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Abstract— Efficient routing among mobile hosts is an impor-
tant function in ad hoc networks. Routing based on a connected
dominating set is a promising approach, where the search space
for a route is reduced to the hosts in the set. A set is dominating if
all the hosts are either in the set or neighbors of hosts in the set.
The efficiency of dominating-set-based routing mainly depends
on the overhead introduced in the formation of the dominating >
set and the size of the dominating set. In this paper, we first
review a distributed formation of a connected dominating set @
called marking process and dominating-set-based routing. Then
we propose a dominant pruning rule to reduce the size of the Fig. 1. Examples of ad hoc networks.
dominating set. This dominant pruning rule (called Rule k) is
a generalization of two existing rules (called Rules 1 and 2).

We prove that the vertex set derived by applying Rulek is and maintaining a CDS and the size of the corresponding
still a connected dominating set. When implemented with local subnetwork.

neighborhood information, Rule &k is more effective in reducing Unfortunatelv. findi . ted dominati t
the dominating set derived from the marking process than the nfortunately, inding a minimum connected dominating se

combination of Rules 1 and 2, and has the same communicationiS NP-complete for most graphs. Wu and Li proposed a simple
complexity and less computation complexity. Simulation results and efficient approach callecharking process which can

confirm that Rule k outperforms Rules 1 and 2, especially in quickly determine a CDS. This approach was first proposed for
relatively dense networks with unidirectional links. undirected graphs using the notion of dominating set only [3]
l. INTRODUCTION and was later extended to cover directed graphs by introducing

- another notion calledbsorbent set [4]. Specifically, each host
An ad hoc network can be represented byn disk graph is marked (i.e., becomes a gateway) if it has two unconnected

[1],V\(here every_vertex (host) is as_sociated Wi.th adisk centerg ighbors. It is shown that collectively these hosts achieve
at this vertex with the same radius (transmitter range). TWO jaqired global objective — a set of marked hosts forms a
vertices are neighbors if and only if they are covered by eagh -\ cps” Based on the marking process, verticesid w

other’s'disk. For example, both verticesindw in Figure 1(a) in Figure 1 (b) are marked and they form a dominating set
are nelghbors of vertex b_ecause they are covqred by disk iy their network. The CDS derived from the marking process
while verticesy anda in _F|gure 1 (b) are not ne|ghbor§. In aNs further reduced by applying twdominant pruning rules.

ad hoc network, some links (edges) may be unidirectional dﬂ%cording to dominant pruning Rule 1, a marked host can

to ei?her the disparity of energy levels of hosts or the hidd‘ﬂhmark itself if its neighbor set is covered by another marked
terminal problem [2]. Therefore, a general ad hoc network c3R

b idered i q h with a hiah Pjt; that is, if all its neighbors are connected with each other
biedi(r:gcr;]t?cl)nzrlelinsss a directed graph with a high percentage, o onother gateway, it can relinquish its responsibility as a

ateway. In Figure 1 (b), either or w can be unmarked (but
Routing in ad hoc networks is harder than that in wire y g ®) ! (

ks d he limited K bil ot both). According to Rule 2, a marked host can unmark
networks, due to the limited resource, network mobility anflser it jtg neighborhood is covered by two other directly

lack of a ng‘j‘j'cal. mfrastructgr[()a.SVlrtual mfrastru(cjtures,dsuc onnected marked hosts. The marking process and Rules 1
as aconnected dominating set (CDS), were proposed to reduce, ,y 5 are purely localized algorithms where the marker of a

the routing overhead and enhance scalability. A dominating st depends on topology of a small vicinity only.
satisfies that every vertex in the graph is either in the set Ohpe propose a generic dominant pruning rule célled Rule

adjacent to a vertex in the set. Vertices in a dominating set Afich can unmark gateways covered byother gateways
also calledgateways while vertices that are outsideadominat\-Nherek can be any number. Rulé is more efficient in’

ing set are calledron-gateways. Among CD$—ba§ed routlmg reducing the number of gateways than the combination of
protocols, only gateways need to keep routing information Rules 1 and 2. For example, if hosts in Figure 1 are evenly

a pro'acu've apprqach a”F’ the search space is reduggd to ﬂ’lﬁstributed and dense enough, it is almost impossible to find
dominating set in aeactive approach. Clearly, the efficiency two hostsv and w to cover the neighborhood of host

of this approach depends largely on the process of findiragee the shadowed area in Figure 1 (a)). However, it is
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developed that implements a restricted version of Rubéth

less computation complexity than that of the combination of
Rules 1 and 2. Simulation results of this paper show that this
restricted version of Rulk outperforms the combination of the
restricted Rules 1 and 2 in reducing the number of gateways.

