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a b s t r a c t 

Recently, there have been extensive studies on applying security and privacy protocols in Body Sensor Networks 

(BSNs) for patient healthcare monitoring (BSN-Health). Though these protocols provide adequate security to data 

packets, the collected data may still be compromised at the time of acquisition and before aggregation/storage 

in the severely resource-constrained BSNs. This leads to data collection frameworks being meaningless or un- 

dependable, i.e., an undependable BSN-Health. We study data dependability concerns in the BSN-Health and 

propose a data dependability verification framework named DependData with the objective of verifying data 

dependability through the decision-making in three layers. The 1st decision-making (1-DM) layer verifies signal- 

level data at each health sensor of the BSN locally to guarantee that collected signals ready for processing and 

transmission are dependable so that undependable processing and transmission in the BSN can be avoided. The 

2nd decision-making (2-DM) layer verifies data before aggregation at each local aggregator (like clusterhead) of 

the BSN to guarantee that data received for aggregation is dependable so that undependable data aggregation can 

be avoided. The 3rd decision-making (3-DM) layer verifies the stored data before the data appears to a remote 

healthcare data user to guarantee that data available to the owner end (such as smartphone) is dependable so 

that undependable information viewing can be avoided. Finally, we evaluate the performance of DependData 
through simulations regarding 1-DM, 2-DM, and 3-DM and show that up to 92% of data dependability concerns 

can be detected in the three layers. To the best of our knowledge, DependData would be the first framework to 

address data dependability aside from current substantial studies of security and privacy protocols. We believe 

the three layers decision-making framework would attract a wide range of applications in the future. 
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. Introduction 

Recently, we have witnessed the emergence of Body Sensor Networks

BSNs) for patient healthcare monitoring applications where the body

ensors are coupled with the Internet of Things (IoT) and cloud plat-

orms. Body sensors in BSNs acquire patients health data (such as tem-

erature, heart beat, ECG, Oximetry, or fetal status), may process a cer-

ain part locally, and transmits the data to a designated intermediate

ode (such as aggregator, gateway, or Fog) [1,2] . The data then trav-

ls from BSNs to a remote computing platform (such as medical cloud)

nd arrives at a remote healthcare data user (also referred to as the
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atient/provider/doctor/receiver), who will access the data using the

oT-enabled interfaces (such as mobile). The BSN-enabled health mon-

toring applications have already demonstrated great potential for sig-

ificantly improving the quality of patient health, healthcare facilities,

nd well-being [3–8] . 

In spite of the pleasing potentials of the BSN for patient health moni-

oring, the incorporation of body sensors and IoT into the Internet brings

ecurity and privacy concerns for the reason that other IoT devices and

etwork infrastructures around a BSN may interfere with body sensors in

he BSN. They may make happen various privacy and security threats to

ody sensors data. We have witnessed some recent complicated security
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ttacks even after using cryptography techniques, particularly during

ata transformation into the cipher and after the transmission of the ci-

her. More security attacks including DDoS, insider, and physically com-

romised attacks on-body sensors are normal types of attacks in BSNs for

ealthcare [7,9,33] . In addition to that, there would be kinds of security

hreats/attacks that are closely connected to the transmission, such as

nooping, masquerade, data integrity, compromised signal penetration,

ata breach, collusion, and so on. These kinds of threats/attacks lead to

ome concerns; for example, data can be compromised before or after

he data transmissions, by which patients health signals can be altered.

 number of latest investigations have established that introducing se-

urity/privacy attacks into the BSN and IoT for healthcare might lead to

isastrous circumstances and life-threatening situations [1,10] . In addi-

ion, latest technologies such as remote IoT storage and cloud increase

he body sensor data security concerns to another level. 

