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Abstract

Link�state routing protocols� such as OSPF and IS�IS� are widely used in the Internet today�

In link�state routing protocols� global network topology information is �rst collected at each

node� A shortest path tree �SPT� is then constructed by applying the Dijkstra�s shortest

path algorithm at each node� Link�state protocols normally require the �ooding of new in�

formation to the entire �sub�network after changes in any link state �including link faults��

Narvaez et al� recently proposed a fault�tolerant link�state routing protocol without �ood�

ing� The idea is to construct a shortest restoration path for each uni�directional link fault�

Faulty link information is distributed only to the nodes in the restoration path and only one

restoration path is constructed� It is shown that this approach is loop�free� However� Nar�

vaez� approach is ine	cient when a link failure is bi�directional� because a restoration path

is uni�directional and routing tables of nodes in the path are partially updated� In addition�

two restoration paths may be generated for each bi�directional link fault� In this paper� we

extend the Narvaez� protocol to e	ciently handle a bi�directional link fault by making the

restoration path bi�directional� Several desirable properties of the proposed extended rout�

ing protocol are also explored� A simulation study is conducted to compare the traditional

link�state protocol� the source�tree protocol� the Narvaez� uni�directional restoration path

protocol� and the proposed bi�directional restoration path protocol�
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� Introduction

Link�state routing protocols� such as OSPF ��� 
� �� ��� and IS�IS ��� ���� are the dominant

routing protocols in the Internet ���� There are two major phases in such protocols
 ��� each

IP router �rst collects the complete topological information of the underlying �sub�network�

��� each router then computes the routes according to the collected topological informa�

tion� The �rst phase is performed distributively by all the routers in the network through

exchanging link state information with its neighboring routers� In the second phase� each

router can construct a routing table based on the shortest path tree �SPT� built using the

topological information� Any SPT algorithm such as the Dijkstra�s shortest path algorithm

��� can be used in building the SPT�

Compared to other routing protocols such as distance�vector protocols� one of the major

advantages of link�state protocols is that each router computes the routes independently

using the same link�state information� it does not depend on the computation done in other

routers in the network� When link states are changed in the network� new information need

only be sent once to each router for updating the routing table� Huitema ��� listed four good

reasons why most network specialists favor link state protocols over the distance vector ap�

proach
 ��� fast� loopless convergency� ��� support of precise metrics and� if needed� multiple

metrics� ��� support of multiple paths to a destination� and ��� separate representation of

external routes� However� link�state protocols usually require �ooding the network when any

change occurs in the link states in the network� Flooding may be prohibitively expensive�

especially when the link states change too frequently or when the number of links in the

network is too large� Limiting the frequency of such updates can partially solve the problem

when the e�ect of the change of cost metric is minor in terms of transmission delay� However�

this approach is ine	cient in covering a link fault � because certain paths may be discon�

nected as a result of the link fault� delay in information update will lead to un�deliverable

packets�

In ����� Narvaez et al� presented a routing algorithm based on the link state method

to limit routing information that needs to be delivered in a link�state protocol when a

single link fails� Instead of using the �ooding method� the proposed scheme restores all the

paths traversing the failed link by performing only local updates on the a�ected routers�

Speci�cally� a shortest restoration path is constructed that connects u to v for a faulty link

�



uv �see Figure ��� �Note that a shortest restoration path does not guarantee a shortest path

from source to destination�� Their method can restore loop�free routing after a link fault

while propagating information about that failure to as few routers as possible and only to

the ones along the shortest restoration path� This approach is also useful to divert tra	c

from a congested link� However� Narvaez� approach is ine	cient when a link fault is bi�

directional� because a restoration path is uni�directional and routing tables of nodes in the

path are partially updated� In addition� two restoration paths may be generated for each

bi�directional link fault�

In this paper� we modify the Narvaez� protocol to e	ciently handle the link fault by

making the shortest restoration path bi�directional so that nodes on the restoration path are

completely updated and the construction of the restoration path is initiated at the both end

nodes of the faulty link� Only one shortest restoration path is constructed if the shortest

restoration path is unique� When the shortest restoration path is not unique� still one path

is constructed by either restricting the initiation process to only one end node or extending

the Dijkstra�s algorithm� We also point out a �aw in the Narvaez� protocol that may cause a

routing loop� Several desirable properties of the proposed extended routing protocol are also

explored� A simulation study is conducted to compare the traditional link�state protocol�

the source�tree protocol� the Narvaez� uni�directional restoration path protocol� and the

proposed bi�directional restoration path protocol� In the subsequent discussion� we use

nodes and routers interchangeably�

The rest of the paper is organized as follows
 Section � reviews the basic ideas used

in link�state routing protocols and some related works� and brie�y describes the Narvaez�

fault�tolerant link�state routing protocol without �ooding� Section � proposes an extension

of Narvaez� protocol for handling a bi�directional link fault� An example is given in Section ��

Section � discusses properties of the proposed extended routing protocol� Section � presents

simulation results� Section 
 concludes this paper and discusses possible future work�
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� Preliminaries