II. RELATED WORK

Fig. 2. Three examples of dominating set reduction.

Das et al. [5] proposed an algorithm to identify a subnet-
work that forms aminimum CDS (MCDS). This algorithm
finds a CDS by growing a tre€ starting from a vertex with dominating neighbor set N,(u) of vertexu is defined agw :
the maximum vertex degree, and adding new vertice§ to (w,u) € E}. The absorbent neighbor set N,(u) of vertex
according to its effective degree (number of neighbors thatis defined as{v : (u,v) € E}. N(u) = Ng(u) U Ny(u)
are not neighbors df’). The main drawback of this algorithm represents the neighbor set of vertex
is its centralized style: Vertices in the MCDS are selectedA set V' c V is adominating set of G if every vertex
sequentially, and expensive coordination is needed for eache V — V' is dominated by at least one vertexe V.
selection unless global information is provided. Also, a setV’ C V is called anabsorbent set if for every
Several algorithms were proposed based on clusters.v@rtexu € V — V', there exists a vertex € V' which
cluster usually contains &ead and severalmembers that is an absorbent ofu.. For example, vertex sefu,v} in
are neighbors of the head. Lin and Gerla [6] gave twbigures 2 (a) and (b) anflu,v,w} in Figure 2 (c) are both
simple clustering algorithms based on host id and degreminating and absorbent sets of the corresponding directed
respectively. The clustering approaches are very effective gnaphs. The absorbent subset may overlap with the dominating
reducing the size of the dominating set in very dense networlssibset. We use the term “(connected) dominating set” to
However, the head election process may have to be serializegresent “(strongly connected) dominating and absorbent set”.
in some cases, such as in a linear network with monotonicallyie following marking process can quickly find a strongly
increasing or decreasing id distribution along the network. connected dominating and absorbent set in a given directed
Heads of clusters form a dominating set, but they are ngtaph. All nodes are initially markef’ (unmarked).
necessarily connected. Sorherder members (i.e., members
with neighbors in other clusters) are designated as gatewa@igorithm 1 Marking process [4]
which form virtual links between cluster heads and connect: Eachu periodically exchanges its neighbor 9éf(u) and N, (u)
all clusters. In thenaximum connectivity scheme, most border _ With all its neighbors. _ _ _
members are designated as gateways. The objective here isztognze;sJﬁsurgigkheirg(ﬂgrze%’ 'E;?f)ree %"inmz)?f)'g;?"s
maximize the throughput and reliability, rather than to reduce
the size of a connected dominating set. Tihesh scheme ) ) )
[7] designates a subset of border members as gateways sgUPPOSe the marking process is applied to the network
that there is exactly one virtual link between two neighboringFPresented by Figure 2 (a). Hostwill be marked because
clusters. Theree scheme [8] minimizes the number of virtual(%> @) € E and(u,y) € E, but (z,y) ¢ F; hostv will also

links by growing a breadth-first search tree via roodind’.e marked. All other hosts will remain unmarked because no

However, this approach demands a root election, which is quitch Pair of neighbor hosts can be found. Results in [4] show
expensive, and the flooding nee@¥s) rounds to complete, that marked vertices form a strongly connected dominating and
wheres is the diameter of the network. absorbent set, and furthermore, can connect any two vertices

Wu and Li's marking process uses a constant number With minimum hops. _
Two dominant pruning rules are proposed in [3] and then

rounds to determine a CDS. This approach can be applied to : , ;
ad hoc networks with bidirectional links only [3] and withextended in [4] to reduce the size of the CDS derived from the

both bidirectional and unidirectional links [4]. Stojmenovidn@rking process. We say a vertexasvered if its neighbors
et al. [9] further reduced the communication overhead of tan reach each other via other connected marked vertices. If

localized dominating set algorithm using location informatiorft V"€ is covered by no more than two connected vertices,
removing this vertex froni”’ will not compromise its func-

[1l. PRELIMINARIES tionality as a CDS. To avoid simultaneous removal of two

An ad hoc network with unidirectional links can be repYertices covering each other, each vertex 1 is assigned a

resented by a simple directed graph= (V, E), whereV’ distincti id,id(p). A.verte.x is removed only when it is covered
is a set of vertices (hosts) anfd is a set of directed edgesPY Vvertices with higher id's. ,
(unidirectional links). A directed edge fromto v is denoted Rule 1. Consider two vertices v and v in G (induced
by an ordered paifu,v). A directed graphG is strongly subgraphof V). If Ny(u)—{v} C Nu(v) and N, (u)—{v} C
connected if for any two vertices andv, a (u, v)-path (i.e., Na(v) in G andid(u) < id(v), change the marker of u to F'.

