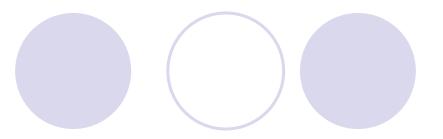

NSFA: Nested Scale-Free Architecture for Scalable Publish/Subscribe over P2P Networks

Huanyang Zheng and Jie Wu Dept. of Computer and Info. Sciences Temple University

Road Map

- Introduction
- Nested Scale-Free Architecture
- Publish/Subscribe System
- Experiments
- Conclusion


Publish/Subscribe System

Design paradigm for Content Delivery Network (CDN) Three roles: subscribers, publishers, and brokers

Subscribers express their interests via system subscriptions, in order to receive interested events

Events are issued by publishers and are delivered to subscribers via brokers


Examples: Yahoo Message Broker, Global Data Synchronization Network, and SuperMontage

Publish/Subscribe System

Implemented as overlay networks on the Internet Usually expensive infrastructure costs Akamai's pub/sub: 56,000 dedicated servers


P2P-based Publish/Subscribe System Inexpensive and highly scalable A peer can be a subscriber, a publisher, or a broker

P2P network classification

Peer churn refers to peer arrivals and departures

	Unstructured	Structured
Example	Gnutella, Kazaa, and Bitcoin	Chord, P-Grid, and Pastry
Peer connections	"Random"	Given topology
Advantage	Low construction overheads and peer churn robust	Efficient routing
Disadvantage	Inefficient routing	High construction overheads and not churn robust

Key observation

Unstructured P2P networks are not truly random

	Unstructured	Structured
Example	Gnutella, Kazaa, and Bitcoin	Chord, P-Grid, and Pastry
Peer connections	"Room"	Given topology

They are scale-free (existing literature) They are nested scale-free (our result) New system is designed based on nested scale-free

Scale-Free Architecture (SFA)

Definition: A network satisfies SFA, if its node degree distribution follows power-law.

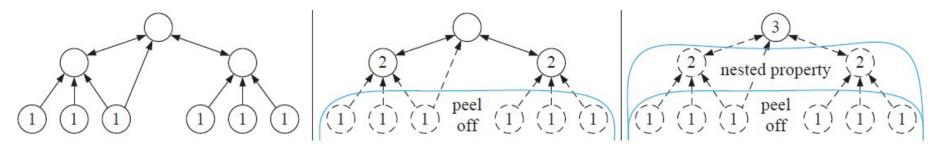
Let P_{d} denote the fraction of peers with a degree of d, the power-law means that

$$P_d = \frac{\alpha - 1}{d_{\min}} \cdot \left(\frac{d}{d_{\min}}\right)^{-\alpha}$$

 α is a constant power-law exponent ranging from 2 to 3. d_{min} is also a constant parameter from which the power-law degree distribution holds.

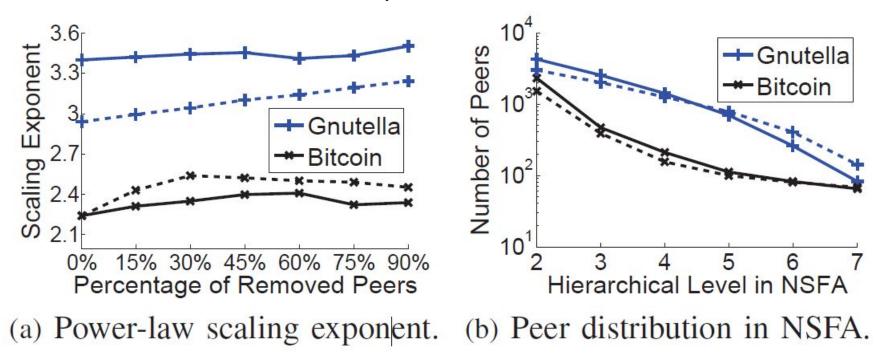
Nested Scale-Free Architecture (NSFA)

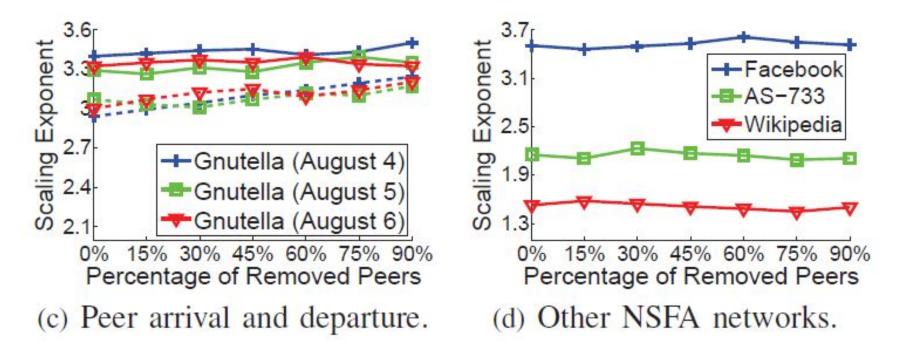
Let G_s denote the set of subgraphs generated by iteratively removing the lowest-degree node and its connections in a network, G.


