit Rates (kbits/s) . . .
AP from A;(¢) to associate for each usgrwithout any knowledge

AP AP4 of the future setsA;(t') for ¢’ € [t,T7.
AP5

Effective Bit Rates (kbits/s)
Entry Phase | Production Phase | Exit Phase

AP3

IV. OVERALL OPTIMIZATION AND SNAPSHOTSOLUTION

For the efficiency metric, with a set of vehicular uséfs
on the roads, the objective is to maximixe, ., w; B;, which
can be further denoted as

Eql Eq2  Eq3 Eq4 Eg5 Eq Eq7 Eq8 Eq9 Distance

T
"y
Fig. 2. Nonuniform AP deployments along user's driving teajey Z T] / b (t)d(t). 1)
jeu J J0
B. Performance Metrics Herew; denotes priority for different users, and it is a fixed

value for specified usefr. Similarly if we choose proportional

We consider two important performance metrics in this: . AT SO .
e . . . fairness as the metric, the optimization objective is to max
study: efficiency and fairness. Efficiency is measured with. .
mize .y w; In B;, which can be further denoted as

the overall throughput received by all users and fairness'is

to regulate the association control so that all users wieha 1 [T
a fair distribution of bandwidth as much as possible. > w ln(f/ b;(t)d(t)). 2
For efficiency, we aim to maximize the overall throughput Jeu 770

for all vehicular users. The throughput for any user is the The above two objectives are optimization metrics over
average message delivery rate during the user’s servigedpekhe duration of service period for all users. As we aim to
and it is usually measured in bits per second (bit/s). Heace {ontinuously construct optimized assignments of usersRe A
any userj, given the service duratioi;, ¢; +7}] and the allo- thin this duration, we use the term “snapshot” to denote th
cated bandwidtth; () at timet € [t;,¢; +T}], we can express small time interval within which we have to make a decision
the throughputB; for user;j as B; = T% tt]ﬁTj b;(t)d(t). about AP association for all users. Thus it is necessary for
Consider the overall time intervii), T, during intervalg0, ;] us to find solutions for each snapshot to achieve the overall
and[t; + T}, T], we actually havé;(t) = 0, thus we have an optimal performance.
equivalent uniform notion a®; = %] fOT b;(t)d(t).
Association control without considering fairness may le
to the starvation of users with poor signal strength. To wrs ~ We first prove a theorem.
fairness, two metrics are used frequently in literaturexsman~~~ Theorem 1:For the efficiency metric, it is sufficient to
fairness [5] and proportional faimess [6][13]. We use pep Maximize 3, ,; 7-b;(t) for each snapshot to achieve the
tional fairness in this paper because it can achieve a bet®@?g-term optimization goal. . o
trade-off between efficiency and extreme fairness. Suppose Proof: For the efficiency metric, we are to maximize
the throughput allocation for alk users can be denoted asfo = > jer 7 J, bi(t)d(t) according to (1). Asw; andT;
a vectorB = (B, Bs, ..., B,). By definition, an allocation5 ~ are constants with time for each usgrwe have

is “proportionally fair’ if and only if, for any other feasible T w; T w;
> 3| B.—B,; = —b;(t)d(t) = —=b;(t)d(t).
allocation ', °1Z1 Zi-5i < ¢ |n other words, any change fo Z/O T; 5(Hd() /0 2 7, (D40

j=1"B; jeu jeu 7Y

a%. Snapshot Optimization for Efficiency



As T is a constant, for each snapshoive only have to it expects to get from AR. Apparently0 < xz; ;(¢) < 1. We

maX|m|zeZ cu 7-b;(t) for optimization. W can view the assignment as a bipartite graph. Then the final
Theoreml essentlally tells us that we can optimize for effiintegral solution is a set of binary variables; () for all user-

ciency metric in each snapshot to achieve overall perfoomanAP pairs, wheret; ;(¢) is equal to 1 if usey is associated to

In the offline setting, we already kno®; in the objective AP and O otherwise. We use the rounding algorithm proposed

function. In the online setting, we have to estimdtebased by Shmoy and Tardos [16] to calculate the integral solution

on the user's current speed(t). Suppose usej gives the #;;(t). Readers can refer to [6] for detailed description.