��� Related works

Most Internet routing protocols fall in two categories
 distance�vector and link�state� The

distance�vector protocol is based on an iterative message exchanging process among neigh�

bors to construct routing tables� The protocol often takes too long to converge because of

the count�to�in�nity problem� This problem exists even with the help of the split horizon

mechanism� Distance�vector routing was used in the ARPANET until ��
�� when it was re�

placed by link�state routing� Link�state protocols are free of routing loops� but the overhead

is high because the link�state information is �ooded all over the network� The details of the

link�state protocol will be discussed in the next subsection�

A hybrid approach of distance�vector and link�state was proposed by Garcia�Luna�Aceves

et al ��� �� to achieve both communication e	ciency and loop freedom� In this approach�

each node maintains a source tree which is a SPT� instead of global link�state in link�state

protocols or routing tables in distance�vector protocols� In the source�tree approach� each

node has only partial link�state information including its adjacent links� links in its source

tree and links in its neighbors� source trees� When a link in the source tree of a node fails�

the node re�computes its source tree using the Dijkstra�s algorithm� Note that the resultant

source tree may not be optimal after the re�construction� since it is based on partial link�

state information� To ensure loop freedom and optimality� any changes in the source tree of

a node are further propagated to its neighbors� which in turn re�compute their source trees

and feed back shorter paths �embedded in the SPT�s� if any� After this process converges�

each node has the optimal paths to all destinations in its source tree�

The information propagation of the source�tree protocol is similar to one of the distance�

vector protocol and may take more steps to converge than the link�state protocol� However�

the source�tree protocol avoids the count�to�in�nity problem by using link�state information

instead of distance information to compute shortest paths� Compared with the link�state

protocol� the source�tree protocol has less storage overhead and fewer link�state update

messages� because each node only propagates link changes in its source tree� Two Internet

protocols have been proposed using the source�tree model
 the link�vector algorithm �LVA�

��� and the adaptive link�state protocol �ALP� ���� ALP has lower message overhead than
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LVA when the cost of a link decreases and both ALP and LVA have similar overhead when

a link fails�

��� Link�state protocols

A typical link�state protocol uses the following steps


�� Topological information of the network �link state� is �rst collected at each node by

exchanging and accumulating adjacent link information among neighbors�

�� A shortest path tree �SPT� is constructed at each node by applying a SPT algorithm�

such as the Dijkstra�s shortest path algorithm� on the graph representing the network

topology�

�� For any routing with a given destination� a shortest path is selected from the SPT at

the source node if the source routing approach is used� otherwise� a routing table is

constructed from the SPT if the distributed routing approach is applied� The routing

table includes next hop information for each destination�
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Note that in source routing� the source node decides the complete path while in dis�

tributed routing only the next hop is decided at each node along the routing path� In this

paper� we use the distributed routing approach where a routing table is constructed directly

at each node based on the associated SPT� A �sub�network that uses link�state routing pro�

tocols can be viewed as an undirected graph G � �V�E�� where V is a vertex �node� set and

E is an edge �link� set� �u� v� � E is a bi�directional link where u and v are two vertices in

V � uv represents a directed link from u to v� Each �u� v� is associated with a cost �a positive

number� representing the cost of travelling from u to v �and from v to u�� Clearly� �u� v� can

be viewed as two directed links uv and vu� and nodes u and v keep the link state of uv and

vu� respectively� The end nodes u and v of a faulty link �u� v� can detect a bi�directional

fault� Note that the above model is commonly used in most routing protocols including

OSPF ���� Let u�� w�� � w� � w� � ��� � v�� wn� denote a path which is a sequence of

directed links from u to v where vertices wi are distinct� u � v represents a directed link

among two neighbors while u�� v represents a path connecting u to v through a sequence of

directed links� P �u� w�� w�� ���� v� represents a path consisting of directed links� It is assumed

that a link fault is bi�directional�

The tunnelling scheme ���� is a possible solution to handle link faults� Basically� a new

path from u to v is constructed when link uv is broken �link vu is also broken�� Any path

containing uv will be replaced by a new path from u to v� Once a packet arrives at u�

it will be encapsulated in another packet with destination v and forwarded along the new

path until reaching v� Then the packet is decapsulated� The remaining routing process

follows a regular link�state routing protocol� However� encapsulation�decapsulation limits

the e	ciency of high�speed routers� since every single routing packet that goes through the

new path has to be encapsulated at node u� This method is not suitable to be used in

high�speed networks�

Narvaez et al� ���� proposed a fault�tolerant link�state routing in the Internet without