To deal with the situations above, numerous compelling security

rotocols and algorithms have been used to provide health data pro-

ection during computing functions (processing, storing, and transmit-

ing and decision-making) in a BSN for healthcare applications. These

rotocols and algorithms include cryptography and authentication al-

orithms, private and public-key generation, data anonymization, to-

enization, MAC algorithms, and the like [9,11,12] . Similar protocols

rovide a series of security capabilities that safeguard the communi-

ation while maintaining the functionality, convenience and flexibility

n the cloud. These protocols/algorithms also have diverse constraints

uch as computation cost, computation complexity, energy consump-

ion, and real timeliness. However, many of the protocols/algorithms

re often suggested for sensor networks with higher resources and ca-

abilities than those of the BSN. In many cases, BSNs cannot secure the

ata properly or make the data vulnerable to malicious attacks due to se-

ere resource constraints (high-rate data acquisition, energy, processing,

ommunication). Particularly, a tiny body sensor with a micro-battery

oes not provide enough energy to run a complicated encryption algo-

ithm with a bigger-sized secrete key, while data transmission with a

ight-weight secret key is often vulnerable. 

Furthermore, there exist some security concerns in BSNs that directly

nterfere with health data in BSNs. For example, ECG sensors in a BSN

re shown to be susceptible to data manipulation attacks on the mea-

urements. Such measurements misrepresent the current health state

f a patient. An attacker may alter the measured ECG signal by ma-

ipulating the sensor, thus introducing a wrong view of the patients

ealth condition [12] . Attackers are around in the relative proximity

say IoT network) to the healthcare provider/user such that the se-

urity threats/attacks can be launched directly on body sensor signal
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utputs, such as ECG, heart beat, and tri-axial accelerometer. Through

ardware or physical attacks, an attacker may also physically compro-

ise one or more body sensors or one of the sensing units of a sensor,

nd/or afterward alter their firmware. An alternative attack is to replace

 trustworthy sensor of the BSN with a comprised one, setting the same

d or similar functional features. An adversary may inject low-quality,

nrelated, or compromised signals through variety types of stimuli.

hese include electromagnetic induction, light, and acoustic wave

9,12] . 

Regarding the critical situation above, one of the foremost hurdles

n adopting BSNs together with IoT and cloud for healthcare application

s “data dependability. ” Data dependability can be defined as how exact

nd trustworthy the data is, which reflects whether the data has been

cquired with any security and privacy compromises and violations. A

otivating example of data dependability is illustrated in Fig. 1 . In a

SN, we verify the patient ECG data dependability in three layers of

he BSN-Health. We find that with different rates of data dependabil-

ty confirmation in the three layers, we can guarantee to achieve the

ata quality of up to 93% under security attacks. That is to say, the data

ollected under security and privacy attacks often have dependability

oncerns. This is a critical concern for every sensor in a BSN as the de-

endability of their collected data is highly important with respect to

he risks of patients lives. Patients everyday health status (temperature,

CG, pressure, accelerometer) depends on the dependable signal collec-

ion. Existing security protocols mainly provide protection to computing

unctions for patients health data, but they do not address the concerns

erifying if the collected data used in these functions is undependable.

lso, they often do not validate whether or not there is an amount of

ndependable data at the time of data acquisition, before aggregation,

efore storing at a remote storage, or before utilizing/viewing the data

y a healthcare data user. Current multi-sensor fusion techniques for

SNs also do not address the concerns [3,4,6] . 

To address the concerns above, in this paper we study data depend-

bility concerns in the BSN-Health and propose a data dependability

erification framework named DependData with the objective of ver-

fying data dependability in the three-layer decision-making framework,

s shown in Fig. 2 . We present the 1st decision-making (1-DM) layer to

erify signal-level data at each health sensor of a BSN locally to guar-

ntee that collected signals ready for processing and transmission are

ependable. That is, undependable processing and transmission in the

SN can be avoided. We then present the 2nd decision-making (2-DM)

ayer to verify data before aggregating at each local aggregator of the

SN to guarantee that data received for aggregation is dependable. That

s, undependable data aggregation in the BSN can be avoided. We think
Fig. 1. The rate of data quality achieved through guaranteeing the data 

dependability in three-layer decision-making under security attacks on the 

ECG signal measurements. 



