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Abstract—This paper studies a promising application in Vehicular Cyber-Physical Systems (VCPS) called roadside advertisement
dissemination. Its application involves three elements: the drivers in the vehicles, Roadside Access Points (RAPs), and shopkeepers.
The shopkeeper wants to attract as many customers as possible by using RAPs to disseminate advertisements to the passing vehicles.
Upon receiving an advertisement, the driver might detour towards the shop, depending on the detour distance. Given a fixed number of
RAPs and the traffic distribution, our goal is to optimize the RAP placement for the shopkeeper to maximally attract potential
customers. This application is a non-trivial extension of traditional coverage problems, the difference being that RAPs are used to cover
the traffic flows. RAP placement algorithms pose complex trade-offs. If we place RAPs at locations that can provide small detour
distances to attract more customers, these locations may not necessarily be located in heavy traffic regions. While heavy traffic regions
cover more flows, they might cause large detour distances, making shopping less attractive to customers. To balance the above
trade-off, bounded RAP placement algorithms are proposed with respect to submodular and non-submodular scenarios. Since
real-world traffic distributions exhibit unique patterns, here we further consider the Manhattan grid scenario and propose improved
solutions. Extensive real trace-driven experiments validate the competitive performances of the proposed algorithms.

Index Terms—Vehicular cyber-physical systems, placement problem, coverage problem, submodularity and optimization.
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1 INTRODUCTION

Vehicular Cyber-Physical Systems (VCPS) refer to a new
generation of vehicular systems; VCPS integrate compu-
tational and physical capabilities that can interact with
humans through many new modalities [1]. While tradi-
tional vehicular systems were generally considered to be a
common component of the physical world, VCPS actively
interact with humans through communications which yield
a very tight coordination between cyber and physical re-
sources [2]. Therefore, it is critical for VCPS to consider the
perceptions and reactions of humans (i.e., the drivers in the
vehicles). The effectiveness and efficiency of VCPS depend
on how humans could benefit from such a system [3, 4].

This paper addresses a novel and promising application
in VCPS called roadside advertisement dissemination [5–7]. Its
application involves three basic elements: the drivers in the
vehicles (the human factor), Roadside Access Points (RAP-
s), and shopkeepers. The shopkeeper wants to attract as
many customers as possible by using RAPs to disseminate
electronic advertisements to passing vehicles. The drivers
may decide to go shopping or not upon receiving adver-
tisements, depending on the detour distance. An example
is shown in Fig. 1(a), where commuters drive home after
work. During their trip home, they receive an advertisement
from an RAP, and then, decide to detour to the shop. We
observe that the driver may not shop if the detour distance
to the shop is too large. This is because the desire to shop
does not outweigh the cost of the journey. If the shop is
on the driver’s way home, he or she may stop by due to
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Fig. 1. The scenario of the roadside advertisement dissemination.

convenience. We focus on the scenario with only one shop;
however, multiple shops can be easily extended.

Our roadside advertisement dissemination application
is motivated by roadside e-displays. Although today’s e-
displays are popular, its effectiveness is not clear because
of its inability to cater to individual’s shopping preferences.
By comparison, online targeted advertising [8] can deliver
ads to attract customers based on their search/email con-
tents, web browsing, etc, but it mainly targets people at
home rather than on the road. Additionally, very little is
known about how such targeted ads may affect people’s
online behaviors, let alone how targeted ads delivered to
commuters may affect their traveling routes and activities.
In comparison, our application avoids these drawbacks at a
similar cost of e-displays.

Fig. 1(b) shows some traffic flows on the streets. Each
traffic flow represents a group of commuters traveling home
from work. Given a fixed number of RAPs and the traffic
distribution that can be obtained from the previous records,
we focus on optimizing the RAP placement for the shop-
keeper, as to maximally attract potential customers. Our
problem is a non-trivial extension of traditional coverage
problems, the difference being that we use RAPs to cover the
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traffic flows. A trade-off exists between the traffic density
and the detour probability for the RAP placement problem.
Let us consider the placement of only one RAP in Fig. 1(b). If
we place the RAP at v1 near the shop, then this RAP can only
cover traffic flow 2, leaving traffic flow 1 not covered. On the
other hand, if we place the RAP at v2, although both traffic
flows 1 and 2 are covered, the nearby drivers are not likely
to go shopping due to a large detour distance. Our problem
becomes more challenging when placing multiple RAPs. Let
us consider the placement of two RAPs in Fig. 1(b). Suppose
these two RAPs are placed at v1 and v2, respectively. Then,
the RAP at v2 is meaningless for the drivers in traffic flow 2,
since the RAP at v1 provides a smaller detour distance for
those drivers. Redundant advertisements do not provide
additional shopping incentives. If a driver decides not to go
shopping despite a smaller detour distance, they would not
go shopping with a larger detour distance. Accordingly, the
geographical distribution of RAPs should also be controlled.

Furthermore, the real-world traffic distributions exhibit
certain patterns, which can be utilized for the RAP place-
ment. For example, the streets in Manhattan are mapped as
a grid, meaning that all the vehicles have only four possible
moving directions. This means that the RAP placement is
more controllable. Another interesting observation is that
multiple shortest paths exist, connecting a pair of locations
in the Manhattan grid streets. These properties pose several
unique challenges regarding RAP placement optimization.

Our main contributions are summarized as follows:

• We address a novel and promising application called
roadside advertisement dissemination, which could
follow the design principle of VCPS. It is a non-trivial
extension of traditional coverage problems.

• Several utility functions are used to model the driv-
er’s detour probability. Three greedy solutions with
different approximation ratios are proposed for those
utility functions, respectively.

• Since the real-world traffic distributions exhibit cer-
tain patterns, we further study the RAP placement
problem in the Manhattan grid street scenario, where
we propose solutions with tightened bounds.

• Extensive experiments are conducted to evaluate the
proposed solutions. The results are provided from
different perspectives for insightful conclusions.

The remainder of this paper is organized as follows. Sec-
tion 2 mainly surveys the related work. Section 3 describes
the model and formulates the problem. Section 4 analyzes
the problem. Section 5 gives out several greedy solutions.
Section 6 discusses the Manhattan grid scenario. Section 7
includes the experiments. Finally, Section 8 concludes the
paper and suggests future works.

2 RELATED WORK

Cyber-physical systems are engineered systems whose op-
erations are monitored, coordinated, controlled, and inte-
grated by a computing and communication core [9, 10].
VCPS are special types of cyper-physical systems designed
for vehicles. While traditional protocols are imperceptible
by humans, VCPS take humans’ perceptions into account
[11]. For example, the data dissemination mechanism in [12]

considers the data to be location-dependent, but humans
are not aware of this mechanism. In contrast, Li et al. [13]
considered a human-oriented service scheduling in VCPS,
where a driver cannot receive multiple services in a short
time. Their goal is to deliver a limited number of services,
each having a time-dependent (and non-increasing) utility,
to a subset of intended drivers so as to minimize the system-
wide total utility loss due to unsuccessful service deliveries.
Wagh et al. [14] proposed that the data composition in
VCPS should be flexible for drivers. Given a limited number
of data elements that can be transmitted, their objective
is to maximize the system-wide utility at the receiver by
choosing to transmit data elements with different utilities.

The practical implementation of VCPS usually involves
RAPs in addition to the Dedicated Short Range Commu-
nications (DSRC) / IEEE 802.11p units within the vehicles
[15]. These RAPs can supplement a sparse network in a
low-density scenario, and help coordinate and move data in
dense scenarios. The drawbacks are that RAPs are extremely
costly in the past decades. A 2012 industry survey by
Michigans DoT and the Center for Automotive Research
reiterated that “one of the biggest challenges respondents
see to the broad adoption of connected vehicle technology is
funding for roadside infrastructure.” [15]. However, recent
technology developments bring down the cost of RSUs, and
thus, a VCPS implementation becomes acceptable. The latest
DSRC and Wireless Access Vehicular Environments (WAVE)
are based on IEEE 802.11p PHY/MAC, DSRC wireless com-
munication, and messaging protocols. For example, Red-
pine Signals provides fully certified 802.11p DSRC/WAVE
wireless module along with complete software solution in-
cluding 1609.x/DSRC stack. The RSU module from Redpine
Signals only costs about $30 [16].

Currently, the advertisement dissemination is considered
as a novel and promising application in VCPS [17], since
advertisements belong to the practically useful data. While
traditional studies focus on online advertisements [18–20],
Li et al. [8] first considered the advertisement dissemination
in VCPS as a bandwidth allocation problem with pre-fixed
locations of RAPs. We optimize the RAP placement for the
advertisement dissemination. This application is also stud-
ied from different perspectives. Shen et al. [21] studied the
message authentication problem for safety advertisements.
A cooperative message authentication protocol is developed
to alleviate vehicles’ computation burden. All the vehicles
would share their verification results with each other in
a cooperative way, so that the number of safety messages
that each vehicle needs to verify reduces significantly. Liu
et al. [22] presented a study on real-time data services via
roadside-to-vehicle communication by considering both the
time constraint of data dissemination and the freshness of
data items. A temporal data dissemination problem is pro-
posed by introducing the snapshot consistency requirement
on serving real-time requests for temporal data items.

