Effective Social Network Quarantine with Minimal Isolation Costs

Huanyang Zheng and Jie Wu
Presenter: Dongyang Zhan
Dept. of Computer and Info. Sciences
Temple University, USA
Introduction

Notion of diseases

- Human communities (e.g., Ebola)
- Online social networks (e.g., rumours)
- Distributed systems (e.g., computer virus)

Susceptible-Infected-Susceptible

- Two states: **susceptible** and **infected**
- Susceptible people can be infected
- Infected people return to susceptible by recovery
Social Network $G = (V, E)$
- V is a set of nodes (people)
- E is a set of directed edges
- C_v is the isolation cost of the node v
- Q is the set of isolated nodes (people)

Objective and Constraint
- Minimize the total isolation cost of $\sum_{v \in Q} C_v$
- Epidemic outbreaks are eliminated
Epidemic Model

Parameters

- λ is a constant infection rate
- γ is a constant recover rate
- $p(d)$ is the fraction of nodes with in-degree d
- $f_d(t)$ is the fraction of infected nodes with in-degree d at time t, and $[1 - f_d(t)]$ is the fraction of susceptible nodes with in-degree d at time t

The probability that a uniform-randomly selected edge comes from an infected node at the time t is $\Theta(f(t))$

$$\Theta(f(t)) = \frac{\sum_d d \cdot p(d) \cdot f_d(t)}{\sum_d d \cdot p(d)}$$
Epidemic Model

Consider a node with in-degree d

- It has d incoming neighbors
- $d \times \Theta(f(t))$ infected incoming neighbors (expected)
- Each infected neighbor has a infection rate of λ
- The total infection rate is

$$1 - (1 - \lambda)^{d \cdot \Theta(f(t))} \approx \lambda \cdot d \cdot \Theta(f(t))$$

The epidemic state transfer equation is

$$\frac{\partial f_d(t)}{\partial t} = \lambda d \Theta(f(t)) [1 - f_d(t)] - r f_d(t)$$

The 1st part is infection, and the 2nd part is recovery
Epidemic Model

To control epidemic outbreaks
• The new infection must be 0:

\[\frac{df_d(t)}{dt} = 0 \]

Further derivation shows

\[f_d(t) = \frac{\lambda d \Theta(f(t))}{r + \lambda d \Theta(f(t))} \]

\[\Theta(f(t)) = \frac{1}{\sum_{d} dp(d)} \sum_{d} dp(d) \frac{\lambda d \Theta(f(t))}{r + \lambda d \Theta(f(t))} \]

\[\frac{\partial}{\partial \Theta(f(t))} \left(\Theta(f(t)) - \frac{\sum_{d} dp(d) \frac{\lambda d \Theta(f(t))}{r + \lambda d \Theta(f(t))}}{\sum_{d} dp(d)} \right) \geq 0 \]
The result to control epidemic outbreak:

\[
\frac{\lambda \sum_d d^2 p(d)}{r \sum_d d p(d)} \leq 1 \quad \text{or} \quad \frac{\langle d^2 \rangle}{\langle d \rangle} \leq \frac{r}{\lambda}
\]

\(\langle \cdot \rangle\) denotes the mean value of variable

\[
\frac{\langle d^2 \rangle}{\langle d \rangle} = \frac{\langle d^2 \rangle - \langle d \rangle^2}{\langle d \rangle} + \langle d \rangle
\]

Larger average degree and larger degree variance bring more network vulnerability to epidemics
Feasibility and Minimality

Let $\Delta(Q)$ denote the degradation of (isolation Q can control epidemic outbreaks)

Objective is to minimize

$$\sum_{v \in Q} C_v$$

Constraint is to control epidemic outbreaks:

$$\Delta(Q) \geq \delta$$

$$\delta = \frac{\langle d^2 \rangle}{\langle d \rangle} - \frac{r}{\lambda}$$

We focus on feasible isolations:

Definition 1: A quarantine strategy, Q, is said to be feasible, if the constraint of $\Delta(Q) \geq \delta$ is satisfied.
Feasibility and Minimality

Key concept of minimality:

Definition 2: A feasible quarantine strategy, Q, is said to be minimal, if $Q \setminus \{v\}$ is not feasible for an arbitrary $v \in Q$.

Key observation:

Theorem 1: A minimal feasible quarantine strategy, Q, satisfies the property that $\delta \leq \Delta(Q) \leq 2\delta$.

Key intuition:

- A minimal feasible quarantine strategy would not lead to unnecessary isolations.
- Unnecessary isolations are saved once the epidemic outbreak is controlled.
Algorithmic Design

Our problem is NP-hard

• A reduction from partial set cover

Unbounded greedy can iteratively choose the lowest marginal cost-to-benefit node

1: Initialize $Q = \emptyset$.
2: while $\Delta(Q) < \delta$ do
3: \hspace{1em} $v = \arg \min_{v \in V \setminus Q} \frac{C_v}{\Delta(\{v\} \cup Q) - \Delta(Q)}$.
4: $Q = Q \cup \{v\}$.
5: return Q as the quarantine strategy.
Algorithmic Design

Bounded greedy through homogeneous scaling

1: if $\delta < 0$ then
2: return \emptyset;
3: $v = \arg \min_{u \in V \setminus Q'} \frac{C_u}{\Delta(Q' \cup \{u\}) - \Delta(Q')}$.
4: Set coefficient $\epsilon = \frac{C_v}{\Delta(Q' \cup \{v\}) - \Delta(Q')}$.
5: $Q' = Q' \cup \{v\}$.
6: for each $u \in V \setminus Q'$ do
7: $C'_u = \epsilon \times \Delta(\{u\})$. /* split node cost */
8: $C_u = C_u - C'_u$. /* residual node cost */
9: $Q = Q' \cup \text{RECURSIVE}(G, \delta - \Delta(Q'), Q')$.
10: for each $u \in Q$ do
11: if $Q \setminus \{u\}$ is a feasible quarantine strategy then
12: $Q = Q \setminus \{u\}$.
13: return Q as the quarantine strategy.
Approximation ratio is 2

- At most double the optimal isolation cost
- Insight is that a minimal feasible isolation strategy is close to the optimal isolation strategy

Time complexity is $O(V^2)$
Experiments

Epidemics in online social networks

- Epinions is a general consumer review site
- Wikipedia is a free encyclopedia

<table>
<thead>
<tr>
<th>Dataset Statistics</th>
<th>Epinions</th>
<th>Wikipedia</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of nodes</td>
<td>18,098</td>
<td>7,115</td>
</tr>
<tr>
<td>Number of edges</td>
<td>355,754</td>
<td>103,689</td>
</tr>
<tr>
<td>Average degree</td>
<td>19.6</td>
<td>14.6</td>
</tr>
<tr>
<td>In-degree Variance</td>
<td>3615.8</td>
<td>1006.9</td>
</tr>
<tr>
<td>Network Diameter</td>
<td>11</td>
<td>7</td>
</tr>
<tr>
<td>Global clustering coefficient</td>
<td>0.138</td>
<td>0.141</td>
</tr>
<tr>
<td>Average edge weight</td>
<td>0.0285</td>
<td>0.0076</td>
</tr>
</tbody>
</table>
Experiments

Results on Epinions

Isolation cost depends on node degree
Experiments

Results on Wikipedia

Isolation cost depends on node degree
Conclusion

Epidemic outbreak depends on both the average node degree and the degree variance

A minimal feasible quarantine can avoid unnecessary isolations, and lead to a bounded algorithm

Thank You