T. Hai, M.Z.A. Bhuiyan and J. Wang et al. Information Fusion 62 (2020) 32–46 

Aggregator
(or IoT Gateway)

Medical cloud

1-DM:
Data dependability verification

at each sensor

2-DM:
Data dependability verification

at the aggregator

3-DM:
Data dependability verification

at the data owner

Fig. 2. Proposed three-layer decision-making framework in DependData framework for data verification in a BSN. 

(a)  Patient health signal acquisition (c) Distributed Cloud data storage (d) Healthcare Provider/Doctor

Cloud Servers

Fog/edge

3rd Party

IoT Gateway/Storage

(b) IoT Network backbone

 IoT Enabled
       Users

IoT health devices BSN

Decision:
Data dependability verification

at the signal level

Decision:
Data dependability verification

before the aggregation

Decision:
Data dependability verification

at the data owner

Fig. 3. A healthcare monitoring infrastructure incorporating a BSN surrounded by an IoT network and integrated with the cloud: (a) sensors in the BSN layer for 

patient body monitoring and signal level data dependability verification; at this layer (b) aggregators of the BSN integrated with the IoT network for data collection, 

data dependability verification, and the aggregation; (c) permanent data storage on the cloud; (d) IoT-enabled devices where the healthcare data user can view the 

patient health information, where data dependability verification is required for the patient data quality at the user. 
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hat acquired data is vulnerable to being altered before/after transmis-

ion. For the need of the 2-DM, we think that acquired signals are vul-

erable to alteration before/after transmission and before reaching an

ggregator. We enable the aggregators in the BSN to verify body sensor

ignal features before aggregating data in a neighborhood. 

The 1-DM assures that the acquired data has no dependability con-

erns, which is verified at sensor level, while the 2-DM assures that the

ransmitted data is not altered before/after transmission, which is veri-

ed at the aggregator. To guarantee the data dependability, a measure-

ent model adopted from Mutual (Signal) Information Independence

MSII) is exploited. The idea is to find independence within any two

ignals either from two different sets of signals of the same sensor or

ifferent sensors, or from history. To do that, we consider the ground

ruth and signal correlation analysis between the two signals. The MSII

s utilized as an index to verify the data dependability of any acquired

r received data. Both 1-DM and 2-DM can help to drop a significant

mount of undependable data before transmission, resulting in a reduc-

ion of the resource consumption of the tiny body sensors of the BSN. 

We think that all the aggregators in the BSN transmit the collected

ata, which pass through the 2-DM with no dependability concerns, to-

ards a remote data storage (medical cloud). A healthcare data user

an pool the data from the cloud for health status analyses using an
34 
oT-enabled interface and this data might have been compromised be-

ore/after being stored into the cloud and before the user can use it. We

pply the 3rd decision-making (3-DM) layer to verify the data in order

o guarantee that the available data is dependable so that undependable

ata can be avoided. Data dependability is calculated by the data depen-

ence, data quality, etc. To the best of our knowledge, DependData
ould be the first framework addressing data dependability in three

ayers aside from the current extensive studies of security and privacy

rotocols. The three-layer decision-making framework would attract a

ot of applications in the future. 

In summary, the contributions of this paper are four-fold. 

• We study data dependability concerns in the BSN-Health and pro-

posed DependData framework for data dependability verification

at different layers of a BSN. 
• We propose two decision-making layers (1-DM and 2-DM) for the

BSN to make a decision on the data dependability at each sensor

signal level locally and at each aggregator in the distributed manner

in the BSN. 
• We present the idea of data dependability at the healthcare data user

through the 3rd decision-making (3-DM) layer, which can help the

user to know the quality of the data they are going to view. 
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• Finally, we evaluate the performance of DependData through sim-

ulations regarding 1-DM, 2-DM, and 3-DM and show that up to 92%

of data dependability concerns can be identified at the three-layers,

according to the dependability computational theory when comput-

ing dependability of each of the decision-making three layers in se-

ries. 