Our RAP placement problem also relates to the existing
maximum coverage problem [23–25], since RAPs are used to
cover the passing vehicles. The maximum coverage problem
is based on some sets defined over a domain of elements
associated with weights. Its objective is to select k sets, such
that the total weight of elements within the selected sets
is maximized. However, our problem cannot be solved by
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Fig. 2. The scenario for the RAP placement problem.

existing techniques, since the detour distance is considered.
The location chosen for a driver to receive the advertisement
is critical for the driver’s detour decision. Our problem is a
variation of the maximum coverage problem, in terms of the
detour distance. The maximum coverage problem has been
well studied through a greedy approximation algorithm that
guarantees a ratio of 1− 1

e . However, it requires the coverage
function to be submodular [26] and fails to deal with non-
submodular coverage functions [27, 28].

Our problem brings more unique challenges, since we
focus on both submodular coverage and non-submodular
coverage. Note that the problem of non-submodular func-
tion maximization [29] has not been perfectly solved in
the literature [30]. This is because certain properties of the
objective function are required to design approximation al-
gorithms. Although the problem of supermodular function
maximization can be optimally solved by the minimum-
norm-point algorithm [31], non-submodular functions are
not the same. The latest approach is based on the curvature
[32], which typically assumes that the marginal gain of the
non-submodular function varies within a given curvature.
This approach is based on modifications of the continuous
greedy algorithm and non-oblivious local search, and allows
us to approximately maximize the sum of a nonnegative,
nondecreasing submodular function and a (possibly nega-
tive) linear function. Meanwhile, it has been proved that
these approximation results are the best possible in the value
oracle model, even in the case of a cardinality constraint [33].

3 MODEL AND FORMULATION

This section starts with the graph model and the driver
attraction model. The problem is also formulated.

3.1 Graph and Notations

As illustrated in Fig. 2, our advertisement dissemination
scenario is based on a directed graph G = (V,E), where
V = {vi} is a set of nodes (i.e., street intersections), and
E ⊆ V 2 is a set of directed edges (i.e., streets). Some traffic
flows exist on the streets. We assume that all cars start from
and stop at intersections. Let Ti,j denote the traffic flow
from intersections vi to vj (e.g., vehicles that return home
from the office). The traveling path for Ti,j is unique and
is known a priori (a shortest path in general). If Ti,j goes
through an intersection v, we say v ∈ Ti,j . Let ni,j denote
the number of drivers in Ti,j . T = {Ti,j} is the set of traffic
flows that are targeted for the advertisement dissemination,
and |T | is the number of traffic flows in T . Traffic flows with
insufficient potential customers are not counted in T . Let S

denote the set of street intersections with placed RAPs. S is
the only variable in this paper.

3.2 Driver Attraction Model
This subsection describes the driver attraction model, which
assumes that repeated advertisements do not provide addi-
tional shopping incentives. Drivers will make a decision of
whether or not to shop upon first receiving the advertise-
ment, depending on the detour distance. We start with the
scenario with only one shop. For each traffic flow, Ti,j ∈ T ,
its detour distance is denoted by di,j(S). As shown in Fig. 3,
suppose that Ti,j goes through an RAP, say v ∈ S. When the
driver receives the advertisement, the shortest path distance
from the current location to the shop is d′v , from the shop to
the destination vj is d′′v , and from the current location to the
destination vj is d′′′v . The detour distance is calculated as:

di,j(S) =

{
min

v∈S,v∈Ti,j

d′v+d′′v−d
′′′
v if ∃ v, v∈S, v∈Ti,j

∞ otherwise
(1)

Once the traffic flow Ti,j goes through multiple RAPs, then
the detour distance is the minimum detour distance among
all these RAPs. Interestingly, the RAP, which provides the
minimum detour distance, is the first RAP met by the driver.
It is consistent that drivers will make a decision of whether
or not to shop upon first receiving the advertisement:
Theorem 1. For a specified traffic flow Ti,j that goes from vi

to vj , the first RAP on its path always provides a smaller
detour distance than all the other RAPs on the path.

Proof: As shown in Fig. 4, let us select two arbitrary RAPs
(say v and u) on the traffic flow Ti,j . The difference between
the detour distances of v and u is:

[d′v+d′′v+d′′′v ]− [d′u+d′′u+d′′′u ] = d′v − {d′u+[d′′′v −d
′′′
u ]} < 0 (2)

In Eq. 2, {d′u+[d′′′v −d
′′′
u ]} is the distance from v to the shop

via u. Since d′v is the shortest path from v to the shop, it is
smaller than {d′u+[d′′′u −d

′′′
u ]}. Hence, the detour distance at

v is smaller than the detour distance at u. Since v and u are
arbitrarily selected, the proof completes. �

Let fi,j(S) denote the number of drivers attracted from
Ti,j , when RAPs are placed at S. This paper models fi,j(S)
as a utility function with respect to di,j(S) and some con-
stants. Note that only di,j(S) in fi,j(S) depends on S. An
example of fi,j(S) is the threshold utility function:

fi,j(S) =

{
αi,j×ni,j if di,j(S) ≤ D

0 otherwise (3)

αi,j is a constant advertisement attractiveness for the drivers
in the traffic flow Ti,j (0 ≤ αi,j ≤ 1). It is known a priori
through previous statistics. ni,j is the number of drivers in
Ti,j . D is a constant threshold. Another example of fi,j(S)
is the decreasing utility function:

fi,j(S) =

{
αi,j×ni,j×[1−di,j(S)/D] if di,j(S) ≤ D

0 otherwise (4)

Note that our driver attraction model can be extended to
scenarios with multiple shops. For those cases, the result de-
pends on the shop that provides the smallest detour distance
among all the shops. We do not consider the commercial
competition among different shops, in terms of attracting
the drivers. All shops belong to the same shopkeeper.
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TABLE 1
All notations.

G = (V,E) Graph of intersections and streets
V = vi Set of intersections (vi denotes i-th intersection)
E Set of directed streets connecting intersections
Ti,j Traffic flow that goes from intersections vi to vj

(v ∈ Ti,j if Ti,j goes through intersection v)
ni,j Number of drivers in Ti,j as potential customers

T = {Ti,j} Set of traffic flows with |T | to be its cardinality
S Set of intersections with placed RAPs with

|S| to be its cardinality and S′ to be its subset
di,j(S) Detour distance for Ti,j under S

(d′v , d′′v , and d′′′v are parameters to compute it)
fi,j(S) Number of drivers attracted from Ti,j under S

(e.g., threshold or decreasing utility function)
αi,j Constant advertisement attractiveness for Ti,j
k A given bound for number of RAPs

f(S) Number of attracted drivers as our objective
Mv Modularity set for v, i.e., all intersections that

might increase the marginal gain of v for f(S)
M ′

v Subset of Mv used in algorithms and proofs
∆ Modularity computed by the maximum

cardinality among all modularity sets
∆′ A parameter that satisfies 1 ≤ ∆′ ≤ ∆

3.3 Problem Formulation
To attract customers, the shopkeeper places, at most, k RAPs
at street intersections for the advertisement dissemination.
Since the set of street intersections with placed RAPs is S,
we have |S| ≤ k. A placed RAP will send electronic adver-
tisements to all passing vehicles. Since fi,j(S) is the number
of attracted drivers from Ti,j , let f(S) =

∑
Ti,j∈T fi,j(S) be

the total number of attracted drivers from all traffic flows.
This paper studies the RAP placement problem. Given a
fixed number of RAPs and the traffic distribution, our goal
is to optimize the RAP placement for the shopkeeper to
maximally attract potential customers:

maximize f(S) =
∑

Ti,j∈T
fi,j(S)

s.t. |S| ≤ k and S ⊆ V

The RAP placement problem may pose complex trade-offs.
If we place RAPs at locations that can provide small detour
distances to attract more customers, these locations may not
necessarily be located in heavy traffic regions. While heavy
traffic regions cover more flows, they can cause large detour
distances, making shopping less attractive to customers.
As a result, the relationship between fi,j(S) and di,j(S) is
critical. We will analyze this relationship in the next section.
Finally, all notations are listed in Table 3.3.

4 PROBLEM ANALYSIS

We start with the problem hardness:
Theorem 2. The RAP placement problem is NP-hard.