driving trajectory to the centralized server through desikke

GPS. Knowing the overall distancg and the distance;(¢) 0 T

that user;j has traveled at timg we can continuously estimate 1 — T 1

T; for userj at snapshot using T} (t) = fff)(t) +t. ' | Eql
To describe the constraints in this probfem formulation for

each snapshat we formulate the association problem into a u2 | i

linear program (LP) as proposed in [6]. We use a fractional i Poobob b Pl

variablep; ;(t) to denote the fraction of time that ARlevotes " I e Ll s T

to userj. For each AP; and userj, if j is associated with ~ Un — - AN S T S L1

i, thenp, ;(¢) is a fraction between 0 and 1; if usgris not 001 234 5 67 89 1o Ik k

associated with, then the fraction is 0. Since each uger

is assigned to only one AP for the integral solution, there is Fig. 3. Time line for users to drive through tfEguivalence Classes

exactly one non-zerp, ;(t) for eachi € A. We can first relax

this constraint and assume that one user can associate witRincé we have obtained the optimized strategy for asso-

multiple APs for the fractional solution. Then the bandwidtCiation control over each snapshot, we need to consider the

b;(t) allocated to each usef can be depicted ak;(t) = handoff strategy for efficiency. Continuously computing th

S iea7ii(t)pi;(t). Thus we can obtain a fractlona| solutiorPPtimized association solution for each snapshot is definit
from the f0||ow|ng linear program formulation: not an appropriate solution, as it incurs too much computing
and communication cost. Without loss of generality, we as-

maximize Z ﬁbj (t) (3) sume that the boundaries of a AP’s effective range will not
jeu *J coincide with the others. Fig. 3 shows an example of the
subject to vehicular scenario, where a set of usérs, Us,...,U, are
trying to drive throughEquivalence Classesver the time
Vi€l b ZEZAT” Pis(?) @ span[0,7T]. Thus we can divide the overall time spén 7]
) into smaller time intervals according to the boundaries of
vie A Zpi:j(t) =1 ®) Equivalence Classesver the time span. We denote these
jeu time intervals ast, t,], [}, s, ..., [t7_1, 7). We rely on the
VjeU me(t) <1 (6) following theorem to devise an efficient handoff strategy fo
i€A efficiency metric.
VieA,jeU 0<p;;(t) <1 @) Theorem 2:For optimal association control to maximize
VieU b(t)>C (8) the efficiency metric, handoffs to new association solition

for users only happen when at least one user is crossing the

The first constraint defines;(¢), the bandwidth allocated to boundaries oEquivalence Classe#t each boundary the user
user;j at time pointt. The second constraint means that thill meet with one of the following cases: (1) new candidate
overall allocated time fraction of each ARo all users cannot AP is detected; (2) original optimal AP is lost and (3) oriin
be more than 1. The third constraint states that the overedindidate AP is lost. For cases (1) and (2), new association
allocated time fraction of each usgthat communicates with control is necessary. For case (3), new association coistrol
all APs cannot be more than 1. The fourth constraint showist needed, so the original optimized solution holds.
that the time fraction is between 0 and 1. To ensure that every Proof: According to objective functiory” ., ;J b;(t),
user is able to maintain connectivity to the internet witthie  the weightw; and service duratiof; for each userj are
service duration, the fifth constraint guarantees thatyewser fixed all the time. When all users are within the boundaries of
has a minimum bandwidth of” at any time¢, whereC' is  Equivalence Classeshe effective bit rates; ;(t) are never
a constant value for the lower bound. For tere efficiency changed, which indicates that all parameters for the opti-
goal we setC’ = 0 by default. mization problem are not changed, thus the optimal solution

For completeness, we describe briefly in the following howolds. For case (1), as a new candidate AP is detected, one
to find the integral solution based on the fractional sotutioeffective bit rater; ;(¢) will change from 0 to a positive value,
After we obtainp; ;(t) for each user-AP pair, we can furtherso the computation of a new optimal association solution is
calculate the fractional assignment ;(t) = M necessary. For case (2), since the original optimal AP is los
which reflects the fraction of usei’s total bandW| th that a new optimal association solution is definitely necesdewy.