�ooding� This approach can handle one uni�directional link fault at a time� The basic

idea is to restore all the paths traversing the faulty link by performing updates only in

the neighborhood� First a shortest restoration path �a path with the minimum cost� is

constructed that connects u to v �assuming uv fails as in Figure ��� Then only nodes along

the shortest restoration path need to update their routing tables� Speci�cally� we only need

to update next�hop information for those destinations that are descendants of the faulty link
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Figure �
 A sample example�

in the SPT of each node in the restoration path�

The way these routing tables should be updated remains a challenge� Suppose a restora�

tion path has been constructed� a simple update that recomputes routing tables of nodes

based on new link�state information along the restoration path does not work� because

packets might leave the restoration path too soon� For the example illustrated in Figure ��

suppose that only the routing tables associated with nodes u and w are updated and u�w�v

forms a shortest restoration path for faulty link uv� A packet from u to y will exit at w to

z� Because the routing table associated with z is not updated� path z � w � u � v � y is

still considered the shortest� Therefore� w is selected as the next hop� and consequently� a

routing loop between w and z is formed� Forcing all the packets that would have had to

traverse the faulty link to travel through the entire restoration path would not work either�

For the example of Figure �� assuming that a packet needs to be forwarded from u to z� once

the packet reaches at v via u�w� v� the next hop will be w since v�w� z is the shortest

path to z� Again a routing loop occurs between v and w� In this situation� a packet exits

the restoration path too late�

��� Branch update algorithm

The branch update algorithm proposed by Narvaez et al� was designed in such a way that a

packet exits a restoration path at a right time� This protocol constructs a shortest restoration

path u�� w��� w� � w� � ���� v�� wn� initiated from u for faulty link uv�
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Branch Update Algorithm

At node u � w� upon detecting a faulty link uv� or at node wi �where i �� � �� n� upon

receiving a special packet indicating the failure of uv�

�� The set Di is de�ned as all the nodes that are descendants of uv in the shortest path

tree SPT rooted at wi �see Figure ���

�� The link�state database �that includes global network topology� is modi�ed to incor�

porate the change of state of link uv �the link is down��

�� The Dijkstra�s shortest path algorithm is applied to recompute the next hop for reach�

ing node v only� The new next hop for v is now some other node wi���

�� The next hop for all the destination nodes in Di is set to wi���

�� If wi�� is not equal to v� send a special packet to wi�� indicating the failure of uv�
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Figure �
 A SPT rooted at wi
 triangle Di contains descendants of uv which belongs to a

branch of wi and triangle �other branches� contains other branches of wi�

Note that any path connecting u to v� not necessarily the shortest one� can be used as a

restoration path� Narvaez� protocol has two desirable properties


� It guarantees loop�free routing after the link fault�

� If a minimal restoration path �in terms of hop count�� rather than a shortest restoration

path �in terms of cost�� is used� it guarantees the minimum number of nodes that need

to be informed of the link fault�

However� the branch update algorithm can only handle a uni�directional link fault� Using

the algorithm� two restoration paths are needed for each link fault that is bi�directional� For

the example of Figure �� an outdated SPT rooted at w can reach a destination via either

w�� u�v or w��v�u �other destinations whose shortest paths do not include uv or vu are

of no interest here�� In the branch update algorithm where u is the initiator� it only updates

the path of type w �� u� v to a destination and the successor of w in the restoration path

is selected as the next hop to reach the destination� When the path is of type w�� v� u� it

is taken care of by another restoration path initiated from v� When these two paths share

the same node set� each node in the set is visited twice� one for each packet initiated from

each end node of the faulty link�

When two restoration paths do not share the same node set� the situation is more complex�

Consider the example of Figure � where link �u� v� fails� the restoration path initiated from

u is u�� x��w�� v and the one initiated from v is v�� y��w�� u� �The case for vu can be

treated in a similar way�� Suppose x does not appear in v �� y �� w �� u� then the routing
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table of x is partially updated� i�e�� x knows the failure of uv but not that of vu� In fact� any

shortest path of type x�� v � u to a destination is not updated at x� thus routing proceeds

based on the outdated routing table without new information about the faulty link �u� v�

until the packet reaches a node on the restoration path v �� y �� w �� u �initiated from v��

Then node u is reached by following the restoration path v �� y �� w �� u�

� Extended Branch Update Algorithm

In the extended routing protocol proposed in this paper� only one restoration path needs to

be constructed for a bi�directional link fault as long as the shortest path is unique� This is

done by making the path bi�directional� Initially� still two restoration paths are initiated�

one from each end node of a faulty link� When two restoration paths for the same link fault

meet at an intermediate node� both processes stop� In the examples of Figures � and ��

when two restoration paths meet at node w� both processes stop� A bi�directional restoration

path P �u� w� v� is constructed for Figure � and P �u� x� w� y� v� for Figure �� To make the

restoration path bi�directional� we distinguish the orientation of the path to a destination

that goes through the faulty link �u� v�� Suppose w is a node in the restoration path initiated

from u� if a path derived from the SPT that is initiated from w to a destination contains

�



Extended Branch Update Algorithm

At node u � w� upon detecting a faulty link �u� v�� or at node wi �where i �� � �� n� upon

receiving a special packet indicating the failure of �u� v�� wn��


�� The set Di �and D
�

i� is de�ned as all the nodes that are descendants of uv �and vu� in

the shortest path tree �SPT� rooted at wi�

�� If wi has been marked for �u� v�� exit� otherwise� wi is marked�

�� The link�state database is modi�ed to incorporate the change of state of link �u� v�

�the link is down��

�� The next hop for all the destination nodes in D
�

i is set to wi���

�� If wi is v� exit� otherwise� the Dijkstra�s shortest path algorithm is applied to recompute

the next�hop for node v only� The new next hop for v is now some other node wi���

�� The next hop for all the destination nodes in Di is set to wi���


� Send a special packet to wi�� indicating the failure of �u� v��

link uv �i�e�� the path is of type w �� u � v�� the corresponding destination is kept in set

D� If the path is of type w �� v � u� the corresponding destination is kept in D
�

� The next

hop of a destination in D �D
�

� is the successor �predecessor� of w in the restoration path�

To relate two restoration paths that are intended for the same link fault� a special marker is

used for each faulty link� A node in the restoration path is marked once visited� Note that

the shortest path tree �SPT� property implies that at least one of D and D
�

is empty�

The extended branch update algorithm is also applied to the other end node v of the

faulty link �u� v� by exchanging the role of u and v� The extended routing protocol guarantees

a shortest restoration path �see Theorem ��� In addition� it guarantees that only a minimal

number of nodes needs to be informed when the proposed routing protocol tries to search

for a minimal restoration path �see Theorem ���

Note that the restoration path initiated from u may or may not be the reverse of the

one initiated from v� because several shortest paths may exist in a given network� Two

��



bi�directional restoration paths will be constructed for a bi�directional link fault �u� v��

The situation where a marked node is encountered deserves more discussion� Suppose wi

is a marked node �wi could be v� that the restoration path initiated from u encounters �see

Figure ��� That means the restoration path initiated from v has selected wi in its restoration

path� that is� the restoration path initiated from v has passed through node wi and a signal

has been sent to either wi�� or a node other than wi��� say w� In either case� the process

initiated from u simply stops at wi as shown in Figure �� Eventually� the path initiated

from v will reach a marked node wj �wj could be u�� Again� the process simply stops at wj�

The restoration paths constructed in the above situation are called overlapped paths� In the

special case where wj � u and wi � v� the resultant paths are called node�disjoint paths�

Two restoration paths exist for each direction� one complete �that connects u and v� and

one incomplete� In Figure �� u �� wj � wj�� �
� wi �

� v and w
�

�� w � wi �
� v are for D

while v �� wi � w �� w
�

� wj �
� u and wi�� �

� wj�� � wj �
� u are for D

�

� Although two

restoration paths are constructed for each bi�directional link fault� each node in a restoration

path is completely updated rather than partially updated as in the original branch update

algorithm� That is� with the same number of informed nodes� the extended routing protocol

provides routing information more accurately than that of the branch update algorithm� The

net e�ect is that the proposed routing protocol provides shorter routes for some destinations�

Consider again the example of Figure �� suppose that node z intends to forward a packet

to y� The packet is forwarded to w� because z does not have new information about the

link fault �u� v� and z � w � u � v � y is still considered the shortest path from z to y�

If w belongs to a restoration path v � w � u initiated from v� the packet is forwarded to

v based on the extended routing protocol �the predecessor of w in the restoration path��

However� using the original branch update algorithm where two separate restoration paths

are constructed
 u � x � v �initiated from u� and v � w � u �initiated from v�� since path

w � u � v � y is not updated at w� the packet will be sent to u and then forwarded to v

along the restoration path u � x � v� Finally� the packet is sent to y via v� The resultant

routing path is z � w � u � x � v � y� Note that the path v � w � u is just the optimal

replacement for faulty link �u� v�� thus the resultant routing path z � w � v � y generated

from the extended routing protocol is not the shortest� In fact� the shortest path from z to

y is path z � y with a cost of ��� However� if the shortest path does not contain the faulty

link� it will remain the shortest�
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 In network �a�� multiple shortest paths exist from u and s to t� In node u�s view

�b�� its shortest path to t is a�ected by the faulty link and should be adjusted� while from

s�s view �c�� its shortest path is not a�ected� �d� The SPT rooted at t generated from the

extended Dijsktra�s algorithm�

If the requirement is to generate a single restoration path for each link fault� the extended

routing protocol can be easily modi�ed to ensure that one and only one end node of each

link fault initiates the construction of a restoration path� This can be accomplished by

comparing the IDs of two end nodes and letting the one with the larger ID initiate the

process� Still another approach exists which initiates the construction from both end nodes�

but guarantees a single restoration path� It is based on a simple modi�cation of the Dijkstra�s

algorithm which allows us to detect all the �equal length� paths ���� Here we further modify

the extended Dijkstra�s algorithm by keeping the ID of the last hop of each path during the

formation of SPT� During the formation of SPT� when two equal length paths are detected

the one with a larger ID of the last hop survives� In addition� both u and v try to �nd a

restoration path from u to v� and the restoration path from v is just the reverse of the one

from u�

It should be stressed that the above extended Dijkstra�s algorithm should be used at each

node to construct its SPT� Otherwise� routing loop may occur during a restoration process �a