Proof: We prove by reduction from the weighted max-
imum coverage problem [24], which is NP-complete. The

Shop

vjv

vi =

u

Fig. 4. An illustration for the proof of Theorem 1.

maximum coverage problem is based on some sets defined
over a domain of elements associated with weights. Its
objective is to select k sets, such that the total weight
of elements within the selected sets is maximized. Let us
consider the RAP placement problem, using the threshold
utility function in Eq. 3. In this case, the elements reduce
to the traffic flows, and the sets reduce to the intersections
with placed RAPs. The weight of a traffic flow is its number
of expected drivers that detour to the shop, if the detour
distance is smaller thanD. The selection of a set corresponds
to the placement of an RAP. As a result, the maximum
coverage problem reduces to the RAP placement problem,
and the proof completes. �

Theorem 2 shows that the RAP placement problem is
essentially a variation of the maximum coverage problem,
under a certain relationship between fi,j(S) and di,j(S). To
further analyze the RAP problem, we show that di,j(S) is
non-increasing with respect to S:

Theorem 3. For any given traffic flow Ti,j , its detour distance
di,j(S) is non-increasing with respect to S, meaning that
di,j(S) ≤ di,j(S′) for ∀S′ ⊆ S ⊆ V .

Proof: This Theorem is straightforward based on Theo-
rem 1: for a specified traffic flow Ti,j , the first RAP on its
path always provides a smaller detour distance than all the
other RAPs on the path. Let v be the first RAP in S for Ti,j .
Since S′ ⊆ S, we have v ∈ S′. However, v may not be the
first RAP in S′ for Ti,j . This is because S′\S may include
another RAP that is before v. As a result, di,j(S) ≤ di,j(S

′)
for ∀S′ ⊆ S, and the proof completes. �

The insight of Theorem 3 is that more RAPs will never
bring a larger detour distance. This property leads to anoth-
er property with respect to our objective function:

Theorem 4. If fi,j(S) is non-increasing with respect to the de-
tour distance di,j(S), then fi,j(S) is submodular with re-
spect to S: fi,j(S∪{v})−fi,j(S) ≤ fi,j(S′∪{v})−fi,j(S′)
for ∀v ∈ V and ∀S′ ⊆ S ⊆ V .

Proof: Since S′ ⊆ S, we have di,j(S) ≤ di,j(S′) according
to Theorem 3. Since fi,j(S) is non-increasing with respect to
the detour distance di,j(S), we have fi,j(S) ≥ fi,j(S

′). We
prove Theorem 4 by exhausting all cases:

• In the first case, v is the first RAP in both S ∪ {v}
and S′ ∪ {v} for Ti,j . According to Theorem 1, we
have di,j(S∪{v}) = di,j(S

′∪{v}) and consequently
fi,j(S∪{v}) = fi,j(S

′∪{v}). Since fi,j(S) ≥ fi,j(S′),
Theorem 4 holds.

• In the second case, v is the first RAP in S′ ∪ {v} for
Ti,j , but not the first RAP in S ∪ {v} for Ti,j . We
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Algorithm 1 Naive Greedy
Input: The directed graph G; the set of traffic flows T ;

The number of RAPs to place (i.e., k).
Output: The RAP placement.

1: Initialize S = ∅.
2: for i = 1 to k do
3: Find v = arg maxv∈V f(S ∪ {v})− f(S).
4: Update S = S ∪ {v}.
5: return S as the RAP placement.

have di,j(S′ ∪ {v}) ≤ di,j(S
′) and di,j(S ∪ {v}) =

di,j(S). Since fi,j(S) is non-increasing with respect
to di,j(S), we have fi,j(S

′ ∪ {v}) ≥ fi,j(S
′) and

fi,j(S ∪ {v}) = fi,j(S). Theorem 4 holds.
• In the third case, v is not the first RAP in both S∪{v}

and S′∪{v} for Ti,j . We have di,j(S′∪{v}) = di,j(S
′)

and di,j(S ∪ {v}) = di,j(S). As a result, we have
fi,j(S

′ ∪ {v}) ≤ fi,j(S′) and fi,j(S ∪ {v}) = fi,j(S).
Theorem 4 also holds.

Since Theorem 4 holds in all cases, the proof completes. �
The insight of Theorem 4 is the diminishing return of

the RAP placement. If a smaller detour distance can always
attract more drivers, then the marginal gain of one more
RAP decreases with respect to the number of existing RAPs.
Examples of non-increasing functions include Eqs. 3 and
4. Since the summation of submodular functions is also
submodular, we have:
Corollary 1. If fi,j(S) is non-increasing with respect to the

detour distance di,j(S) for any given Ti,j , then f(S) =∑
Ti,j∈T fi,j(S) is submodular.

A notable point is that a smaller detour distance is likely
to attract more drivers, but the assumption of the non-
increasing function does not always hold. For example, if
the detour distance is 0, the driver may not go to the shop,
since he or she can go to the shop later as a weekly routine,
ignoring the advertisement.

5 RAP PLACEMENT SOLUTIONS

This section shows solutions to the RAP placement problem,
in terms of both submodular and non-submodular objective
functions. Three approximation algorithms are proposed to
deal with the RAP placement problem.

5.1 Naive Greedy Maximization
This subsection describes a naive greedy approach to solve
the RAP placement problem. We start with two definitions:
Definition 1. An intersection includes a traffic flow, if an RAP

placed at this intersection can attract more than zero
drivers from this traffic flow to the shop.

Definition 2. An RAP covers a traffic flow, if this RAP is
placed at an intersection that includes this traffic flow.

The naive greedy algorithm is shown in Algorithm 1. In
line 1, it initializes S = ∅ as the set of intersections for the
RAP placement. Lines 1 to 4 include k iterations to select the
intersections one by one. In each iteration, the intersection v,
which greedily maximizes f(S ∪{v})− f(S), is selected for

Shop
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Fig. 5. An example of the RAP placement (k = 2 and D = 6).

RAP placement (lines 2 and 3). After k iterations, selected
intersections are turned in line 4. The algorithm complexity
is O(|V |3 + k|V ||T |), where k is the number of RAPs, |V |
is the total number of intersections, and |T | is the total
number of traffic flows. O(|V |3) results from the calculation
of detour distances, since we need to calculate the shortest
paths between all pairs of intersections. O(k|V ||T |) comes
from the greedy approach. Each greedy step takesO(|V ||T |)
to examine all the intersections. Examining each intersection
takes O(|T |) to check all the traffic flows.

For a better explanation, an example is shown in Fig. 5,
where we have two RAPs (k = 2) to place. This example is
based on the threshold utility function in Eq. 3 with D = 6.
The shop is located at v1. αi,j in Eq. 3 is set to be 1 for
all the traffic flows. Meanwhile, we have T2,5 = T4,3 = 6,
T3,5 = 3, and T5,6 = 1. This example involves four traffic
flows,. In the first iteration, v3 is picked to place an RAP,
since it can attract the maximum amount of drivers from
uncovered traffic flows (n2,5+n3,5+n4,3=15). The remaining
uncovered traffic is T5,6. Consequently, the second RAP is
placed at v5 to cover T5,6. Algorithm 1 terminates for this
example, since k = 2. Note that v6 does not include T5,6,
since its detour distance is 8 (the path changes from v5v6 to
v5v6v5v3v2v1v2v3v5v6). Since the detour distance is larger
than the threshold D, the driver would not detour to the
shop, upon receiving the advertisement at v6.

We have the following property for Algorithm 1:
Theorem 5. If fi,j(S) is non-increasing with respect to di,j(S)

for any given Ti,j , then Algorithm 1 can guarantee an
approximation ratio of 1− 1

e to the optimal algorithm.

Theorem 5 is from the literature, i.e., the submodular
function maximization [26]. If fi,j(S) is non-increasing with
respect to di,j(S), f(S) becomes submodular, meaning that
a greedy marginal maximization algorithm has an approx-
imation ratio of 1 − 1

e . Algorithm 1 is essentially a greedy
marginal maximization algorithm, which could be applied
to other driver attraction models that are submodular. For
example, if we allow drivers to be influenced by subsequent
advertisements other than the first one, Algorithm 1 still
works as long as the objective function f(S) is submodular.
However, the performance of Algorithm 1 is not guaranteed
once f(S) is not submodular. The next three subsections will
discuss more general solutions for a non-submodular f(S).

5.2 Generalized Approach and Modularity
Theorem 5 points out that the naive greedy algorithm can
guarantee an approximation ratio of 1 − 1

e , when fi,j(S)
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Algorithm 2 Improved Greedy (IG)
Input: The directed graph G; the set of traffic flows T ;

The number of RAPs to place (i.e., k).
Output: The RAP placement.

1: Initialize i = 0 and S0 = ∅.
2: while |Si| < k do
3: Find out arg maxv∈V,M ′

v⊆Mv f(Si∪{v}∪M ′v)−f(Si)
constrained by |Si ∪ {v} ∪M ′v| ≤ k.

4: Update Si+1 = Si ∪ {v} ∪M ′v .
5: Update i to be i+ 1.
6: return S = Si as the RAP placement.

is non-increasing with respect to di,j(S). The assumption
of the non-increasing function means that a smaller detour
distance should attract more drivers, leading to the submod-
ularity of f(S). However, this assumption may not always
hold. For example, if the detour distance is 0, the driver may
not go to the shop, since he or she can go to the shop later as
a weekly routine, ignoring the advertisement. Therefore, we
need a more generalized approach for the RAP placement
problem, when f(S) is not submodular.