case (3) we prove by contradiction that new associatiorrebnt The constraints fob;(¢;) in (10)-(13) is similar to the formu-
is not necessary. We denote the former equivalence clasda®ns of constraints fob;(¢) in (4)-(7), the only difference
Eq; and the new equivalence class Bg;. Assume inEq; is we use the time interva} instead of snapshatto depict
some user will switch to a different AP for a new optimathe parameters in the constraints. The fractional solutibn
solution. Thus we can use new bandwidth allocath';(t) pi,;(t;) for eachb;(;) is the exact solution for association
for users to improve the objective functi(ﬁjeU ’%b; (t) > control in thel_th interyal forl =1, ..,_L, as we allqw mul_tiple
iev %bj (t). As only one original candidate AP is lost forhandoffs within each interval to achieve the fractionaliioh.

some user inElg;, each user's candidate AP set fbiy; is a ASSUme within any time intervat, _,, ], there are” phases
subset or equivalent set of the one ;. So we can apply Of association control aglCy, ACs, ..., ACk. In each phase
this new solution taFg;, so as to further improve the objective1Cl, for k = 1,..., K, any user can associate with one unique
function, but that contradicts with the fact that we alreadye AP as the integral solution. Hence we can utilize an integer

optimal solution forEq;. Thus the assumption does not hold/ineéar program (ILP) to figure out the optimized handoff
the theorem gets proved. m Strategies. Due to lack of space, we omit the ILP formulation

According toTheorem?2, for the efficiency metric we only and the detail procedure to calculate the handoff stregegie
have to compute the optimized association solution each tim
when one or more users cross the boundanggfiivalence C. Online Algorithm for Proportional Fairness
ClassesWe can further prevent unnecessary computations by

checking the special patterns of adjacEquivalence Classes From the above subsection we know that the exact optimal

solution can only be achieved with information obtainedrove
B. Offline Optimization for Proportional Fairness the whole time spar0, T') in advance. However, in practice

In the above subsection we have demonstrated that #¢ cannot precisely know users’ future mobility trajectory
the efﬁciency metric we can transform the |0ng_term overdmus no information about which users will be contending for
optimization into the snapshot optimization. However, fospecified APs in the future can be obtained beforehand. ¢n thi
proportional fairness, as each snapshot decision for timap subsection, according to the online setting described atiGe
solution may depend on its former and future situations, W, we design an online algorithm. Our solution relies oe th
cannot simply conduct this transformation. following theorem.

As illustrated in Fig. 3, within each refined time interval Theorem 3:Maximizing the long-term objective function
[t,_1,t;) for I = 1,..., L, the candidate AP sets and correY_ ., w;In(e + [ b;(t)dt) is consistent with maximizing
sponding bit rates for all users are fixed. We can deviseti@ long-term objective functioyiTZ‘ b b (t)dL.
fixed pattern of association solution in an optimized appnoa . ) IEY et g bi(0)dt I
Following the offline setting described in Section lIl, and_'ere'fo bj(t)dt denotes the_a_ccumulated _bandW|dt_h In time
using the detailed information over the time SpénT] span[o,t],.wj denotes_the original fixed weight as priority for
given in advance, we devise an offline algorithm to achie®aCch usey, ande >0 is a small constant number. -
optimization for proportional fairess. Here we ubg to I?roof: Using the fact thafl” is constant and setting; =
denote the average bandwidth allocated in the time intervat fo bj(t)dt, we have
[t,_,,t,], and we define; = ¢, —t,_, for | = 1,..., L. So . - . .
we haveB; = T%_Zle (bj1 - t1). Since the objective is to / 3 _wib®) L Z/ _wibit)