a path connecting to v) exists. If (u,v) is an edge inG, Rule 2 Assume that v and w are bidirectionally connected in
we say that. dominatesy, andv is an absorbent ofi. The G'.If Ng(u)—{v,w} C Ng(v)UNy(w) and N, (u)—{v,w} C




(@ (b) LoX

Fig. 3. Limitation of Rules 1 and 2.

Fig. 4. An impossible network partition.
No(v) U No(w) in G and id(u) = min{id(u), id(v), id(w)},
then change the marker of u to F.

In Figure 2 (a), SinceVy(u) — {v} C Na(v), Nu(u)—{v} C id(v) = max{id(w) tw € Ng(u)}, yvhich cannot be removed
N,(v) and id(u) < id(v), vertex u is removed fromy. Dy applying Rulelk. Therefore,u is dominated by IaF least
In Figure 2 (b),u and v cover each other, but only is ©On€ vertexv € V.. By analogy we can prove that, is aa
removed fromV' becauseid(u) < id(v). In Figure 2 (c), absorbent set afy. .
since Ny(u) — {v, w} C Ny(v) U Ng(w), Ny(u) — {v,w} C Next we prove thatz[V. ] is strongly connected. Suppose
N (0)UN, (w), andid(u) = min{id(u), id(v), id(w)}, vertex that G[V,] is not strongly connected. If we put back the
u can be removed frofir’ based on Rule 2. It is proved in [4] '@Moved vertices one by one in the descending order of vertex
that the reduced s&f C V' generated from applying Rule 1id'S, we shall find the first vertex. that “re-connectsV,;
and/or Rule 2 tol’" is still a strongly connected dominatingthat is, after the removal of, at least one pair of vertices
and absorbent set aff. The combination of the marking (¢:%) in G[V'] loses its last connecting path. However, this

process and Rules 1 and 2 is a purely localized algorithms!S impossible: Ifu is removed from”" by applying Rulek,
its dominating and absorbent neighbor sets are covered by a

IV. PRUNING THROUGH k-NEIGHBOR COVERAGE strongly connected set of vertices with higher id’s thdfu).

A. Generic pruning rule As we can see in Figure 4, for any,()-path throughu,
Let G = (V,E') be the induced subgraph f by V", there aIv;/a.ysle;(lsts anoth@tr,y)—p;ath wghfthe follgwfmg three

V., = {v1, v2, ..., v } is the vertex set of a strongly connectedcIments: (1) from souraeto vertexw, beforeu, (2) fromw,

i N ) v tothe vertex aften, w,, throughvy, vs, - - -, v, coveringu, and
Dubgrép;\r; '(:G; » Na(Vy) = Uy, ery Na(vi), and Na(Vy) = (3) from w, to destination, which is not through Therefore,
vi €V, TTaT removal of u cannot eliminate all &, y)-paths, which is a
Rule k: If Ny(u)—V; C Na(V;) and N, (u)-V, C N,(V,)in contradiction. n
G and id(u) = min{id(u),id(v1),id(v2),- - -,id(vg)}, then
change the marker of u to F'. B. An efficient pruning algorithm

Rules 1 and 2 are the special cases of Rulwhere|ka| is There are two ways to implement a dominant pruning rule:
restricted to 1 and 2, respectively. However, a vertex removegstricted or non-restricted. In the restricted implementation,
by Rule % is not necessarily removable by Rule 1 or Rule & host unmarks itself only when it is covered by a group
For example, in Figure 3 (a), both verticesand v can be of self-connected marked neighbors. In the non-restricted
removed by Rulek (for £ > 3) because they are coveredmplementation, a host can be covered by a group of hosts 1
by verticesw, =, y, and z; in Figure 3 (b), vertexu can or 2 hops away, self-connected or connected by other marked
be removed because it is covered by vertiagsz, andy. hosts. For example, hosts and v in Figure 3 (a) andu
Note that although: andy are not bidirectionally connectedin Figure 3 (b) can be unmarked by the non-restricted Rule
directly, they can reach each other via vertex However, &, but only hostu in Figure 3 (b) can be unmarked by the
none of these vertices can be removed by Rule 1 or Rulergstricted Rulé. Hostsu andv in Figure 3 (a) cannot unmark
because they cannot be covered by one or two bidirectionalllemselves because one of the covering hastsis not a
directly connected vertices. neighbor of them. Simulation results show that in average ad