In the following part of this section, we assume that f(S)
is monotone, but may not be submodular. The monotonicity
means that f(S) ≥ f(S′) for ∀S′ ⊆ S ⊆ V , i.e., more RAPs
attract more drivers. To analyze the non-submodularity, we
introduce Feldman’s approach and algorithms [29]:
Definition 3. Given a monotone objective function f(·), the

modularity set of an intersection v is defined as Mv =
{u | f(S∪{u, v})−f(S∪{u}) > f(S∪{v})−f(S) for ∃ v ∈
V, u ∈ V, S ⊆ V }, which includes all intersections that
might increase the marginal gain of v.

Definition 4. The modularity, ∆, is the maximum cardinality
among all modularity sets, i.e., ∆ = maxv |Mv|.
For an intersection v, only intersections in Mv might

increase the marginal gain of v for the objective function
f(·). In contrast, intersections that are not in Mv can never
increase the marginal gain of v. If v is locally submodular
for f(·), then Mv = ∅. The modularity ∆ measures the
degree to which f(·) violates the submodularity. Note that
f(·) gets closer to the submodularity for a smaller ∆, and
is submodular when ∆ = 0. In the following part of this
section, we assume ∆ to be a small constant. This is because
a small detour distance is likely to attract more drivers
through common sense and there will be few violations.

5.3 Improved Greedy
This subsection extends the naive greedy algorithm to toler-
ate the non-submodularity of f(S). The key idea is that,
when the intersection v is selected into S for the RAP
placements, related intersections in Mv should be further
considered, since they can improve v’s marginal gain. In-
stead of selecting one intersection at each greedy iteration,
we can select a small set of intersections at each greedy
iteration to optimize the RAP placement. This observation
can improve Algorithm 1 for a non-submodular f(S).

Algorithm 2 is proposed as another greedy algorithm.
It extends Algorithm 1 by considering place a set of RAPs
instead of only one RAP in each greedy iteration. In line 1,

Algorithm 3 Capped Greedy (CG)
Input: The directed graph G; the set of traffic flows T ;

The number of RAPs to place (i.e., k).
Output: The RAP placement.

1: Initialize S = ∅.
2: for each intersection u ∈ V , each ∆′ from 1 to ∆, and

each set S0 ⊆Mu with |S0| = k mod (∆′ + 1) do
3: Initialize i = 0.
4: while |Si| < k do
5: Find arg maxv∈V,M ′

v⊆Mv f(Si ∪ {v} ∪M ′v) − f(Si)
constrained by |Si ∪ {v} ∪M ′v| ≤ k and M ′v ≤ ∆′.

6: Update Si+1 = Si ∪ {v} ∪M ′v .
7: Update i to be i+ 1.
8: if f(Si) > f(S) then
9: Update S to be Si.

10: return S as the RAP placement.

it initializes i = 0 and S0 = ∅. Lines 2 to 5 describe greedy
iterations. While Algorithm 1 iteratively selects one inter-
section, Algorithm 2 iteratively selects a set of intersections,
in order to mitigate the negative impact resulting from the
non-submodularity. In line 3, once v is selected into S for
the RAP placement, partial intersections in Mv (denoted
as M ′v) are jointly selected into S. The greedy criterion is
that v and M ′v together can maximize the marginal gain
of the current intersections for the RAP placement, i.e.,
maximize f(Si ∪ {v} ∪M ′v) − f(Si). The constraint is that
|Si ∪ {v} ∪M ′v| ≤ k, i.e., at most k intersections are selected
for the RAP placement. Lines 4 and 5 update the set Si
and the index i. The greedy iteration terminates once k
intersections are selected. Finally, the best Si is returned.

Computing f(S) for a given S takes O(k|T |). This is
because we need to exhaust each traffic flow for each inter-
section in S. Algorithm 2 has at most k greedy iterations,
and each iteration it exhausts v and Mv in line 3. Note that
a time complexity of O(2∆) is needed to exhaust v and Mv .
Consequently, the time complexity of Algorithm 2 becomes
O(|V |3 + 2∆k2|V ||T |). According to [29], Algorithm 2 is
bounded with respect to the modularity ∆:

Theorem 6. Algorithm 2 has an approximation ratio of 1
∆+2

to the optimal algorithm.

The key insight of Theorem 6 is that Algorithm 2 ignores
at most 1 + ∆ optimal intersections at each greedy iteration,
leading to a bound. However, Algorithm 2 still has critical
drawbacks with respect to ∆. Once ∆ becomes large, the
performance of Algorithm 2 becomes poor, in terms of the
time complexity and the approximation ratio. For example,
even if ∆ = 10, the approximation ratio becomes 1

12 ,
which is fairly small and useless in practice. Meanwhile, the
time complexity of Algorithm 2 grows exponentially with
respect to ∆. Moreover, when ∆ = 0 and f(S) becomes
submodular, Algorithm 2 has a worse approximation ratio
than Algorithm 1, i.e., 1

2 < 1 − 1
e . These drawbacks come

from the fact that Algorithm 2 may select an overly large set
of intersections in each greedy iteration. The next subsection
will improve Algorithm 2 by considering this important
observation through a designed cap.
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5.4 Capped Greedy

Since ∆ has a critical impact on Algorithm 2, we need to
further identify its role in the algorithm design. The key idea
is that, although |Mv| could be large, not all intersections
in Mv have huge impacts on the marginal gain of v for
f(·). Intuitively, we only need to consider the important
intersections in Mv for v’s marginal gain. Meanwhile, the
optimal set of intersections for the RAP placement are not
able to include all intersections inMv if |Mv| > k. Therefore,
capping the number of selected intersections in Mv might
lead to a better performance, since low impact intersections
in Mv can be replaced by high impact intersections outside
Mv . To find out the best cap, we could simply exhaust all
possible scenarios (using parameter ∆′).

As a result, Algorithm 3 is proposed as an extension of
Algorithm 2, in terms of capping the number of selected
intersections in each greedy iteration. In line 1, it initializes
S = ∅. Line 2 includes a loop statement to exhaust all
possible scenarios, in terms of all possible combinations of
each intersection u ∈ V , each ∆′ from 1 to ∆, and each set
S0 ⊆ Mu constrained by |S0| = k mod (∆′ + 1). Instead
of ∆, ∆′ is used as the cap. Lines 3 to 7 are basically the
same as Algorithm 2, except for the cap. This part embeds
Algorithm 2 to search the set of intersections for the RAP
placement in each possible scenario. The cap is added at the
end of line 5 (M ′v ≤ ∆′), while Algorithm 2 uses M ′v ≤ ∆
by default (∆ = maxv |Mv| by definition). Lines 8 and 9
record the best set of intersections sought among all possible
scenarios (specified by line 2). Finally, S is returned.

Note that the total number of all possible scenarios
for Algorithm 3 is O(2∆∆|V |), since it exhausts each in-
tersection u ∈ V , each ∆′ from 1 to ∆, and each set
S0 ⊆ Mu constrained by |S0| = k mod (∆′ + 1). For each
possible scenario, Algorithm 3 does the same complexity
behavior as Algorithm 2. Meanwhile, the time complexity
of Algorithm 2 is O(|V |3 + 2∆k2|V ||T |). As a result, the
time complexity of Algorithm 3 is O(|V |3 + 4∆∆k2|V |2|T |).
Although Algorithm 3 has a worse time complexity than
Algorithm 2, its approximation ratio becomes better by
capping the modularity set [29]:

Theorem 7. Algorithm 3 has an approximation ratio of 1 −
e−

1
∆+1 to the optimal algorithm.

Proof: Let S∗ denote the optimal set of intersections for
the RAP placement, in terms of maximizing f(·). Since
Algorithm 3 exhausts all possible u, ∆′, and S0 in line 2,
there must exist a scenario in which u = arg maxu |Mu∩S∗|,
∆′ = |Mu ∩S∗|, S0 ⊆Mu ∩S∗, and |S0| = k mod (∆′+ 1).
All of the following proof is based on the above scenario,
although Algorithm 3 eventually has the best effort among
all scenarios (lines 8 and 9).