0 0

maximize " .., w; In B;, we have et fobitdt o et [obi(tdt

T t
L ’LUj
= 7d6+/ b;(t)dt
S w8y = Y (Y by ) - 3w S it [ v
1

jeu
JEU JjeU 1= JjEU et [T by (0t
As -3,y w;InT; is constant, we can set the objective = Z/ ’ ﬁd(mj)
function as} ., w; (3" bj. - ;). Then we obtain the JEU € K
. . . Ty.
following convex program foeruIanon. _ Z w;In a:j\?f“ bj (t)dt
jeU
mazximize Z wj ln(z b t) 9) 7€ T
iev 1=0 = w; In(e +/ b;(t)dt) — w; lne. 14
subject to Jez; it 0 ) j%l:f ’ o
VieUle{l,...L} bji=> ri;(l) pi;(l) (10) _ o _ _ o
i€A As € is constant, maximizing (14) is equivalent to maximizing
VieAle{l,.,L} > pi;() <1 (1) -
jev > wiln(e+ / b;(t)dt). (15)
VieUle{l,...L} D pi()<1 (12) jev 0

i€EA
VieA,jeUle{l,..,L} 0<p;;(I)<1 (13) The theorem gets proved. ]



Recall that the original long-term goal is to maximize  of B;, we can further obtain

ij In( / (t)dt). (16) R= ng ln/ b3 ( Zw7 ln/ bj(t)dt.

jeU JjeU jeU

The only difference between the above two objective fumstio Theorem 4:The upper bound off = >y w;In B} —
(15) and (186) ise, which may have an impact on the corre2jeu W;In B; for DWOA is
sponding optimal solution. However, as long as weesshall rmameaw n
enough ¢ — 0) in (15), thg Iong -term goal in (15) becomes ij Tmmem ' ;)’
very near toy ., w; In( [y b;(t)dt). ey

In order to maximizefo = [, Y.y Wl) (t)dt, wherep = 7”51:17752,7] Tonin = minjeu(T;), Tnaz =
we use the following heuristic snapshot objectifg = max;jcu (7)), rmin is the minimum value of bit rate, ang, .
Siev Wl) (t) along with the constraint depicted iniS the maximum value of bit rate. .
(4)-(8) to approximate the long-term optimization soluatio Proof: ~ Since  DWOA attempts to maximize

The intuition is that maximizingf/, at eacht contributes to 2_jer wj In(e + fo j(t)dt), we first define R(e) =

the maximization offo. We thus propose an online algorithm_;;; w; In(e + fo bi(t)dt) — 3 ey wjIn(e + fOT bj(t)dt).

DWOA based on dynamic WelghW (t) = ﬁ We then have

oY
Since it is possible thaﬁO t)ydt = 0, we lete > 0 to e+f0T bi (t)dt
preventW;(t) from equal to+oo This online algorithm is R(e) = ij I e+ [Tb,(dt
illustrated in Algorithm 1. Here Step 1 takes care of the Jev 0

fairness metric by setting?;(t) inversely proportional to ag f bi(t)dt < Tiaz * Tmae and foT bi(t)dt >
the accumulated bandwidth. Step 2 considers the efﬁuenﬁx f (t)dt), we have
metric by attempting to maximize the sum of the weighte njeu (o by

bandwidths. We update the association solution for evety < Z w; - In( € + Thnaz " Tmaz
J

time .interval. Conventionally the lesAt we use, Fhe better = €+mIHJEU fo ) .
solution we can obtain, but the drawback is that it may cause
too many handoffs. Then according to the definitions & and R(e) we have
b*( )dt (e+ fo t)
Algorithm 1 DWOA: Dynamic Weight based Online Algo- R — R(e Zw, -
rithm jeu 6+f0 b ) fo j
1:.t=0 €
< iIn(———+1).
2: while t < T do - ;wj " fOT b; (t)dt + )
3:  Stepl.For each usey, calculateW;(t) = % . !
for snapshot at. 0 Therefore we obtain
4:  Step2.For snapshot at, set the object function asto R < Z w; In( ET +1) + R(e)
maximize Y-, W;(t)b;(t), calculate and apply the iev minjey ([ b;(t)dt)
solution for association. ¢ 4 min f (t)dt)
5. Step3.t =t + At, go to Step 1. < Z w; - In( sevlJo b )
= miney fo i(t)dt)
Tmam max
+ 3wy In(— r )
D. Performance Analysis of DWOA iU €+ minjcy fo ;i (t)dt)
Due to the mathematical complexity of our objective func-  — §™ .1 € + Tmaz * T'max (17)
tion >,y w;ln(B;), we take the following steps to de- jev minjey fo )dt)

fine a metric R to evaluate our online algorithm DWOA.