Theorem 1: If V' is a strongly connected dominating ancdhoc networks, the number of hosts unmarked by restricted and
absorbent set of7, and V]'% is the set of vertices removablenon-restricted rules are very close. From the practicality of
under Rulek, thenV, = V' — V,, is a strongly connected implementation, the restricted implementation is much better

dominating and absorbent set Gf because it only needs 2-hop neighborhood information.
Proof: : First we prove thatV*' is a dominating set of In the restrictedk-dominant pruning algorithm, each host
G. This claim holds wherV'| = 1, becausel, = V'. If decomposes the induced graph of its marked neighbor set with

[V'| > 1, for every vertexu in G, it is either inV' or not higher id's er into severalstrong components. The strong
in V'. If u ¢ V', it is dominated by at least one vertex incomponents [10] of a directed graph are the equivalence
V', becausé’’ is a dominating set of?. If u € V', itis also classes of vertices under the “mutually reachable” relation.
dominated by a vertex i, becausé " is strongly connected. Two vertices ofVJ'r belong to the same strong component
In addition, there always exists a vertexe V' satisfying if and only if they are strongly connected i@[VJr]. For



Algorithm 2 Restrictedk-dominant pruning (at each e V') o o0

1: Send a notification packet to each neighbatisfyingid(v) < o
id(u).

2: Receive all notification packets and build a subgr@M],
whereV, = {w|lw € (V N N(u)) A (id(u) < id(w))} is
u’s marked neighbor set with higher id’s. 0

3: Compute the set of strongly connected components (=

o b
V’ 0 30 40 50 60 70 80 90 100 20
{ve

Size of dominating set
Size of dominating set

I V;IZ, e ; V;’l} Of G[Vi]. , Number of hosts SZumb:imos;O * ° e
4: Change its markem(u) to F" if there existsV;,, 1 < i <1, such Fig. 6. Rulek vs. cluster-based schemes and MCDS.
that Ny (u) — V,, C Na(V.,) and Na(u) — V.. C Na (V).

V. SIMULATION

.(1) QG) . . . . .
; S The simulation is conducted by our dominating set algo-
: ﬁ ,Vf @ @ rithm testbedds, which simulates several connected dominat-
* x./ ?ﬁ.y ing set algorithms, including the marking process and several
0—’ . @ Re dominant pruning rules (Rules 1, 2, arld, MCDS, and
: ' Y three cluster-based schemes (maximum connectivity, mesh,
® and tree). To generate a random ad hoc netwerkpsts are
@ ®) (© randomly placed in a restrictdd0 x 100 area. The transmitter
Fig. 5. Decomposition of strong components. ranger is adjusted according to the average vertex degree

to produce exactly’d links in the corresponding unit disk
graph. Most of these links are treated as bidirectional, but

example, the directed graph in Figure 5 has three strofigSMall portion £%) of them are randomly selected to be
components{t,v,z}, {w}, and {y, z}. A directed graph is unidirectional links. Ne'tworks that cannot form'a ;trongly
strongly connected if it has only one strong component. Nof@nnected graph are dlscar_ded. For Qach combination of pa-
that although we always assume tt4tis a strongly connected r@meters #, d, and p), the simulation is repeated 500-2000
graph,G[Vi] is not necessarily strongly connected. For arc?mes until the confidence interval is sufficiently smati1%,
marked host, if it can be unmarked by applying the restrictedr the confidence level of 90%).

Rulek, it must be covered by a subset of a strong component,Figure 6 compares the performance of Ridein terms

VC'_(l < i < 1), which also covers.. If u is not covered by of the sizes of resultant dominating sets, with MCDS and
ar;y Vc it cannot be covered by any other strongly connectéaree_ cluster-based schemes on two types of undirecte;d graphs:
vertex set. Therefore, it is not necessary to test the coverd§itively sparse ones (the left graph,= 6) and relatively

of every combination of’s marked neighborsTesting every ~dense ones (the right graph= 18). Among these algorithms,
strongly connected component shall be sufficient. MCDS is the best (i.e., produces the smallest CDS) and the

Joaximum connectivity scheme is the worst. The performance
of Rule k and the other two clustering schemes (tree and
mesh) lies between them. The performance from the worst
to the best is: the mesh scheme, the restricted Rulthe
non-restricted Rule:, and the tree scheme. The difference
between the mesh scheme, Réleand the tree scheme is
relatively small and depends on the average degree. In sparse
graphs, the performance of both implementations of Ruie
C. Complexity analysis very close to that of the tree scheme.
. ) Figure 7 compares the performance of the restricted Rule 1,