Definition: G satisfies NSFA if

(i) G and all the subgraphs in G_s satisfy SFA (ii) the standard deviation of their power-law exponents (i.e., α), is o(1).

Nested Scale-Free Architecture (NSFA) NSFA refers to onion architecture


Nodes with small degrees: Outer network/onion layer


NSFA Verification Experiments

Gnutella dataset: 10,876 peers with 39,994 connections Bitcoin dataset: 4,579 peers with 18,667 connections

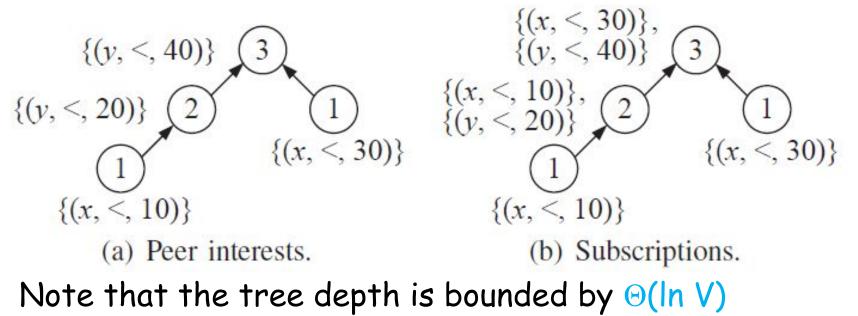
NSFA Verification Experiments

Gnutella dataset: 10,876 peers with 39,994 connections Bitcoin dataset: 4,579 peers with 18,667 connections

Distributed Algorithm to reveal NSFA Effective degree of a peer is defined as its number of connections to its unlabeled neighbors

 1: Initialize peer v as unlabeled.
2: repeat in a round-by-round manner do
3: if v has the smallest effective degree among all its unlabeled neighbors (include tie) then
4: Set v's label to be the largest label among its labeled neighbors plus one (if v does not have a labeled neighbor, it is one).
5: return v's label as its hierarchical level.

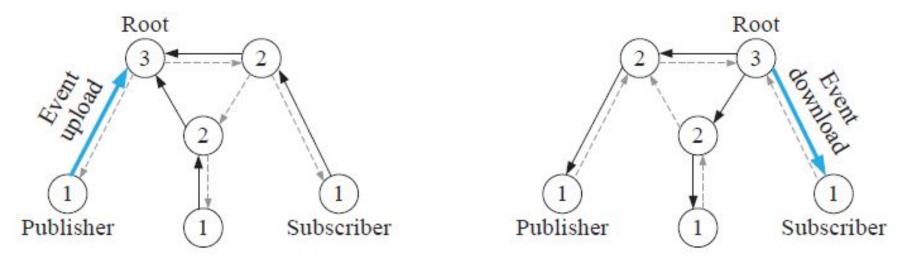
Key Result


Theorem: Suppose that an unstructured P2P network has V peers and satisfies NSFA. The distributed labeling algorithm is expected to terminate within Θ (In V) rounds of synchronous peer iterations. The maximal peer label is also $\Theta(\ln V)$.

Proof idea: a constant percentage of unlabeled peers are expected to label themselves in each round of the distributed labeling algorithm