First, realizing the equivalence of its maximization tottha Now we need to estimatein;cy fo ;(t)dt) in Eq. (17).

of 3, ey w;jIn(B;), we use[[,.,(B;)" as the objective We consider the worst case that all users are driving in a very
function in the definition ofR. Then similar to the approach close neighborhood, and so they are always contending éor th

used in [6], we define same APs. We assume for theusersw; > wa > ... > wy,.
1 According to the algorithm, for the optimal snapshot solofi
R=1 JeU In B} — 0B, each AP W|II only aII.ocgte. bandwidth to the'user Wlt'h the
" HJGU ;UU " J%:]w] i largest weightiV;(¢) within its range. AsWW;(¢) is changing

all the time, we adopt the following procedure: user 1 first
Here B and B; respectively denotes the overall optimaget all the bandwidth from the AP untiVy(t) = Wa(t),
soluuon and the online solution. According to the defimitiothen user 1 and 2 will further get bandwidth uridil; () =



Wy(t) = Ws(t), ..., finally we can achiev@l/; (t) = W»(t) = propose a group-based approach that partitions the network
.. = W, (t). From then on, all users will share the bandwidtimto groups. In each group, we apply the aforementioned LP

distribution and keepV;(t) = W(¢t) = ... = W, (¢), in this method so that the computation complexity will be reduced.
way each usey further gets the bandwidth from the AP within the rest of this section, as we only focus on the snapshot
proportion S L pry . In order to obtainmin, ey ( fo (t)dt), solution, for the ease of presentation, we omit tfig)™ for

we further assume that user has the minimum service Shapshot parameters in the formulas. Next, we give a formal
duration 7, = minjcy (T}), thus among all userg ¢ U  definition of “groug’.

usern obtains the least bandW|dth_ Definition 1. We say that a set of users belong to the same
We denote the time interva{D t*] during which usern  groupif and only if for any two userg’ and j from the set,
gets no bandwidth angt*,7},] during which usern shares there is a series of users, jo, ..., js from the set such that

the AP's bandwidth distribution. Thus durmg the intervatly N Aj, # ¢, Aj, N Aj, # &,..., Aj, N A;j # ¢, where A;

[0,], the total downloaded bits for user,...,n — 1 is IS userj's candidate AP set.
S lf ;(t)dt. As the minimum bit rate isr we According to this definition, different groups aneutually
0 mins

exclusiveleach user can only belong to one unique group) and
independentusers belonging to different groups will have no

shared candidate APs for contention). For any snapshot, the
users over the roads can be divided into one or more groups.

obtaln tr< fo t)dt. At the time pointt*, as

min,

Wi(t*) = Wz(t*) =.=W, ( ) according to the definition
of W;(t), we have

Vji=1,2...,n—1 wj _ Wn Therefore our association control over all users is reduoed
T €+ fg b;(t)dt € association control within each group inferred Blyeorems.
o w Theorem 5:For snapshot solution of the efficiency metric
Thus we getf; b;(t)dt = (32 — 1)e, and further more and online solution of the fairess metric, the optimizatio
c 1 achieved within each group is consistent with the overall
s —( - > w;—n). (18)  optimization.
mm T jeu Due to lack of space, we omit the proof Gheorem5.
Now according to Eq. (18) we can estimate the minimuf}S We have learned from Section IV, both snapshot solution
accumulated bandwidth among the users for efficiency and online solution for fairness can be unified
- in the formulation as to maximize_,; ,, W; - b; for each
mm(/ bi(t)dt) > (T — t*) - WnT'min snapsh_ot. Herg for efficiency, we haVkéJu}f wj/T and for
J€U " Jo > jeu Wi proportional fairness, we havd’; = m
> WnTmin (T ) + ( Wp, = T 1) o
= min i = — €. i i _
> jeu w5 1€U J > seu 05 A. Breaking into Smaller Sub-Groups

_ In a dense traffic scenario, the distance between adjacent
'IL-IIllIl]'EU wj

Then according to Eq. (17), if we set=

>,cow, ' W& users may be close to share some candidate APs, thus we
have cannot divide them into separate groups. Hence we may still
€ + Tmaz Tomax have extremely large-sizegroupsover the roads. In order to
R< Z wj - In —1)e + prminTms /n]- reduce the computation complexity, we need to break thelarg
Jev e groups into smaller sub-groups. Therefore before we cdnduc