�aw in the original Narvaez� protocol�� For example� in Figure 
 �a�� there are two shortest

paths between nodes u and t� However� only one path is used in node u�s shortest path tree

�SPT�� If there is no consistent rule for each node to select a shortest path� node u may

select the path u � v � t� Similarly� there are three shortest path between nodes s and t�

and node s may select the path s � u � m � t� After link �u� v� fails� a restoration path

��



u� s�n� v is constructed at u to bypass the faulty link� Node u changes its next hop for v

to the next node in the restoration path� which is node s� On the other hand� since the SPT

rooted at node s does not use link �u� v� in its shortest path to t� its next hop for t remains

the same� which is u� When a routing packet sent to t reaches node u� it will be circulated

between nodes u and s� and can never reach its destination� Using the extended Dijkstra�s

algorithm� the following property is ensured
 If �u�� v �� t� is a path in the SPT rooted at

node v� then the same subpath �v �� t� appears in the SPT rooted at node v� In this case�

node s should have selected path s� u� v� t as shown in Figure 
 �d� �since u has a larger

id than n and v has a larger id than m��

Like any link�state based protocols �including the Narvaez� protocol�� the extended rout�

ing protocol may generate short�term loops because of delay in link�state propagation along

the restoration path� Refer to Figure �� consider a shortest path from s to t �not shown in

the �gure� that goes through link �u� v�� Suppose the routing packet reaches node w before

the restoration process starts� If the restoration path that includes node w is constructed

when the packet reaches node u� Clearly� node w will be visited again since it is along the

restoration path for �u� v�� However� short�term is temporary and will not cause serious

problems�

� Example

In this section� we illustrate the proposed scheme using an example� Figure � shows a

sample network with eight nodes� Table � shows routing tables for all nodes in Figure ��

where �Dest�� stands for destination and �NH�id�� represents the next hop for the routing

table associated with node id� Note that distance information is not included in Table ��

Suppose link �u� v� fails� we can easily determine the corresponding shortest restoration

path as u� x � y � v� i�e�� w� � u� w� � x� w� � y� and w� � v� Figure � shows the SPT

�before link �u� v� fails� rooted at each wi for i � �� �� �� and �� Di and D
�

i can be easily

derived from the corresponding SPT


� D� � fs� v� w� yg and D
�

� � ��

� D� � fs� v� wg and D
�

� � ��

��
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Figure �
 A sample network with eight nodes�

� D� � � and D
�

� � ft� u� zg�

� D� � � and D
�

� � ft� u� x� zg�

There are two views of the network
 nodes s� t� w� and z have the old view �link states

before the link fault� while nodes u� v� x� and y have the new view �link states after the link

fault�� Based on the proposed scheme� only the routing tables of nodes u� v� x� and y that

are along the shortest restoration path are a�ected by the link fault �as shown in Table ���

In Table �� id � id
�

in the next hop column represents the following
 id is the next hop

before link �u� v� fails and id
�

is the next hop after link �u� v� fails� All other entries in next

next hop columns in Table � remain unchanged� i�e�� the same as ones in Table �� Note that

the next hop in Table � does not necessarily correspond to the one for a shortest path in

the new view after the link fault� For example� if the shortest path were used based on new

link�state information at node x� since the shortest path from x to s is x � z � s� the next

hop would be z �rather than y as in Table ���

� Properties

In this section� we study several desirable properties of the extended branch update algo�

rithm� Let G and G
�

be graphs �representing network topology� before and after link fault

�u� v�� dG�u� v� and dG� �u� v� are the distances between u and v in G and G
�

� respectively�

Since u and v are directly connected in G� dG�u� v� is the cost of link �u� v� in G� Unless

otherwise speci�ed� the restoration path here refers to either a single restoration path or

overlapped restoration paths �including node�disjoint restoration paths�� Also� it is assumed

��



Table �
 Routing tables of Figure � before link �u� v� fails�

Dest� NH�s� NH�t� NH�u� NH�v� NH�w� NH�x� NH�y� NH�z�

s � z v w s u v s

t z � t u v u v t

u w u � u v u v t

v w u v � v u v t

w w u v w � u v s

x w u x u v � x t

y w u v y v y � t

z z z t u s u v �

that a restoration path is constructed when a routing process starts�

The following result shows that shortest paths in G remains the shortest in G
�

if they are

not a�ected by the faulty link� otherwise� the lengths of these paths increase by a predictable

value�

Theorem �
 The extended branch update algorithm ensures routing optimality as long as the

path constructed before the link fault does not contain the faulty link� otherwise� the increase

in the length of the path is upper bounded by dG� �u� v� � dG�u� v��

Proof
 It is clear that a link fault �u� v� will not decrease the distance between two nodes�

Therefore� a shortest path in G remains the shortest in G
�

if the path does not contain the

faulty link� On the other hand� if a shortest path in G contains �u� v�� the faulty link will be

replaced by a shortest restoration path between u and v in G
�

� Consider a destination which

is a descendant of uv in the SPT� Suppose the packet to be routed reaches node u without

reaching any node along the restoration path� then link uv is replaced by the restoration

path and the length of the path increases by dG� �u� v� � dG�u� v�� Note that the packet may

exit the restoration path because a shorter path is founded to the destination� In this case�

the increase in the length of the path will be less than dG� �u� v� � dG�u� v�� Suppose the

packet reaches node w which is along the restoration path before it reaches node u� In this

case� the restoration path can be simply expressed as u��w�� v� The packet directly follows

the restoration path at node w to reach node v� Following the similar argument in the �rst

��
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Table �
 Routing tables of nodes along the restoration path after link �u� v� fails�

Dest� NH�u� NH�x� NH�y� NH�v�

s v � x u� y v w

t t u v � x u� y

u � u v � x u� y

v v � x u� y v �

w v � x u� y v w

x x � x u� y

y v � x y � y

z t u v � x u� y

case� the increase in the length of the path will be upper bounded by dG� �u� v� � dG�u� v� �

dG� �u� w� � dG� �u� v� � dG�u� v�� �

Because information about the faulty link is distributed to nodes along the restoration

path� link state information associated with di�erent nodes is di�erent� i�e�� link state in�

formation is either updated including the location of the faulty link or outdated without

including the location of the faulty link� The following result shows that the routing process

is still loop�free even with inconsistent views of link states among nodes in a network�

Theorem �
 The extended routing protocol ensures that loop�free routing will continue after

the link fault��

Proof
 We �rst review a concept used in ����� A packet at node s is a�ected by a faulty

link if its intended destination d is a descendent of the faulty link in the SPT rooted at s�

otherwise� it is un�a�ected� If there is only one restoration path for faulty link �u� v�� without

loss of generality� we assume that a packet is a�ected because of uv �not vu� as shown in

Figure �� The following three cases are considered �see Figure ���


�� If a packet at node s is un�a�ected� it will remain un�a�ected and reach the destination

d based on the outdated SPT that is loop�free� Suppose node u on the path s�� d is

a�ected� then the path u�� d in the SPT rooted at u is di�erent from the path u�� d

�A similar result is given in ����� however the proof in ���� is �awed�

��



in the SPT rooted at s� A contradiction to the property of the extended Dijkstra�s

algorithm�

�� If a packet at node s is a�ected and s is on the restoration path� then as long as

the packet is a�ected� the packet will stay on the restoration path until it becomes

un�a�ected at wj �wj could be node v�� Path s�� wj is loop�free� Since the packet is

un�a�ected at wj� it remains una�ected and eventually reaches its intended destination

d� Again� wj�
� d is loop�free� In addition� paths s��wj and wj �

� d do not share any

intermediate node� Therefore� path s�� wj �
� d is loop�free�

�� If a packet at node s is a�ected but s is not on the restoration path� then the packet is

routed based on the outdated SPT until reaching node wi �including node u� which is

on the restoration path for �u� v�� Path s��wi is clearly loop�free� As long as the packet

is a�ected� the packet will stay along the restoration path until it becomes un�a�ected

at wj �i � j and wj could be node v�� Path wi �
� wj is loop�free� Since the packet is

un�a�ected at wj� it remains una�ected and eventually reaches its intended destination

d� Again� path wj �
� d is loop�free� It is obvious that wi �

� wj does not share any

intermediate node with either s�� wi or wj �
� d� since intermediate nodes in wi�

� wj

belong to the restoration path� We use proof by contradiction to show that s��wi and

wj �
� d do not share any intermediate node� Assume that these two paths share node

w which has an outdated SPT �see Figure ���� Node w in s �� wi is a�ected by the

faulty link while node w in wj �
� d is un�a�ected� This is a contradiction� Therefore�

s�� wi �
� wj �

� d is loop�free�

Two overlapped or node�disjoint restoration paths may be constructed for a link fault

�u� v�� This occurs in the extended branch update algorithm when bi�directional restoration

paths initiated from u and v do not select the same set of intermediate nodes� After over�

lapped or node�disjoint restoration paths are constructed� there are two restoration paths for

each direction� Since each packet will use at most one restoration path� the same argument

used for the single restoration path case still applies� �

The next two theorems show properties related to restoration path�s� constructed from

the extended routing protocol�

Theorem �
 The extended routing protocol ensures shortest restoration path�s� from u to v

��
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�from v to u��

Proof
 The result applies to complete restoration paths �which connect u and v�� Based on

the extended branch update algorithm� each node wi has updated link state information when

it selects node wi�� on the restoration path� When two restoration paths are constructed�

they are done independently from two end nodes of the faulty link� Therefore� each path

is a shortest one� If one restoration path from u to v is constructed from combining two