The remainder of the paper is summarized as follows. We cover

he background and closely related work in Section 2 . Section 3 of-

ers the proposed design of DependData . In Section 4, Section 5 ,

nd Section 6 , we provide 1-DM, 2-DM, and 3-DM layers, respectively.

ection 7 presents the evaluation of DependData . Finally, Section 8

ffers the conclusion of this paper and future directions. 

. Background and related work 

In this section, we first explain the data dependability in decision-

aking in the BSN. Then, we relate our work to existing work regarding

usion techniques, data security, privacy protocols, and algorithms in the

SN-Health. 

.1. Data dependability in BSNs for right decision-Making 

The basis of an adequate decision-making framework is the depend-

bility of the data gathered to make decisions. When the data cannot

e trusted, a proper decision cannot be made. Dependability of the data

an simply be as exact as the sensors in a normal state in BSNs or the

ealth exam used to acquire the data. Irrespective to the specialty of the

ealthcare users and providers (doctors/nurses), they are also able to

ake decisions on the health diagnosis and treatment of a patient. This

s proved by the outcomes obtained from a few tests to which the pa-

ients body is subjected [13] . To guarantee that the patient gets the right

iagnosis and the right treatment at the right time, the doctors/nurses

ave to first make sure that the exam outcomes used to get decisions are

ependable and correct. How can a user make a decision if the outcome

eing used as the basis of that process cannot be trusted [13,14,34] ? 

Now, more than ever, there is a vital demand for sharing the data

mong various sensors of the BSN and IoT devices with other net-

orks and healthcare systems so that specialists and healthcare decision-

akers may evaluate the data and make the right decisions. Meantime,

n theBSN for health monitoring systems, a great quantity of data bear

ital information for making a crucial decision is collected from sensors

n BSNs. As a result, it is significant that dependability concerns related

o data dependability, quality, provenance, privacy, must be studied for

SN-Health data sharing, health situation estimation, and multi-sensor

ata integration to support decision makers and analysts. 

Without data dependability verification, once something wrong oc-

urs to the gathered data in a BSN, patient health exam outcomes can be

nfluenced. Whats more, if some attackers add incorrect or irrelevant in-

ormation to data and it not identified by the healthcare data user, there

an be a huge influence on the actual information of patient health state

nd the actual health state. A technique to address the concerns can be

o appraise the collected data dependability and know the degree of the

ata quality and data dependence. 

.2. Existing fusion schemes in BSNs for healthcare monitoring 

There is a decent amount of promising work on multi-sensor fusion

or the BSN. A comprehensive overview of fusion schemes in BSNs can

e found in [2,3] . A decision-making scheme using trust relationship

s proposed for Health loT executed by followers of an environmental

ealth society of interest that include risk grouping, trust reliability,

nd loss of information of health likelihood as the three dimensions in

he development of the decision-making. One typical multi-sensor data

usion scheme can be to calculate the risk through the function of input

emberships regarding the amount of significant signs in BSNs [4] . The
35 
egree of risk stands for the calculation of risk levels, which are within

 and 1. The greater the risk degree, the more severe the patients health

tate is and the more action it needs in health awareness [4] . Another

ork proposed a fusion framework for activity evaluation on the basis

f heart beat and accelerometer data of rescuers in the case of urgent

nterventions [15] 

.3. Existing data security and privacy protocols and algorithms in the 

SN-Health 

Guaranteeing protection to the patient body data over the transmis-

ion channels from the BSN to a remote storage (cloud) is addressed.

his supports end-to-end (E2E) security, which is permitted by allo-

ating encryption keys among the BSN and the cloud. As a result, the

ody data can be encrypted, and it has a secure integrity operation.

oreover, the secret key can also be used for a joint authentication to

he transmission. However, successful dissemination of secret keys in-

roduces significant overhead overheads in assisting the transmission

ecurity [9,10,16] . A large number of researchers focus on protecting

ommunication links disjointly. There are also healthcare solutions pre-

erving public and private in IoT devices, device-to-device, device-to-

hone, phone-to-medical cloud [17] . It presents a major operating cost

n the resource-constrained BSN. Numerous works present extra hard-

are in the BSN-Health system merely to obtain security between differ-

nt things. But this approach is limited to securing sensor-sensor trans-

ission and may not support E2E security. PEES lessens this limitation

o some extent by offering transparent E2E transmission security be-

ween a body sensor in the BSN and the cloud [11] . 