Here sincee is an adjustable parameter, it is possible toptimization with the linear program based method, we first

determine an optimal value farto minimize the bound. As perform pre-processing. For each ugewe delete those weak

p < 1, whene — 0, we can achieve the minimum value forinks (¢, j) with bit rate r;; ; low enough to satisfy; ; <

R's upper bound a3, ; w; - ln(% - 2). B (3 -max;eq, r; ;. Here,max;c 4, r; j is the maximum bit rate

that userj can achieve within its candidate AP séf, and

V. GROUP-BASED APPROACH
The above proposed snapshot solution as well as the online B = { Y/Ci* :I Cir 27 (19)

algorithm solution both require continuously solving aebm Cir <

program for each snapshot. The computation complexity mesgerei* is the specific AP with the maximum bit rate, is

be huge in our considered scenario, where we have to d#a number of users within AP’s effective range, ang > 1

with an extremely large Wi-Fi deployment. For examplds a constant parameter. When= 1, the intuition is that

according to polynomial-time algorithms for linear progra from userj’s perspective, even choosirgas its own AP with

like the ellipsoid method[17], the computation complexgy no contention is worse than contending f6rwith ¢;« users,

O(N*.L), whereN is the number of parameters afds the so it is too weak to worth association. We use the constant

length of encoding bits for parameters. For our optimizatigparametery to control the effect for weak link eliminations.

problems, we haveV = m - n for all parameters; ;, (m Actually the largery is, the greater number of links will be

is the number of APs and is the number of users). Thus,deleted. Thus we are able to break a large group into more sub-

if n andm are large enoughV will be a huge number and groups. After deleting these weak links, we check the bitgart

the computation complexity will be tremendous. Hereby wgraphG(V, E) of AP-user links corresponding to the original



large group. Herd/ denotes the set of users and APs, and\ccording to Lemma 1,
E denotes links after weak link eliminations. If the graph
is disconnected somewhere due to the effect of weak Iinkz Z Wjrijpij < Z Z Wiri jpi ;= Z W;b).
elimination, we will obtain new sub-groups. JeG €S jeGies; jeG
B. Approximation Ratio Analysis Then

Assume that for any usgrin the original optimized solution Wibs < Wb

. ) ; b < b+ W"I";/"
without edge removal, we have bandwidthfor the fractional ; 7 J; 7 ;ME/‘Z;S'_ iThg P
solution andb; for the integral solution; and similarly in the ' o
approximate solution with edge removal, we have bandwidithus by the definition of weak linki, j) with i € A; — 5;,
v/; for the fractional solution and; for the integral solution. we haver; ; < §; - R;, where R; = max;c 4, r;,;. Then
For both the efficiency and fairness metrics, we define the
approximation ratio agw. Apparently the ratio is at Z Wjb; = Z W;bj + Z(ﬂﬂRﬂwﬂ Z Pij)-

2jec Wi'h; A JEG JjEG JEG i€A;—S;
leastlasy .. W;-b; > > . W, b, since the candidate
JEG "I J = JEG "I 7 H

link set for the original solution is a superset of the one forNC€> ica, s, Pij < 1, then
approximate solution. In the following we give an upper biun
for this approximation ratio. Z Wib; < Z ij; + Z W;B;R;.

For any userj, we denoted; as its original candidate AP JEG JEG JEG

set, andS; as a subset ofd; for the remaining candldateAS we havey ., Wj-bAj < 3. W;-b; because the

AP set after the weak link elimination. Thus; — S is the ! ; . ;
e . ..~ . fractional optimal solution can always achieve a betteultes
set of those eliminated candidate APs. We respectivelizetil . . :
ghan the integral optimal solution, then

matrix p;_; andp;j to denote the optimized parameters for th

original solution and the approximate solution. Then adew s _ w; 5, < ZieaWih S e Wib 4SS, o WyBy- Ry

<

. L <
to the definition we have S Wibh © SeaWib, T e Wil
bj = Tij Pij = Tij Pij+ Tij  Pij "y
Z-GXA:]. 1%;:7 Z_e;sj We setf = ZJLMW/JZJ to be the approximation ratio for the
(20) rounding algojr?tchmjs f)roposed by Shmoy and Tardos[16], and
b} — Z Ti .p;ﬂ. - Z Ti .p{w, (21) 1<6<2. So,
1€A; 1€S; ~
’ ’ > jec Wi b; YiecWi LR,