In the above scenario, we claim that f(Si) in each greedy
iteration of Algorithm 2 has a lower bound to f(S∗):

f(Si) ≥ (1− 1

k′
)i × f(S0) + [1− (1− 1

k′
)i]× f(S∗) (5)

Here, k′ is defined as k − [k mod (∆′ + 1)]. In other words,
k′ is the largest multiple of ∆′ + 1 constrained by k′ ≤ k.
Eq. 5 is proved by induction. It is trivial that Eq. 5 holds
when i = 0, since (1 − 1

k′ )
0 = 1. Assume that Eq. 5 holds

for i, and we prove that Eq. 5 holds for i + 1. Since S0 ⊆
(Mu ∩ S∗) ⊆ S∗ and |S0| = k mod (∆′ + 1), we have:

|S∗ \ S0| = |S∗| − |S0| = k − [k mod (∆′ + 1)] = k′ (6)

Similarly, let us order intersections in |S∗\S0| in an arbitrary
order (say v1, v2, ..., vk′ ), and let S∗j = {v1, v2, ..., vj} for
1 ≤ j ≤ j′ (S∗0 = ∅). For each j, we have:

f(Si ∪ {vj} ∪ (Mvj ∩ S∗))− f(Si)

≥ f(Si ∪ {vj} ∪ (Mvj ∩ S∗j−1))− f(Si)

≥ f(Si ∪ {vj} ∪ (Mvj ∩ S∗j−1))− f(Si ∪ (Mvj ∩ S∗j−1)))

≥ f(Si ∪ {vj} ∪ S∗j−1)− (Si ∪ S∗j−1) (7)

The first and second inequalities are from the monotonicity
in Theorem 3, since S∗j−1 ⊆ S∗ and Si ⊆ Si∪ (Mvj ∩S∗j−1)).
So, f(Si∪{vj}∪ (Mvj ∩S∗)) ≥ f(Si∪{vj}∪ (Mvj ∩S∗j−1))
and f(Si) ≤ f(Si ∪ (Mvj ∩ S∗j−1))). The third inequality
is from the definition of the modularity set, since only
intersections in Mvj can increase the marginal gain of vj
(other intersections might decrease the marginal gain of vj).
By accumulating Eq. 7 among j, we have the following
inequality to bound f(S∗)− f(Si):∑k′

j=1
[f(Si ∪ {vj} ∪ (Mvj ∩ S∗))− f(Si)]

≥
∑k′

j=1
[f(Si ∪ {vj} ∪ S∗j−1)− (Si ∪ S∗j−1)]

=f(Si ∪ S∗)− f(Si) ≥ f(S∗)− f(Si) (8)

The first inequality is from Eq. 7. The equality results from
the definition of S∗j , since {vj}∪S∗j−1 = S∗j . Note that, since
S∗k′ ⊆ S∗ \ S0 and S0 ⊆ Si, we have Si ∪ S∗k′ = Si ∪ S∗. We
have Si ∪ S∗0 = Si since S∗0 = ∅. The last inequality is from
the monotonicity, since S∗ ⊆ Si ∪ S∗. We have:

f(Si+1)− f(Si) = f(Si ∪ {v} ∪M ′v)− f(Si)

=
1

k′

∑k′

j=1
[f(Si ∪ {v} ∪M ′v)− f(Si)]

≥ 1

k′

∑k′

j=1
[f(Si ∪ {vj} ∪ (Mvj ∩ S∗))− f(Si)]

≥ 1

k′
[f(S∗)− f(Si)] (9)

The first inequality is because line 5 in Algorithm 3 always
selects the maximum marginal gain in each greedy iteration.
Mvj ∩S∗ is also constrained by |(Mvj ∩S∗)| ≤ ∆′, since the
scenario sets u = arg maxu |Mu ∩ S∗| and ∆′ = |Mu ∩ S∗|.
The second inequality is from Eq. 8. We rewrite Eq. 9 as:

f(Si+1) ≥ 1

k′
[f(S∗)− f(Si)] + f(Si)

=
1

k′
× f(S∗) + (1− 1

k′
)× f(Si)

≥(1− 1

k′
)i+1 × f(S0) + [1− (1− 1

k′
)i+1]× f(S∗) (10)

The first equality is from Eq. 9 and the last equality is from
the induction hypothesis (substituting f(Si) in Eq. 5). As a
result, Eq. 5 is proved by induction.

Since each greedy iteration of Algorithm 3 selects at most
∆′+1 intersections into S, Algorithm 3 has at least bk/(∆′+
1)c = k′/(∆′+1) greedy iterations. If we use i = k′/(∆′+1)
for Eq. 5, the proof completes:
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Fig. 6. An illustration of the Manhattan grid streets.

f(S) ≥ f(Sk′/(∆′+1))

≥(1− 1

k′
)

k′
∆′+1 × f(S0) + [1− (1− 1

k′
)

k′
∆′+1 ]× f(S∗)

≥[1− (1− 1

k′
)

k′
∆′+1 ]× f(S∗)

≥(1− e−
1

∆′+1
) × f(S∗) ≥ (1− e−

1
∆+1 )× f(S∗) (11)

The approximation ratio is 1− e−
1

∆′+1 ≥ 1− e−
1

∆+1 . �

5.5 Time Complexity Reduction
Although Algorithm 3 has a better bound than Algorithm 2,
its time complexity is much larger. However, we claim that
the time complexity of Algorithm 3 can be reduced. This is
because we do not need to exhaust all possible scenarios for
practical usage. Rather than exhausting ∆′ from 1 to ∆, we
can simply stop at a small constant. For example, we only
exhaust ∆′ from 1 to 3. This is because we only need to
consider the most important intersections for v’s marginal
gain. Similarly, we do not need to exhaust each intersection
v for the initialization of S0. Instead, we can focus on the
intersections with most numbers of passing drivers. This
is because the optimal set of intersections for the RAP
placement is not likely to exclude those intersections. Using
this approach, the time complexity of Algorithm 3 can be
reduced to O(|V |3 + k|V ||T |), which is asymptotically the
same as Algorithm 1. Our experiments show that this ap-
proach only slightly hurts the performance of Algorithm 3.

6 RAP PLACEMENT FOR MANHATTAN GRID

Considering that the real-world traffic distributions have
some patterns, this section studies a special case of the
RAP placement problem, using the Manhattan grid scenario
that has a grid street layout. The RAP placement problem
is re-explored under the deadline and decreasing utility
functions, as shown in Eqs. 3 and 4. The RAP placement
problem in this special case remains NP-hard by reduction
from the geometric maximum coverage problem [34].

6.1 Properties of Manhattan Grid
The Manhattan grid streets plan is a type of city plan in
which streets run at right angles to each other. In this city
plan, vehicles can only move in four given directions, as
shown in Fig. 6. We classify the streets into vertical streets
and horizontal streets, based on their orientations. Multiple
shortest paths between pairs of intersections may exist in

1/3 traffic flows

(turned)

1/3 traffic flows

(straight)

1/3 traffic flows

(turned)

Fig. 7. Traffic flow distribution.

the Manhattan grid streets. For example, in Fig. 6, the
shortest path from v1 to v6 could be v1v2v3v6, v1v2v5v6,
or v1v4v5v6. We relax the constraint used in the previous
section, where the traveling path for a traffic flow is unique
and is known a priori. In this section, the traveling path
for a traffic flow is not pre-fixed. Let us consider a driver
in T1,6 that travels from v1 to v6. His/Her traveling path
would be randomly chosen from among the three shortest
paths. At this time, what could happen if an RAP is placed at
v3? This driver would definitely choose v1v2v3v6 as his/her
traveling path, since it is one of the shortest paths with a free
additional advertisement. We consider a traffic flow, Ti,j ,
to travel along one of the shortest paths from i to j; if an
RAP is placed in one of the shortest paths, then the traffic
flows would choose that path to obtain a free additional
advertisement. Locations of placed RAPs are assumed to
be known by all the drivers, i.e., they are published on the
internet for drivers to access.

Considering the above property, we reformulate the RAP
placement problem under the Manhattan grid scenario, as
follows. The shop is located within a square region. D
is large enough such that vehicles would detour to the
shop once receiving an advertisement. All the traffic flows
travel through their shortest paths. For a specified traffic
flow, if an RAP is placed in one of its shortest paths, this
traffic flow would travel through that path to obtain a free
advertisement. For simplicity, the Manhattan grid scenario
is discussed under two special forms for fi,j(S), i.e., the
deadline and decreasing utility functions in Eqs. 3 and 4. We
do not consider a general form for fi,j(S) in this section.

6.2 Manhattan Grid with Threshold Utility Function

Let us start with the Manhattan RAP placement problem un-
der the threshold utility function in Eqs. 3. An intersection
can still include multiple traffic flows, while a traffic flow
can be included by multiple intersections. We start with the
following definition:

Definition 5. A traffic flow is turned if it has exactly one turn
within the grid. Otherwise, it is straight.

For example, in Fig. 6, the traffic flows of T3,1 and T6,9

are straight, while T2,4 is turned. Note that T3,8 is straight,
since it has two turns at v5 and v6, respectively. All the traffic
flows have at most two turns within the scenario, otherwise,
the corresponding traveling path is not a shortest path.
Then, we observe that a turned traffic flow has multiple
shortest traveling paths. Therefore, the locations of the RAPs
may have some impact on its actual traveling path.
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Algorithm 4 A two-stage solution
Input: The grid graph G; the set of traffic flows T ;

The number of RAPs to place (i.e., k).
Output: The RAP placement.