Similarly, a good number of convincing security protocols has been

sed to offer data security during computing functions (processing,

toring, and transmitting and decision-making) in BSNs for healthcare

pplications, including encryption and authentication algorithms, pri-

ate and public-key cryptosystems, anonymity, tokenization, MAC algo-

ithms, data usability, data auditing, and the like [18] . Similar protocols

rovide a series of security capabilities that safeguard the communica-

ion while maintaining the functionality, convenience and flexibility in

he data cloud. Security control protocols are also utilized for control-

ing the data access. These protocols/algorithms also have diverse con-

traints, such as computation cost, computation complexity, energy con-

umption, real timeliness. However, many of the protocols/algorithms

re often suggested for sensor networks with higher resources and ca-

abilities than those of the BSN. Body sensors in the BSN are tiny. In

any cases, BSN cannot secure the data strongly due to severe resource

onstraints (power, processing, communication). As a result, such tiny

ody sensor does not have enough energy to run a sophisticated en-

ryption algorithm with a bigger-sized secrete key. To avoid this, when

e use a light-weight secret key, data transmission often becomes often

ulnerable. 

Tremendous work has also dealt with trustworthiness in various

unctions, particularly in secure communication. A trustworthiness man-

gement and trust management protocol for data collection is popular.

rustworthiness proposed for big data collection has two functions for

ser familiarity and user similarity in order to detect malicious users

19] . To achieve data that is authentic, the idea of trustworthiness is

uggested and numerous associated methods are used to compute the

rustworthiness [20] . 

Furthermore, there would be some security concerns in BSNs that di-

ectly interfere with health data. For example, ECG sensors in a BSN are

hown to be susceptible to data manipulation attacks on the measure-

ents. Such measurements misrepresent the current health state of a

atient. An attacker alters the ECG signal intensity measured by manip-

lating the sensor, thus introducing a wrong view of the patients health

ondition [12] . Malicious users can be around the relative proximity

say IoT network) of the healthcare data user (also referred to as the

atient/provider/doctor) such that the attacks can be launched directly

n body sensor signal outputs, such as ECG, heart beat, and tri-axial



T. Hai, M.Z.A. Bhuiyan and J. Wang et al. Information Fusion 62 (2020) 32–46 

a  

a  

i  

t  

o  

i  

e  

a

 

w  

d  

y  

d  

t  

o  

g  

o  

B

3

 

a  

T  

d

3

 

w  

d  

i  

i  

d  

(  

l  

i

3

 

s  

F  

D  

u  

p  

b  

I  

l  

b  

s

3

 

s  

d  

t  

e  

n  

c  

O  

v  

c  

l  

s  

i

3

 

t  

d  

U  

g  

m  

d

3

 

m  

(  

t  

e  
ccelerometer. Through hardware or physical attacks, an attacker may

lso physically compromise one or more body sensors or one of the sens-

ng units of a sensor, and/or afterward alters their firmware. An alterna-

ive attack is to replace a trustworthy sensor of the BSN with a comprised

ne setting the same id or similar functional features. An adversary may

nject low-quality, unrelated, or compromised signals through a vari-

ty type of stimuli. This includes electromagnetic induction, light, and

coustic wave. 