We have the property ihemmal. =~ <6+ =
Lemma 1:For optimal parameterp; ; in set.S; for the EjeG W 'b§ ZjeG Wi - b;-
original solution and optimal parameteys ; in set S;  afrer the weak link elimination, the optimal integral sdbrt
for the approxmatc/e solution) e ZieSj Wiriipij < may come with a worst case, where a bunch of users share only
2jea 2ies; WirijPi g " ) ) one candidate AP which has the largest bit rate for any of them
Proof: After removing some weak links, thoge ; With i, the other candidate APs all eliminated. Then the optima

é ¢ 5 c?lrresponding tto .thte ]\(Neatl;] links are set 'ttho Onethod for each usef is to select the unique AP with}%{j,
onsequently some constraints for the remaiing With - ynjcp, s the largest; ; for j. Thus we havey™. . W, - 2
i € S; get relaxed. We can then add a slack value to adjust gesti,; for J. 2jec e

pi; 10 pl; so as to further increase the objective functioAS the lower bound for the optimal resdft ;. W; - 0. So,
> jec 2uies; WiTiipi,j,» Which at least can remain the same —_— W.. 1. R

by .settingpg,j_ = pi ;. Therefore the objective function of the 2jec Wi J <0+ 2 jec Wi TR <o+ ”
optimal solution should be equal to or larger than the previo ZjeG W - bl ZjeG Wj- o+

one, ..y o> ice WitiiDii <D cadics WiTi Dy i _ o .
The Iemméegets zrfréveé. R JEGEes, TN Therefore we obtain the approximation ratio @st -,

Theorem 6:For the snapshot solution of the weight baseffherey is a constant. This indicates we can well control the
objective function, the upper bound of the approximatidiora @PProximation ratio by adjusting. ]
for group breaking i9+ -, wheref is the approximation ratio
for the rounding algorithm in Shmoy and Tardos[16].

C. Computation Complexity

Proof: According to Eg. (20) and Eq. (21), Note that the number of variables for the original linear
ZW-?'bJ' = Z Z Wirij - pij + Z Z W,rij - pij- program iSN = m - n. After the weak link elimination, we
jEC JEGiES; JEGicA;—S; can break a large group of APs and users into sub-groups

G1,Ga,...,Gy. For each groug7; (1 <i < k), we havem;
Z Wb, = Z Z Wiri; - phj- APs andn, users. Thus, the number of variables for the linear

JEG JEG i€s, program isN’ = Zle m; - n;. Suppose the expected number



of sub-groups id<. The expected computation complexity cameast one AP, and that their peak bit rates range from 10G0kpb

be calculated as follows. to 3500kbps for vehicular users. In our simulation, we satwul
K K a total of 100 users driving over these roads with speed thnge
E(N') = E(Z mi - ng) = ZE(mi -n;) from 40km/h to 100km/h, and utilize Boisson Proceswith
i=1 i=1 parameter) to simulate the series of vehicular users within

time span[0h, 10h]. On average, every0/\ second a new
user will drive into this region. Among these multiple roads
each user randomly selects the trajectory for driving. Weeso

Assumem,; andn; are independent. We havg(m, - n;) =
E(mz) . E(nz), then

K : .
m n m-n N the linear program and convex program using MATLAB.
E(N') = E(m;)) En)=K - — - — = _
(N') Z (m) - Blng) = K- % 2 = = = -
- 250
The ellipsoid method which effectively solves the lineao-pr —— Connect Unti Broken 8001 | —+— Comect nti Broken

n
=1
]