1: if k ≤ 5 then
2: return the optimal solution by exhaustive search.
3: Initialize S = ∅.
4: for each corner intersection, v, of the square region do
5: Update S = S ∪ {v}.
6: for i = 1 to k − 4 do
7: Find v = arg maxv∈V f(S ∪ {v})− f(S).
8: Update S = S ∪ {v}.
9: return the RAP placement.

Following the above intuition, a two-stage RAP place-
ment algorithm is proposed as Algorithm 4. The RAPs are
placed for turned and straight traffic flows, respectively.
Algorithm 4 assumes that the traffic flows are uniformly
distributed. We start with the case in which all the traffic
flows go through the scenario. For this case, turned and s-
traight traffic flows have fractions of 2

3 and 1
3 with respect to

the total traffic flows, respectively. The reason is illustrated
in Fig. 7. We have two observations. (i) Four RAPs at the
corners of the grid can cover all the turned traffic flows. This
is because corresponding drivers could go to the corner for a
free advertisement without extra traveling distances. (ii) The
RAP placement for the straight traffic flows can be obtained
through the same idea as Algorithm 1. This placement keeps
a ratio of 1− 1

e to the optimal solution. The cases are similar,
when traffic flows may start from or stop at an intersection
within the scenario. Consequently, we have:
Theorem 8. If traffic flows are uniformly distributed, then

Algorithm 4 is expected to have a ratio of 1− 1
3e −

4
3k to

the optimal solution, under the Manhattan grid scenario
with the threshold utility function.

Proof: Our proof includes two parts. The first part is for
the turned traffic flows and the second part is for the straight
traffic flows. In the first part, we claim that four RAPs at
the corners of the grid are enough to cover all the turned
traffic flows that go through the scenario (lines 4 and 5 in
Algorithm 4). Let us consider a traffic flow that enters the
grid via the west boundary of the grid, and exits the grid
via the south boundary of the grid. Such a traffic flow could
be T2,4 in Fig. 6. The shortest paths for this traffic flow
only include two kinds of orientations: going Eastward or
going Southward at an intersection. If this traffic flow goes
Southward to the end and then goes Eastward, it would
result in a shortest path that goes through the southwest
corner of the grid. For example, such a shortest path for T2,4

in Fig. 6 is v2v1v4 that goes through the corner v1. Since
v2v1v4 is a shortest path for T2,4 with a free advertisement,
drivers in T2,4 would choose v2v1v4 as their traveling paths.
By enumerating all the possibilities, our claim is true. On
expectation, four RAPs at the corners of the grid can cover
2
3 of the total traffic flows. The above analysis is also valid,
when traffic flows may start from or stop at an intersection
within the scenario (i.e., not go through the scenario).

In the second part, we focus on the straight traffic flows.
The greedy placement in lines 6 to 8 of Algorithm 4 has a

Algorithm 5 A modified two-stage solution
Input: The square region; the set of traffic flows T ;

The number of RAPs to place (i.e., k);
Output: The RAP placement;

1: Same as Algorithm 4, except the change in lines 4 and 5:
Instead of each corner intersection of the square region,
S selects the intersection at the middle of that corner
and the center of the square;

ratio of 1 − 1
e to the optimal solution using k − 4 RAPs.

This is similar to Algorithm 1. Furthermore, it has a ratio
of k−4

k (1− 1
e ) to the optimal solution using k RAPs. This is

because four RAPs are placed at the corner of the scenario
for the turned traffic flows. Note that straight traffic flows
have a fraction of 1

3 with respect to all the traffic flows
on expectation. Considering both turned traffic flows and
straight traffic flows, the total fraction of the traffic flows
that are covered by Algorithm 4 is:

2

3
+

1

3
· k − 4

k
· (1− 1

e
) ≥ 1− 1

3e
− 4

3k
(12)

Eq. 12 completes the proof of Theorem 8. �
When k becomes larger, 1− 1

3e−
4
3k becomes larger, mean-

ing that Algorithm 4 has a better performance. 1 − 1
3e −

4
3k

is larger than 1− 1
e when k > 5.

6.3 Manhattan Grid with Deceasing Utility Function
This subsection discusses the Manhattan RAP placement
problem under the decreasing utility function. Similarly,
we place RAPs for turned and straight traffic flows, re-
spectively. However, the overlaps among RAPs bring some
performance degradations. Algorithm 5 is proposed as an
extension of Algorithm 4. It has a prerequisite in which the
decreasing utility function must be the one in Eq. 4. The
performance of Algorithm 5 is also guaranteed:
Theorem 9. If traffic flows are uniformly distributed, then

Algorithm 5 is expected to have a ratio of 1
2 −

1
6e −

2
3k to

the optimal solution, under the Manhattan grid scenario
with the decreasing utility function.

Proof: This proof is similar to that of Theorem 8. First,
we prove that the four RAPs in the middle of the corner
and the shop can attract half of the maximum drivers
from the turned traffic flows. This is because the turned
traffic flows have an average detour distance of D

2 , while
the four RAPs cover half of the turned traffic flows with
the detour distance D

2 . Then, we show that the remaining
k − 4 RAPs can attract half of the maximum drivers from
straight traffic flows. This is because Algorithm 5 can attract
no fewer drivers than the maximum drivers from k − 4
traffic straight flows (either vertical or horizontal). Through
a similar argument, it can be seen that Algorithm 5 achieves
a ratio of 1

2 (1− 4
k ) = 1

2 −
2
k to the optimal solution. �

7 EVALUATIONS

This section conducts extensive experiments to evaluate the
performances of the proposed algorithms. After presenting
the settings, the evaluation results are shown from different
perspectives to provide insightful conclusions.
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(a) The Dublin map. (b) The bus traces.

Fig. 8. The map and bus traces for Dublin’s central area.

(a) The Seattle map. (b) The bus traces.

Fig. 9. The map and bus traces for Seattle’s central area.

7.1 Real Trace-driven Datasets and Basic Settings

This section conducts extensive experiments based on two
real traces, i.e., the Dublin bus trace [35] and the Seattle bus
trace [36]. The city plan of Dublin is not grid-based, and thus
the Dublin bus trace is used to test our Algorithms 1, 2, and 3
for the general scenario in Section 5. The city plan of Seattle
is partially grid-based, and thus the Seattle bus trace is used
to test all of our algorithms for both the general scenario in
Section 5 and the Manhattan grid scenario in Section 6.

For the Dublin bus trace, we focus on the part within
Dublin’s central area, which is a 80, 000 × 80, 000 square
foot area, as shown in Fig. 8. The Dublin bus trace includes
the bus ID, longitude, latitude, and vehicle journey ID. The
vehicle journey is a given run on a journey pattern, which
corresponds to our concept of the traffic flow. Buses with the
same vehicle journey ID have similar routing paths in terms
of longitude and latitude. To obtain the number of attracted
customers, we assume that each bus in Dublin carries 100
people (who are potential customers) per day on average.
The Dublin bus trace has 411 traffic flows with 5,119 buses.

For the Seattle bus trace, we focus on the part within
Seattle’s central area, which is a 104 × 104 square foot area,
as shown in Fig. 9. The Seattle bus trace includes the bus
ID, x-coordinate, y-coordinate, and route ID. Each route is
regarded as a traffic flow. Buses with the same route ID have
similar routing paths in terms of x and y coordinates. To
obtain the number of attracted customers, we assume that
each bus in Seattle carries 200 people per day on average.
The Seattle bus trace has 236 traffic flows with 1,163 buses.
Although the Seattle bus trace has fewer traffic flows and
buses than the Dublin bus trace, its area is also smaller.

According to the amount of passing traffic flows, all the
street intersections in both traces are classified into the city’s
center, city, or suburb. This is used to observe the impact of
the shop location. Our experiments are based on three utility
functions. The first one is the threshold utility function in
Eq. 3. The second one is the decreasing utility function in

TABLE 2
Parameters for experiments.

Dublin Seattle
Trace size 80,000×80,000 ft2 10,000×10,000 ft2

Bus/Vehicle load 100 per day 200 per day
# of traffic flows 411 236

# of buses/vehicles 5,119 1,163
Utility function Threshold/Decreasing/Sine function

αi,j 0.001 for all traffic flows

Eq. 4, which decays linearly. The third one is the sine utility
function, as defined in the following:

fi,j(S) =

{
αi,j×ni,j× sin

π×di,j(S)
D if di,j(S) ≤ D

0 otherwise
(13)

A notable point is that the sine utility function is no longer
non-increasing. Therefore, f(S) is not submodular when the
sine utility function is used. Meanwhile, under the same
detour distance, d, and the same threshold, D, the detour
probability of the threshold utility function is larger than
that of the decreasing utility function. In these three utility
functions, αi,j is set to be 0.001 for all the traffic flows [8].
All parameters for experiments are shown in Table 7.1.

7.2 Comparison Algorithms and Metrics

In our experiments, four baseline algorithms (MaxCardinal-
ity, MaxVehicles, MaxCustomers, and Random) are used for
comparisons, as in the following:

• MaxCardinality ranks the intersections by the num-
ber of passing traffic flows, and then places the RAPs
at the top-k intersections.