Our work fully differs from the previous work above regarding the

ay we designed the proposed fusion frameworks for verifying the data

ependability in BSNs. A thorough search of the relevant literature

ields that this work might be the first work to use fusion frameworks in

ifferent layers of the BSN-enabled healthcare application and address

he data dependability. This work also stands aside from current studies

f security and privacy protocols for BSNs. Each of the layers is used to

uarantee the data dependability, which finally reduces a large amount

f undependable (so unnecessary) data transmission and processing in

SNs. 

. The design of dependdata 

We first describe the data dependability concerns in the BSN-Health

pplications regarding numerous threat/attack surfaces in this section.

hen, we present the DependData framework for detection data with

ependability concerns data during data collection. 

.1. Network architecture 

Similar to the traditional BSN-Health, we consider a BSN integrated

ith IoT and cloud for a healthcare application having several layers of

ata collection, processing, transmission, and decision-making layer. We

llustrate a representative BSN-enabled network architecture, as shown

n Fig. 4 . This three-layer network architecture is made similar to the tra-

itional BSN-based data collection architecture: data acquisition layer

IoT devices level), IoT network layer (intermediate data processing

evel at cluster heads or aggregators), and high-end layer (data process-

ng and storage layer, such as cloud). 

.1.1. BSN-Health Model and data 

The BSN-Health system consists of a number of health status mea-

urement, computing and communicating sensors in a BSN, as shown in
1
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Fig. 4. Representative correlated and uncorrelated signals of 

36 
ig. 4 (a). This includes medical sensors together with IoT networks. In

ependData , in the case of patient health monitoring, sensors contin-

ously sense the patients bodies to measure physiological states of the

atient, including the status of the blood pressure, body activities, heart

eat, ECG, and more, which are utilized by doctor or healthcare experts.

f a sensor in the BSN needs to transmit any data, it forwards the col-

ected health data or a partial local decision to an aggregator (also can

e a clusterhead, gateway, sink). The sensors in the BSN are mixed with

ensors of the IoT network. 

.1.2. IoT Networks 

An IoT network consists of a number of sensors, including diverse

ensors, wearable things, health equipment, network sensors, and our

aily-life appliances, and so on. The IoT network maintains the connec-

ivity between the sensors of the BSN, stores data, and maintains data

xchange. On the one hand, the IoT network also maintains commu-

ication with the remote computing and storage environments such as

loud and other networks, including cell networks, as shown in Fig. 4 b.

n the other hand, BSNs also forward the data to the cloud and pro-

ides facilities for different application platforms [9,17,21] . In terms of

ommunication, sensors in the BSN have short-range low-power wire-

ess communication components and micro-battery. Besides other con-

traints, the energy cost of wireless communication of sensors of the BSN

s limited [32] . 

.1.3. Healthcare data users 

A designated data user, receiver, or viewer say a healthcare applica-

ion specialist or provider (doctor) with the Internet collects the stored

ata from the IoT storage or cloud through IoT-enabled user interfaces.

sing some security access control [22,23] , the healthcare providers

et access to the patients data and monitor the patients health perfor-

ance. It is expected that they want to view the data that should be

ependable. 

.2. Security attack models 

We assume the data manipulation attacks occurred on the measure-

ents of body sensors in the BSN [12] . An attacker alters the signals

such as ECG) measured by body sensors by manipulating the sensors

hus introducing a wrong view of the patients’ health conditions. An

ffective data manipulation may cause severe harm to patients’ health,
Signal (Normal)
Signal z

1

Signal z
2

Signal (Normal)
Signal z

1

Signal z
2

three signals under both normal and compromised one. 
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esulting in undependable data. This leads to useless health attention

or the patient or wrong health diagnosis by the doctors. Due to the un-

ependable data, a compromise happens to a sensor’s signals that may

ave the results similar to the results from the data manipulation attack.

he signal manipulation attack leverages measured signals by applying

nter-relationship between patient physiological signals (ECG). We also

onsider that ECG measurements in the BSN can be compromised by: (1)

dding random noise to the actual ECG signals, and (ii) replaying his-

orical ECG signals obtained from the healthcare data user previously

11] . 