) N —e—Strongest Signal First
—e— Strongest Signal First
/

—s=—Online Algorithm Solution
—+—Offline Optimal Solution /

o
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gram, given the number of parametéy¥s has a computation
complexity of O(N*). By using group breaking, the compu-
tation complexity is reduced tO (£ ).
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VI. PRACTICAL CONSIDERATION IN REALISTIC SETTINGS

o
S

We have already shown how to reduce the computatior P = B
. . . . . . 0
complex_lty in computing the o_ptlmal association contrait b 7 e 00 Bl R e
processing the requests on a single server for a large nushber @ (b)

vehicles and APs is still a challenging problem. In this seGt
we discuss how to distribute computational load in praclice Fig. 4. Performance comparison for (a) efficiency, (b) prdpogl fairness
order to alleviate the bottleneck on the central server, pptya
the following framework based on the group-based approach .
to distribute the load. We deploy a primary server and migitip”- Efficiency and Faimess
secondary servers, which are connected to the APs via wiredn Fig. 4(a) and Fig. 4(b) we respectively evaluate perfor-
back-haul links. When a mobile user first joins the networknance of our optimal strategies for efficiency and fairness.
it arbitrarily associates with a nearby AP. The mobile useie compare performance with two heuristic strategies. The
continuously upload their current information (i.e., pimsi, first strategy isConnect Until Broken (CUBWhich maintains
speed, candidate APs, etc.) to the primary server throughconnection with a user and an AP until the user considers
the current associated AP. The primary server processes ftiee link to be broken. Upon disconnection, the user will be
bipartite network graph and breaks it into non-intersegtirassociated with a new AP which yields the largest signal
subgraphs. Then the primary sever dispatches these stisgratrength. The second strategyStrongest Signal First (SSF)
to various secondary servers. Due to mmeatually exclusivand which always associates a user with the AP yielding the
independenproperties, those secondary servers can calculsteongest received signal strength at all times. Fig. 4t{ajvs
the association solutions in parallel. After that the seleoyp the result for the efficiency metric, where the X axis is the
servers send the updated solutions to the users through thieie span as users are driving over the roads and the Y
current connections, then the users apply the updatedamdut axis is the users’ total received data measured in GBits. For
Therefore, assuming the number of subgroupsKisand the ease of comparison, we sef = 1 and1; = 1h for
the computation for thé< groups can be fully parallelized, each user, so comparing the total received bits is equal to
according to the analysis in Section V-C, the computationebmparing the overall throughput. We observe that the iateg
time can be greatly reduced t: of the original approaches. optimal solution outperforms both tH8SF solution and the
If the primary server can always limit the size of subgroupSUB solution. TheSSF solution achieves about 70% of the
to a fixed number, the computational overhead can be kepttagl throughput of the integral optimal solution, whileeth
a constant value. CUB solution always performs worst for it only reaches 38%
of the total throughput in comparison with the integral oyl
solution. Fig. 4(b) shows the result for the proportionaifass

We have implemented a simulator to simulate the Drivenetric, where the X axis is the user index and the Y axis
thru Internet scenario over a Wi-Fi deployed square regids users’ throughput in Kbps. The users are sorted by their
(20km x 20km) covered with 10 roads. Among them 5 roadthroughput in increasing order. For the ease of comparison,
are along the east-west direction and 5 roads are along e setw; = 1 for each user. For the online algorithm we set
north-west direction, thus forming x 5 intersections within ¢ = 0.01 and every 5 second we recalculate the association
the square region. We randomly place a total of 2000 ARslution. We observe that although the two heuristics have
over these roads and adopt the experiment results from [2]sianilar growth trend as our optimal solutions, and that both
simulate effective bit rates of APs. We make sure that at athe offline optimal solution and online solution outperfottme
location of the roads the user is within effective range of &vo heuristic solutions for overall throughput. For instan

VIl. PERFORMANCEEVALUATIONS



the median user’'s bandwidth value of the online algorithe observe that it is much smaller than the worst case ratio
solution is 69% higher than thH@SFsolution and 300% higher 6 + ~, which demonstrates for conventional cases we achieve
than theCUB solution. The offline optimal solution has bettetight bound for the expected approximation ratio.

performance than the online solution, since the mediansuser

bandwidth value of the former is 12.9% higher than the latter VIl CoNcLUSION
In this paper, we conduct a theoretical research on associa-

s tion control over théDrive-thru Internetscenario. We consider
both efficiency and fairness metrics, and present correspgn
offline and online solutions to achieve overall optimizatio
/ objectives. We further propose an approximation algorifbm
group breaking in order to reduce computation complexity.
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