�sub�paths
 one from each end node of the faulty link �u� v�� without loss of generality� we

assume that these two paths are merged at node w� Clearly u��w and w��v are the shortest

paths between u and w and between w and v� respectively� u�� w�� v is the bi�directional

path formed by combining u��w and w�� v and it is a shortest restoration path between u

and v with w being an intermediate node� In addition� there will be no shorter restoration

path between u and v without using w as an intermediate node� otherwise w will not be

selected during the construction of u �� w� The case for the restoration path from v to u

can be proved in a similar way� �

Theorem �
 If a minimal restoration path is used and a single restoration path is con�

structed� the extended routing protocol guarantees such a minimal path and the number of

nodes along the path corresponds to the minimum number of nodes that need to be informed

of the link fault�

��



Proof
 In ����� it has been proved that the number of nodes in a minimal restoration path

corresponds to the minimum number of nodes that need to be informed of the link fault

without causing the looping problem� i�e�� if the number of nodes to be informed is less

than the minimum number� there is always a set of metrics for the links of the network

that will cause any scheme to create routing loops after the link failure� Let P �u� w� and

P �w� v� be the sections of bi�directional paths between u and w and between w and v�

respectively� We only need to prove that when the resultant restoration path is constructed

by combining P �u� w� and P �w� v� at node w� path P �u� w� v� has the minimum number

of nodes� Clearly� both P �u� w� and P �w� v� contain minimum numbers of nodes between

u and w and between w and v� respectively� P �u� w� v� is the path formed by combining

P �u� w� and P �w� v� and it is a minimum restoration path between u and v with w being an

intermediate node� In addition� there will be no restoration path between u and v without

using w as an intermediate node that has a fewer number of nodes� otherwise w will not be

selected during the construction of P �u� w�� �

� Simulation

We have conducted a simulation study to compare the overhead and performances of four

routing protocols
 the traditional link�state protocol �LS�� the source�tree�based protocol

�ST�� the traditional link�state protocol using uni�directional restoration paths �URP� and

bi�directional restoration paths �BRP�� These protocols are simulated in a custom discrete

event simulation program based on the following time�slot�based model� The simulation time

is divided into �xed�length slots �i�e�� steps�� During each step� each node receives control

messages �i�e�� link�state information� sent by its neighbors in the previous step� updates its

routing table� and forwards messages to selected neighbors based on the protocol used� A

simulation stops at the end of a step if no control message is sent during the step� Three

metrics are used


�� Message overhead
 The average number of control messages per faulty link� Each

control message carries updated link�state information�

�� Converging speed
 The average number of steps for propagating the updated link�state

inforamtion�

��



�� Routing performance
 The average length increase of a routing path compared with

the shortest path per faulty link�

In LS and ST� a control message is sent to all neighbors� Each message is counted as

multiple messages in a point�to�point network �such as switch��router��based networks� and

as a single message in a shared�medium network �such as Ethernet�� In URP and BRP�

a control message is sent only to its next node in the restoration path and is counted as a

single message� Networks used in simulations are generated by BRITE ���� a general�purpose

random topology generator designed for the study of Internet protocols� During the topology

generation� nodes are incrementally added to the network� Each new node is connected to

m existing nodes via directed links� Those m nodes are randomly selected based on the

Waxman�s probability model


P �u� v� � �e�d���L�

where P �u� v� is the probability that two nodes u and v are connected� d is the Euclidean

distance between them� and L is the maximum distance between any two nodes� The cost

of each link is an integer between � and ��� which is decided by d� Two types of networks

are generated� In relatively sparse networks �m � ��� nodes are randomly distributed in the

plane� It is relatively hard to �nd a restoration path within the neighborhood after a link

failure� and the average length of a cycle is relatively large� Therefore� a faulty link usually

a�ects many nodes and needs a relatively long restoration path� In relatively dense networks

�m � ��� the geographic distribution of nodes is heavy�tailed� The plane is partitioned into

a ��D grid� most nodes are placed in a few grid points and a few nodes are placed in other

gird points� In such networks� a faulty link can usually be replaced by a relatively short

restoration path in the neighborhood and can a�ect only a relatively small number of nodes�

The simulation was conducted on networks with various numbers of nodes� ranging from ���

to ����� For each number of nodes� ��� relatively sparse and ��� relatively dense networks

were generated� All four protocols were simulated and compared under the proposed three

metrics�

The simulation results are presented in two groups


�� BRP vs� the two non�restoration path protocols �i�e�� SL and ST��

�� BRP vs� URP�

��
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For the �rst group� only message overhead �as shown in Figures ��� and converging speed

�as shown in Figure ��� are compared� Both non�restoration path protocols generate optimal

paths� The average path length increase of BRP is presented in the second group� Figure ��

shows the magnitude of di�erence in message overhead between the restoration path and

the two non�restoration path protocols� Both SL and ST generate thousands of control

messages� while the average number of control messages generated by BRP is less than ���

In BRP� all control messages are sent along restoration paths� and along the restoration

path� each node forwards a control message at most once� Therefore� the number of control

messages is no more than the number of nodes in restoration paths� In SL� the control

message containing the updated link�state information is �ooded throughout the network�

The number of control messages is equal to the total degree of nodes in the network �i�e��

twice the number of links in the network� in a point�to�point network and is equal to the

number of nodes in the network in a shared�medium network �not shown in Figure ����

In ST� only a�ected nodes �i�e�� those nodes with their source trees adjusted� send control

messages containing the added or deleted links in their source trees� The number of control

messages is usually more than the total degree of the a�ected nodes� because some a�ected

nodes may send control messages more than once� Figure �� shows that the restoration path

protocol also has faster converging speed than non�restoration path protocols� In relatively

sparse networks� ST takes more steps than SL� because control messages may propagate

back and forth to rebuild an optimal path in ST� In relatively dense networks� ST and SL

need a similar number of steps� In these networks� ST can likely rebuild optimal paths in

the neighborhood of the faulty link and� therefore� it converges quickly� In both cases� the

number of steps used by BRP is at most half as many as those used by SL or ST�

For the second group� all three metrics are compared� and BRP outperforms URP in all

these metrics� Note that when two restoration paths� uni�directional or bi�directional� are

constructed simultaneously from both ends of the faulty link� their relationship can be one

of the following three cases
 ��� totally distinct �i�e�� node�disjoint�� ��� totally overlapped

�i�e�� single�� or ��� partially overlapped� In case ���� URP requires the same number of steps

and control messages as BRP� but may have a higher average length increase of a�ected

paths� Each node in a distinct uni�directional path has only partial knowledge of the bi�

directional faulty link� and for this reason� it is possible that a routing packet may take

an unnecessary detour before reaching an end node of the faulty link� In case ���� URP

��
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 Communication overhead of two restoration path protocols in relatively sparse

�left� and relatively dense �right� networks�

has the same average length increase as BRP� but requires more steps and control messages

to construct the restoration path� When two bi�directional restoration paths meet� the

construction process completes immediately� in contrast� the construction processes of two

uni�directional restoration paths are independent of each other �i�e�� each visited node in

a restoration path has only partial knowledge of the faulty link� and have to continue� In

case ���� URP requires more steps and control messages than BRP as in case ���� and has a

higher average length increase of a�ected paths as in case ����

Simulation results show that� on average� the number of control messages generated by

BRP is about ��� of that generated by URP �as shown in Figure ���� and the number of

steps used by BRP is also about ��� of that used by URP �as shown in Figure ��� in both

relatively dense and sparse networks�

The average length increase is computed as
P

u�v�V �d�u� v�� dopt�u� v��

NPaffected

where d�u� v� is the travelling distance from node u to node v in a restoration path protocol�

dopt�u� v� is the length of the shortest path between node u and node v� and NPaffected is

the number of paths a�ected by the faulty link� A shortest path between a pair of source

and destination nodes is said to be a�ected by a link fault if it contains the faulty link

prior to the link fault� Note that the average length increase is a measure for only a�ected
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paths� The average length increase in percentage is de�ned as the ratio of the average length

increase over all nodes �a�ected and un�a�ected� to the average length of all paths �a�ected

and un�a�ected�� Note that the quality of routes deteriorates after a sequence of faults�

Average length increase accumulates for each route� Therefore� after a pre�de�ned period�

the network needs to be �refreshed� by collecting global link�state� Here we only simulate the

�rst link failure in each network and collect the corresponding length increase information� As

expected the average length increase of a�ected paths is larger in relatively sparse networks

than in relatively dense networks �as shown in Figure ���� The average length increase of

BRP is smaller than URP� but the di�erence is not signi�cant� The percentage of a�ected

paths is also higher in relatively sparse networks �as shown in Figure ���� Actually the

percentage of a�ected paths are very low for both relatively dense �� ����� and relatively

sparse �� ����� networks� That explains why the average length increase in percentage is

extremely small for very large networks� When the network size is ����� the average length

increase in relatively dense networks is about ������� and in relatively sparse networks the

average length increase is about ����� �as shown in Figure �
��

Overall� compared with SL and ST� BRP has the least message overhead and fastest

converging speed� There is performance penalty in the average travelling distance of a routing

packet� However� the average length increase is relatively small per link fault� Compared

with URP� BRP has obvious improvements in message overhead and converging speed� and

a slight improvement in routing performance�

� Conclusions

In this paper� we have extended a fault�tolerant link�state routing protocol in the Internet�

This approach trades optimality for low overhead� A shortest path is maintained as long

as it does not contain a faulty link� otherwise� the faulty link is replaced by a shortest

restoration path and the cost increase of the resultant path is upper bounded by the cost

di�erence between the shortest restoration path and the faulty link� Our approach is based

on the premise that link faults are bi�directional� Therefore� instead of constructing two

uni�directional restoration paths �one from each end node of a faulty link�� one bi�directional

restoration path is constructed� The simulation results show that the proposed approach has

��



much less message overhead and faster converging speed compared with the existing ones�

including the Narvaez� uni�directional restoration path protocol� the J� J� Garcia�s source�

tree protocol� and the traditional link�state protocol� Our future work includes investigating

other possible trade�o�s between optimality and low overhead� Like Narvaez� approach the

proposed approach can guarantee loop�free routing only when one failure occurs at a time

in the network� The e	cient way of handling multiple faults still remains an open problem�
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