Such attacks on medical sensors can lead to transmission vulnerabil-

ties. These affect the performance of devices, such as pacemakers and

nsulin pumps [12] . For example, BSNs are vulnerable to the entire cat-

gory of sensor communication channel threats/attacks. These interfere

ith the body sensors transducers and bring random sensing estimation

nto the sensing. These kinds of attacks ought to not only be applied to

itigate the measured signals (such as accelerometer signals), but also

llow random code expectation in the case of a particular condition.

ome IoT-based healthcare organizations and industries do not usually

nticipate the software/firmware update and records in the course of

n-field updating. Then, an attack on the manufacturers servers may

e applied to attack the body sensor devices at the time of software

pdating. 

We also consider some related attacks such as hardware-based at-

acks and physical attacks . An attacker may physically compromise one

r more sensors in the BSN or one of the sensing units of a sensor or

fterward alters their firmware. An alternative attack called service in-

egrity is to replace a sensor with a comprised one by setting the same

d or similar functional features. An example of such attacks can be on

tness monitors, including Fitbit which can be installed with malicious

le via a public Bluetooth port. Also, we assume signal injection attack

n the BSN, where an adversary may inject low-quality, unrelated, or

ompromised signals through various types of stimuli, including elec-

romagnetic induction, light, and acoustic wave. 

.3. Data dependability model 

Though a BSN and an IoT network help consolidate the whole health

nfrastructure on a single platform and facilitate patient health monitor-

ng security, and privacy of the IoT health sensors, and its network, and

heir communications, data exchanges are still serious concerns to the

sers [11] . We assume that the authenticity and confidentiality of pa-

ient health data transferred via the common channel are the two utmost

ital security requirements in every sensor application. Cryptography is

sed as the key solution to tackle these two issues in the BSN [9,11] .

owever, we assume that protection to data, computing, and commu-

ication is not guaranteed, even we are still far from guaranteeing data

ecurity and quality, due to various constraints with the tiny sensors,

ncluding computational time and complex algorithm, radio communi-

ation, resource as well as cost limitations. 

Thus, it is significant to address data dependability concerns, in

erms of data accuracy, data quality, real-time data, and secured data

haring, real-time situation assessment, data usefulness, and many other

ssues needed to assist the decision-makers and healthcare experts. Lack-

ng the data dependability, the usefulness of data in BSN-enabled health-

are applications turns out to be weakened as patient health situations

r decisions on the patient health status made from the collected data

annot be trusted with dependence/confidence. In order to make de-

isions whether or not the collected data is “truth ” or “good ” to the

ealthcare users, we consider addressing data dependability problem

ith the decision-making in three layers. 

.3.1. Decision-making on the data dependability at acquisition 

It is important to guarantee the signals acquired by the BSN based

ealthcare sensors (such as body sensors) are the truth data, that is,
37 
e do not like to have patient health information (ECG signals, pres-

ure signals) compromised at the time of acquisition due to some secu-

ity attacks such as data integrity, data manipulation, system integrity,

nd sensor integrity problems. We consider data dependability to verify

he “truth ” of acquired signals in order to answer, “is the signal ac-

uired by the sensor is really what it is supposed to be?. This layer

f signal dependability verification is done before the signals is lo-

ally stored, processed, or transmitted to the aggregator. We apply a

hree-layer decision-making framework on signals that are being ac-

uired by a sensor of the BSN to guarantee that the collected signals are

ependable. 

.3.2. Decision-making on the data dependability at the local aggregator 

As shown in Fig. 4 , after the signal dependability verification above,

e often aggregate the collected data from a set of sensors at an aggrega-

or. Therefore, in data transmission, other networked sensors in the BSN

ay interfere with the sensors and the data may face integrity problem.

nipper radio sensors can be manipulated. There can also be compro-

ised hardware sensors with the IoT healthcare sensors that can modify

he transmitted data during the aggregation locally, inject suspicious in-

ormation into the data packet, adding instructions to the process so that

he transmitted data may become meaningless. They may bring various

ecurity threats to IoT health sensors. Some sensors constantly offer de-

endable data, while other sensors may produce biased, compromised,

r even fake data [1] . There can be a question among patients’ or health-

are users: “is my data protected? Without identifying any alterations

f the transmitted patients data towards the local aggregator, effective

ggregation may not happen. A decision-making layer can be applied on

ata being received by the local aggregator to verify that data received

y the local aggregator is dependable. 