• MaxVehicles ranks the intersections by the number
of passing buses (a traffic flow has multiple buses),
and then places the RAPs at the top-k intersections.

• MaxCustomers ranks the intersections by the num-
ber of attracted customers if only one RAP is placed
there without other RAPs. Then, MaxCustomers also
places RAPs at the top-k intersections.

• Random places RAPs uniform-randomly at the inter-
sections within the D ×D square region centered at
the shop. It is the baseline.

Our experiments focus on the relationship between the
number of placed RAPs and the number of attracted cus-
tomers, under different settings (utility functions, threshold
D, and shop locations). Street intersections are classified into
the city’s center, city, or suburb, depending on the amount
of passing traffic flows. In the following experiments, if we
say that the shop is located in the city, it means that the
intersections with city tags are randomly selected as the
shop locations. All the results are averaged over 1,000 times.

7.3 Evaluation Results in the Dublin Bus Trace

This subsection focuses on Algorithms 1, 2, and 3 in the
Dublin bus trace, in terms of different numbers of RAPs,
utility functions, shop locations, and utility function thresh-
olds. We also analyze the running time and complexity
reduction for Algorithms 2 and 3 in this trace.
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(a) Threshold utility function.
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(b) Decreasing utility function.
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(c) Sine utility function.

Fig. 10. The experimental results for the Dublin bus traces with different utility functions. The shop is located in the city where D = 20, 000 feet.
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(a) The shop is located in the city’s center.
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(b) The shop is located in the city.
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(c) The shop is located in the suburb.

Fig. 11. The experimental results for the Dublin bus traces with different shop locations. The decreasing utility function is used with a different D.

7.3.1 Number of RAPs and Utility Function
Fig. 10 shows the impact of the number of RAPs and the
utility function in the Dublin bus trace under the general
scenario. The shop is located in the city with the threshold
D = 20, 000 feet. Figs. 10(a), 10(b), and 10(c) show the
results for the threshold utility function, the decreasing
utility function, and the sine utility function, respectively. It
can be seen that the performance gap between the our algo-
rithms and the other algorithms is significant. For example,
when we use the threshold utility function with k = 10,
Algorithm 3 attracted more than 50% drivers to the shop
than MaxCustomers.

Algorithm 3 could always outperform Algorithms 1 and
2. This is because Algorithms 1 and 2 are special cases of
Algorithm 3. Algorithm 3 reduces to Algorithm 1 by only
using the cap ∆′ = 1. Similarly, Algorithm 3 reduces to
Algorithm 2 by only using the cap ∆′ = ∆. As a trade-off,
Algorithm 3 has a higher time complexity than Algorithms 1
and 2. We also find that Algorithm 2 is outperformed by
Algorithm 1. Although Algorithm 2 guarantees an approxi-
mation ratio when the objective function is non-submodular,
its intersection selection is overly aggressive. In each greedy
iteration, Algorithm 2 may select too many intersections for
the RAP placement, ignoring the benefit-to-cost ratio. Mean-

while, the comparison algorithms (MaxCardinality, MaxVe-
hicles, and MaxCustomers) perform poorly, since they only
focus on top-k intersections with different ranking criteria.
They do not consider the relationships between different
intersections to maximize the number of attracted drivers.

For all algorithms, the impact of the number of RAPs
is basically similar. Due to the monotonicity, more RAPs
always bring more attracted drivers to the shop. In contrast,
the impact of the utility function is more significant. All
algorithms attract more drivers under the threshold utility
function than the decreasing utility function and the sine
utility function. This is because the detour probability of
the threshold utility function is the largest, under the same
d and D. Moreover, the utility function also determines
the sharpness of the performance curve with respect to
the number of RAPs. For Algorithm 3, the threshold utility
function brings more diminishing return effects.

7.3.2 Shop Location and Utility Function Threshold
Fig. 11 shows the impact of the shop location and the
threshold D in the Dublin bus trace under the general
scenario. The decreasing utility function is used. Figs. 11(a),
11(b), and 11(c) show the results for different shop locations
(city’s center, city, and suburb). For each subfigure, the top
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(a) Threshold utility function. (b) Decreasing utility function. (c) Sine utility function.

Fig. 12. Running time reduction for Algorithm 3.

and bottom parts show the results with D = 20, 000 feet
and D = 10, 000 feet, respectively.

The impact of the shop’s location is very significant.
Under the same settings, many more drivers can be attracted
to the shop, when the shop is located in the city’s center
than the suburb. This is because there are more traffic flows
in the city’s center than the suburb. If the shop is located
in the city’s center, the RAPs can cover more traffic flows at
small detour distances. Meanwhile, the performance gain of
Algorithm 3 is relatively small, when the shop is located in
the city’s center or suburb. If the shop is located in the city’s
center, randomly placing RAPs around the shop can already
cover most traffic flows with small detour distances. On the
other hand, if the shop is located in the suburb, none of the
placement strategies can cover too many traffic flows.

The utility function threshold D is also critical. A larger
D means that the drivers are more likely to detour to the
shop, and thus, the shop can attract more drivers. When
the shop is located in the city’s center, a large D does not
bring too many additional drivers, since most traffic flows
are already near the shop. When the shop is located in the
suburbs, a large D still does not bring too many additional
drivers, since the detour distances are large. However, when
the shop is located in the city, as shown in Fig. 11(b), a large
D brings many more drivers, since more traffic flows are
covered with small detour distances.

7.3.3 Running Time and Complexity Reduction

This subsection evaluates the running time of the proposed
algorithms. Comparison algorithms are the same. All codes
are implemented in Matlab and are executed on Dell Insp-
iron i15RN-3647BK laptop, which includes a 2.5GHz Intel
Core i5 2450M processor. In addition, we further introduce
two variations of Algorithm 3 by using different maximum
cap sizes. The first variation is Algorithm 3-2, using 2 as its
maximum cap size (∆′ ranges from 1 to 2). In each greedy
iteration, Algorithm 3-2 selects at most 2 intersections. The
second variation is Algorithm 3-3, using 3 as its maximum
cap size. We evaluate the impact of the maximum cap size,
in terms of both the performance and running time.

MaxCardinality MaxVehicles MaxCustomers
3 seconds 4 seconds 87 seconds
Random Algorithm 1 Algorithm 2
1 second 13 minutes 191 minutes

Algorithm 3 Algorithm 3-2 Algorithm 3-3
16 hours 73 minutes 231 minutes

We start with the running time, as shown in the above
table. The shop is located in the city, and we set k = 10 and
D = 20, 000 feet. The deadline utility function is used here,
although other utility functions do not significantly change
the running time. Random is fastest, since it does not care
about the performance at all. As a trade-off, it has the worst
performance. MaxCardinality, MaxVehicles, and MaxCus-
tomers take seconds, since they only rank intersections by
different criteria. The running time of MaxCustomers is larg-
er, since it needs to calculate the number of attracted drivers
for each intersection. The proposed algorithms take minutes
to hours. Algorithm 1 takes more time than MaxCustomers
due to its greedy loop for calculating marginal gain. Al-
gorithm 2 takes significantly more time than Algorithm 1,
since it needs to consider the combinations of intersections
for the RAP placement. Algorithm 3 takes even more time
(i.e., 16 hours) to exhaust all possible caps. However, if the
maximum cap size is used, the running time of Algorithm 3
can be significantly reduced to minutes.

Fig. 12 shows the impact of the maximum cap size for
Algorithm 3 under these three utility functions. Algorith-
m 3-2, Algorithm 3-3, and Algorithm 3 have very close per-
formances (Algorithm 3-2≤Algorithm 3-3≤Algorithm 3).
This is because Algorithm 3 does not need to select a
large set of intersections in each iteration (there are few
important combinations of these intersections). Algorithm 3-
3 has almost the same performance as CG, especially when
there are few RAPs. After considering the running time,
capping ∆′ to 3 in Algorithm 3 is a practical strategy for
large-scale RAP placements.

7.4 Evaluation Results in the Seattle Bus Trace

This subsection evaluates all algorithms in the Seattle bus
trace, under the general scenario and the Manhattan grid
scenario. For the general scenario, we still evaluate Algo-
rithms 1, 2, and 3 through a similar setting as the previous
subsection. Their performances in the Dublin and Seattle
traces are compared. For the Manhattan grid scenario, we
only evaluate Algorithms 4 and 5, since they are specially
designed for this case. Note that Algorithms 4 and 5 require
a grid street plan and special utility functions. Consequently,
they are not general solutions for the RAP placement.

7.4.1 General Scenario
Fig. 13 shows the evaluation results in the Seattle bus
trace under the general scenario. The shop is located in
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(a) Threshold utility function.
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(b) Decreasing utility function.

Fig. 13. The experimental results for the Seattle bus traces under the
general scenario in Section 5. The shop is located in the city. Different
utility functions with different threshold D are used.
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(a) Threshold utility function.
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(b) Decreasing utility function.