The following theorems show that the restricted R#éle the combination of restricted Rules 1 and 2, and four different
has the same communication complexity as restricted Rulggyiementations of Rule: (restricted, non-restricted, based
1 and 2, the same computation complexity as restricted Ryg 2-hop information, and based on 3-hop information). Both
1, and less computation c_omplexny than restricted Rule gndirected graphs (the upper row) and directed graphs with
Their proofs can be found in [12]. 10% unidirectional links are simulated. Rulé performs

Theorem 2: The marking process and the restricted versiongetter than the restricted Rule 1 and the combination of
of Rules 1, 2 and have the same communication complexityestricted Rules 1 and 2. Among the different implementations
O(A), whereA is the maximum vertex degree in the networkef Rule &, the non-restricted implementation performs better

Theorem 3: The marking process and the restricted versiotisan the implementation based on 3-hop information, which
of Rule 1 and Rulé: have the same computation complexityn turn, performs better than the implementation based on
O(A?). The computation complexity of the restricted Rule 2-hop information and the restricted implementation. The
is O(A3). difference between different implementations of Ruieis

Several linear-time algorithms have been developed to
compose a directed gragh= (V, E) into strong components
[10], [11]. They are all based on thdepth-first search (DFS)
algorithm and have a complexity 61(|E| + |V]). Details of
adopting these algorithms in the restrickiedominant pruning
can be found in [12].



p=0%, d=6 p=0%, d=18

longer. However, even when the non-restricted Rule used,
the average distance increment is still within 20%.

o Simulation results can be summarized as follows: (1) The
connected dominating set produced by the marking process

and the restricted Rulé is about the same size as those by

. the cluster-based schemes and this is achieved in a localized

wowm e ow @ o ow % om @ ow e w» o o w » w Wway without sequential propagation, (2) Ruleis a more

Number of hosts Number of hosts

Rule k (3-hop) -----
Rule k (Non-Resr.)

Size of dominating set
Size of dominating set

petot, 526 petot, 5218 efficient dominant pruning rule than Rules 1 and 2 and can
N - be implemented without increasing complexity, (3) Rude
Bl oot - ' Pl 2ont ——— outperforms Rules 1 and 2 significantly in networks with

Rule k (3-
Rule k (Non-Restr.)

Rule k (3-
Rule k (Non-Restr.)

i i relatively high density and/or high percentage of unidirectional
Hi Hi links, and (4) forwarding data along gateways will not increase
o ’ the end-to-end distance significantly.
O20 30 40 5(’)mee«;;cl’h05(:0 80 9 100 O20 30 40 5(’)mee«;;cl’h05(:0 80 9 100 Vl CONCLUSIONS
Fig. 7. Different dominant pruning rules. We have proposed a generic dominant pruning rule called
Rule k to further reduce the size of a connected dominating
peo o=5 set constructed by Wu and Li's marking process [4]. An

Original -
Rules 1&2 (Resr.)
Rule k (Restr)
Rule k (2-hap)
Rule k (3-hop) -
Rul esit) -7

Original
Rules 1&2 (Resr.)
Rule k (Restr)

efficient algorithm has been proposed to implement Ruile
a “restricted” manner, which is almost as efficient in reducing
the dominating set as the “full” version. The restricted Rule
k algorithm has less overhead than the combination of two
former dominant pruning rules called Rules 1 and 2. Sim-
2 1 ulation results show that the restricted Ruleoutperforms

R P
Rule-k (3-hop)
Rule-

Average length of shortest paths
Average length of shortest paths
S

e B the combination of restricted Rules 1 and 2 in reducing the
5 e 102 ! T dominating set. Both marking process and Rilesupport

Ori

Rules 1&2 (Re:

Rule k (Restr
(2-h

)
| unidirectional links. In networks without unidirectional links,

the marking process with the restricted Ritlés as efficient

as several cluster-based schemes. Furthermore, the restricted
Rule & is applied in a pure localized manner with constant
rounds of information exchanges. Our future research includes

Rule k (3-hop)
12 Rule.k{N

Ri
Rul o

Average length of shortest paths
Average length of shortest paths
S

PR S TR T R 7 applying the dominant pruning rules to tkehop dominating
Fig. 8. Average end-to-end distance increment. set to make dominating-set-based routing more scalable.
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