3. Publish/Subscribe System

Pub/Sub System based on NSFA


Label node hierarchy (i.e., a forest) based on NSFA

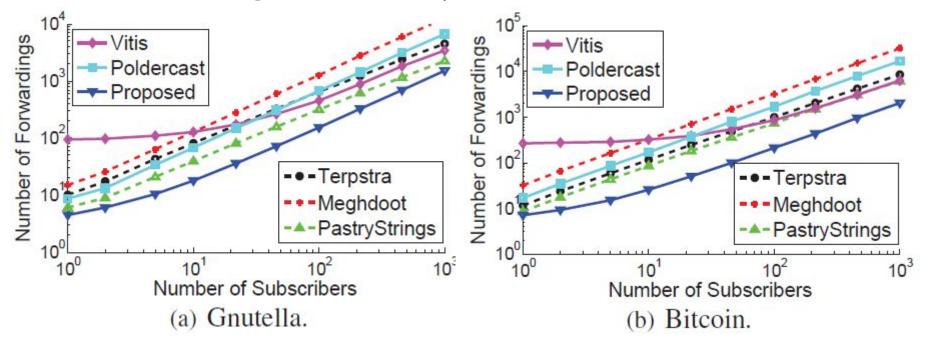
according to the previous theorem

3. Publish/Subscribe System

Pub/Sub System based on NSFA Up-and-Down routing for event delivery

Use hierarchical routing for event delivery, which includes two stages of upload and download.

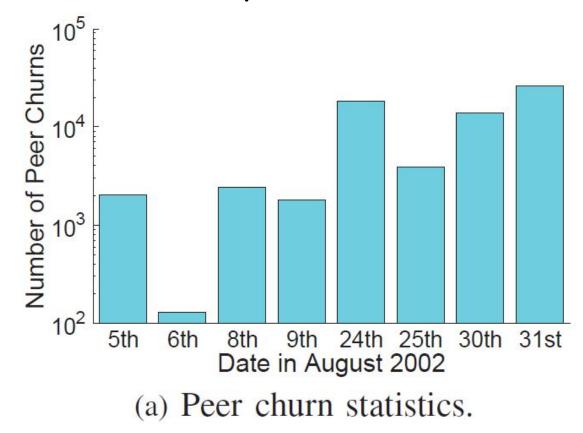
3. Publish/Subscribe System


Pub/Sub System based on NSFA

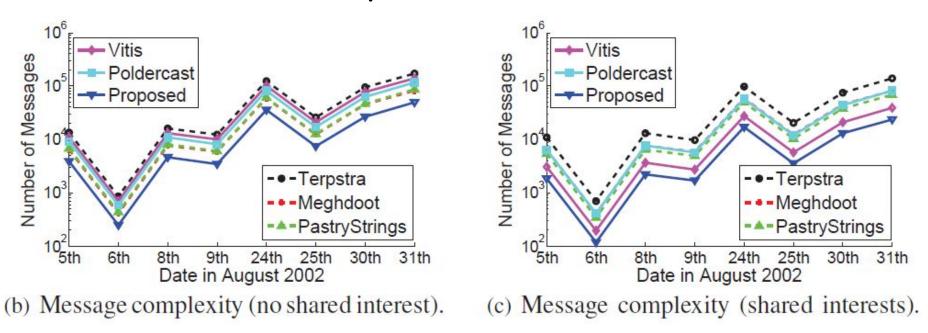
Metrics	Structured P2P-based Pub/Sub			
	Terpstra [25]	Meghdoot [9]	PastryStrings [1]	
Event routing	$O(\ln V)$	$O(\tau V ^{\frac{1}{\tau}})$	$O(\log_{\mu} V)$	
System robustness	$O(\ln V)$	$O(\tau V ^{\frac{1}{\tau}})$	$O(\log_{\mu} V)$	
Overhead	$O(\ln V)$	$O(\tau)$	$O(\mu \log_{\mu} V)$	

Metrics	Unstructured P2P-based Pub/Sub			
	Sub-2-Sub [26]	Vitis [17]	Poldercast [20]	NSFA-based
Event routing	O(V)	$O(\ln^2 V)$	$O(\ln V)$	$O(\ln \ln V)$
System robustness	O(1)	N/A	$O(\ln V)$	$O(\ln \ln V)$
Overhead	O(1)	O(1)	O(1)	O(1)

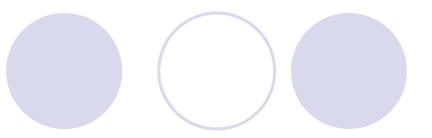
4. Experiments


Event routing efficiency in Gnutella and Bitcoin

NSFA-based pub/sub system outperforms the others since it has the best asymptotical bound of $O(\ln \ln |V|)$


4. Experiments

Peer arrival and departures in Gnutella


4. Experiments

Peer arrival and departures in Gnutella

Number of messages scales with numbers of peer churns NSFA-based pub/sub system has asymptotical advantage

5. Conclusion

Nested Scale-Free Architecture (NSFA) Onion-like network hierarchy

NSFA-based Pub/Sub system Peers are not randomly connected NSFA leveraged to achieve better performance Asymptotical advantage over existing systems