Fig. 14. The experimental results for the Seattle bus traces under the
Manhattan grid scenario in Section 6. The shop is located in the city.
Different utility functions with different threshold D are used.

the city. We focus on the impacts of the utility function
and the threshold D. The threshold utility function and the
decreasing utility function are used in Figs. 13(a) and 13(b),
respectively. For each subfigure, the top and bottom parts
show the results under D = 2, 500 feet and D = 1, 000
feet, respectively. It can be seen that all algorithms attract
more customers under the threshold utility function than
the decreasing utility functions, since the former one brings
higher detour probabilities. D remains critical, especially
when the shop is located in the city. The number of attracted
customers with D = 2, 500 feet is 30% more than that with
D = 1, 000 feet. The evaluation results are similar for the
Dublin bus trace and the Seattle bus trace under the general
scenario. The slight algorithmic performance differences are
caused by area density, in terms of the area size, the number
of traffic flows, and the number of buses.

7.4.2 Manhattan Scenario

Fig. 14 shows the evaluation results in the Seattle bus trace
under the Manhattan grid scenario. The settings (i.e., shop
location, utility function, and threshold D) are the same as
the general scenario. Compared with the results under the
general scenario in Fig. 13, more customers are attracted
under the Manhattan grid scenario. This is mainly because
the traveling paths of all the traffic flows are pre-fixed under
the general scenario, the assumption of which is relaxed
in the Manhattan grid scenario. Algorithm 4 is designed
under the threshold utility function in Fig. 14(a). It performs
much better than the comparison algorithms (MaxCardinal-
ity, MaxVehicles, and MaxCustomers). For example, when
D = 1, 000, Algorithm 4 attracts almost a doubled number
of drivers to the shop than MaxCardinality and MaxVehi-
cles. We also find that a larger threshold D brings more
customers to the shop. Algorithm 5 is designed under the
decreasing utility function in Fig. 14(b). The performance
gap between Algorithm 5 and the comparison algorithms is
smaller than the performance gap between Algorithm 4 and
the comparison algorithms. This is because Algorithm 5 has
a worse approximation ratio than Algorithm 4. Algorithm 5
cannot attract drivers from all turned traffic flows.

8 CONCLUSIONS

This paper addresses a novel roadside advertisement dis-
semination problem that involves three elements: the driver-
s, RAPs, and shopkeepers. The shopkeeper uses RAPs
to disseminate advertisements to the drivers, in order to
attract customers. Upon receiving an advertisement, the
driver may detour to the shop, depending on the detour
distance. Our goal is to optimize the RAP placement for the
shopkeeper to maximally attract potential customers. Three
bounded RAP placement algorithms are proposed for the
general scenario. As a special case, the Manhattan scenario
is also discussed. Real trace-driven experiments validate the
competitive performance of our algorithms.

9 ACKNOWLEDGMENTS

This research was supported in part by NSF grants CNS
1629746, CNS 1564128, CNS 1449860, CNS 1461932, CNS
1460971, and CNS 1439672.

REFERENCES

[1] N. Nikookaran, G. Karakostas, and T. D. Todd, “Combin-
ing capital and operating expenditure costs in vehicular
roadside unit placement,” IEEE Transactions on Vehicular
Technology, vol. 66, no. 8, pp. 7317–7331, 2017.

[2] J. Liu, J. Wan, D. Jia, B. Zeng, D. Li, C.-H. Hsu, and
H. Chen, “High-efficiency urban traffic management in
context-aware computing and 5g communication,” IEEE
Communications Magazine, vol. 55, no. 1, pp. 34–40, 2017.

[3] Y. Zhou, S. Chen, Z. Mo, and Q. Xiao, “Point-to-point
traffic volume measurement through variable-length bit
array masking in vehicular cyber-physical systems,” in
Proceedings of IEEE ICDCS 2015, pp. 51–60.

[4] Y. Hou, Y. Zhao, A. Wagh, L. Zhang, C. Qiao, K. F. Hulme,
C. Wu, A. W. Sadek, and X. Liu, “Simulation-based test-
ing and evaluation tools for transportation cyber–physical
systems,” IEEE Transactions on Vehicular Technology, vol. 65,
no. 3, pp. 1098–1108, 2016.

[5] C. Huang, R. Lu, and K.-K. R. Choo, “Vehicular fog com-
puting: architecture, use case, and security and forensic
challenges,” IEEE Communications Magazine, vol. 55, no. 11,
pp. 105–111, 2017.



IEEE TRANSACTIONS ON NETWORK SCIENCE AND ENGINEERING, AUGUST 2018 14

[6] C. T. Ngo and O. Hoon, “A roadside unit based hybrid
routing protocol for vehicular ad hoc networks,” IEICE
Transactions on Communications, vol. 98, no. 12, pp. 2400–
2418, 2015.

[7] J. Qin, H. Zhu, Y. Zhu, L. Lu, G. Xue, and M. Li, “Post:
Exploiting dynamic sociality for mobile advertising in
vehicular networks,” IEEE Transactions on Parallel and Dis-
tributed Systems, vol. 27, no. 6, pp. 1770–1782, 2016.

[8] X. Li, C. Qiao, Y. Hou, Y. Zhao, A. Wagh, A. Sadek,
L. Huang, and H. Xu, “On-road ads delivery scheduling
and bandwidth allocation in vehicular CPS,” in IEEE IN-
FOCOM 2013, pp. 2571–2579.

[9] Y. Li, L. Zhang, H. Zheng, X. He, S. Peeta, T. Zheng, and
Y. Li, “Nonlane-discipline-based car-following model for
electric vehicles in transportation-cyber-physical system-
s,” IEEE Transactions on Intelligent Transportation Systems,
vol. 19, no. 1, pp. 38–47, 2018.

[10] S. M. Khan, K. C. Dey, and M. Chowdhury, “Real-time
traffic state estimation with connected vehicles,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18,
no. 7, pp. 1687–1699, 2017.

[11] K. Lakshmanan, D. De Niz, R. Rajkumar, and G. Moreno,
“Resource allocation in distributed mixed-criticality cyber-
physical systems,” in IEEE ICDCS 2010, pp. 169–178.

[12] S. Ishihara, N. Nakamura, and Y. Niimi, “Demand-based
location dependent data dissemination in vanets,” in ACM
MobiCom 2013, pp. 219–222.

[13] X. Li, X. Yu, A. Wagh, and C. Qiao, “Human factors-aware
service scheduling in vehicular cyber-physical systems,”
in IEEE INFOCOM 2011, pp. 2174–2182.

[14] A. Wagh, X. Li, R. Sudhaakar, S. Addepalli, and C. Qiao,
“Data fusion with flexible message composition in Driver-
in-the-Loop VCPS,” Ad Hoc Network, vol. 11, no. 7, pp.
2083–2095, 2013.

[15] A. B. Reis, S. Sargento, and O. K. Tonguz, “Parked cars are
excellent roadside units,” IEEE Transactions on Intelligent
Transportation Systems, vol. 18, no. 9, pp. 2490–2502, 2017.

[16] http://www.redpinesignals.com/.
[17] H. Zheng and J. Wu, “Optimizing roadside advertisement

dissemination in vehicular cyber-physical systems,” in
Proceedings of IEEE ICDCS 2015, pp. 41–50.

[18] J. Chen and J. Stallaert, “An economic analysis of online
advertising using behavioral targeting,” Mis Quarterly,
vol. 38, no. 2, pp. 429–449, 2014.

[19] Y. Li, D. Zhang, and K.-L. Tan, “Real-time targeted influ-
ence maximization for online advertisements,” Proceedings
of the VLDB Endowment, vol. 8, no. 10, pp. 1070–1081, 2015.

[20] Y. Zhang, L. Song, C. Jiang, N. H. Tran, Z. Dawy, and
Z. Han, “A social-aware framework for efficient informa-
tion dissemination in wireless ad hoc networks,” IEEE
Communications Magazine, vol. 55, no. 1, pp. 174–179, 2017.

[21] W. Shen, L. Liu, X. Cao, Y. Hao, and Y. Cheng, “Cooper-
ative message authentication in vehicular cyber-physical
systems,” IEEE Transactions on Emerging Topics in Comput-
ing, vol. 1, no. 1, pp. 84–97, 2013.

[22] K. Liu, V. C. S. Lee, J. K.-Y. Ng, J. Chen, and S. H. Son,
“Temporal data dissemination in vehicular cyber–physical
systems,” IEEE Transactions on Intelligent Transportation
Systems, vol. 15, no. 6, pp. 2419–2431, 2014.

[23] B. Kar, E. H.-K. Wu, and Y.-D. Lin, “The budgeted maxi-
mum coverage problem in partially deployed software de-
fined networks,” IEEE Transactions on Network and Service
Management, vol. 13, no. 3, pp. 394–406, 2016.

[24] G. Calinescu, C. Chekuri, M. Pál, and J. Vondrák, “Max-
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