.3.3. Decision-making on the data dependability at the data user 

After the data dependability verification in aggregation, the aggre-

ated data will be forwarded to IoT storage or cloud server over the

loud service provider (CSP) for further processing and storing. The

SN-enabled healthcare users will access the data using security pro-

ocols and utilize the data for patient health monitoring and make

ecisions on the patient health. There could be various security con-

erns over the long-way data transmission due to numerous security

hreats/attacks. Whether or not the transmitted data is verified as de-

endable before the aggregation, the data might be modified again at

he time of data transmission from the BSNs to an IoT storage or cloud

nvironments over the third-party service provider, and before the data

ccess by the data user. 

A man-in-the-cloud attack can easily happen in the cloud. Such an

ttack puts more emphasis on the data manipulation and theft of a user’s

loud synchronization token. The victim data user is normally triggered

ith malware through some malicious website or email. Then, the at-

acker can gain access to the data when a user download forms the

loud. Moreover, there could be a hash value manipulation attack at

he files stored in the cloud. There could also be data Breaches, data

oss or errors, data compromised by the hijacked cloud accounts or com-

romised credentials, compromised user interfaces or API, and DDoS

ttacks. Without verifying any changes in the transmitted health data,

he health data accessed and used by the healthcare provider or doc-

or can be undependable. Undependable health data negatively influ-

nces the overall patient health monitoring quality and patients well-

eing. A decision-making framework should be used on the data being

eceived by the user/owner layer to guarantee that data received by

he user/owner is dependable so that undependable data access can be

voided. 

The objectives of this work are to increase the data dependability in

atients health status monitoring and reduce false decision-making in

he patient health diagnosis by healthcare providers, and meaningless

ata transmission. 
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. 1-DM: The 1st-Layer decision-Making for data dependability 

erification 

.1. Main idea 

Generally, data from sensors in the BSN can be compromised at many

ayers, namely during the data acquisition, processing, transmission,

toring, aggregation, and decision-making. Among them, the first and

oremost layer is the data dependability verification at the signal mea-

urement layer, which can confirm the status of sensor signals in the BSN

n the initialization. However, the quality of signal measurements may

e influenced by the application-specific requirements, such as signal

easurement environment, data resolution, etc. We attempt to consider

imilar situations with signal measurements. 

The main idea is to analyze each of the measured signals of a sensor

ompared to a set of latest signals (maybe also signals from history),

nd a set of signals from a neighboring sensor for a signal measurement

ycle. Based on the measured signals, each sensor itself and its neigh-

oring sensor can indicate if there is an irregular signal due to security

ttacks on the signals. 

.2. Signal measurement in the BSN 

We suppose that a health sensor may have one to multiple sensing

nits collecting the multiple signals. Sensor i compares its signals col-

ected in a measurement cycle with the measured signals of the latest

ycle, and current signals of one of its neighboring sensors. We assume

hat each cycle is broken down into a set of discrete small sampling in-

ervals. In each interval, body sensor i compares signals with own latest

ignals and unicast its acquired signals to a one-hop neighboring body

ensors. 

Let 𝑧 𝑡 
𝑖 

denote the actual signal of sensor i at each discrete sampling

ycle, t ∈ T , 𝑡 = 1 , 2 , … , where T t is a signal collection round and t is a

iscrete signal collection cycle. Then, the measured signals of sensor i

re specified as follows: 

 = 𝑧 𝑡 
𝑖 
+ 𝜖 (1)

The signal measurement noise denoted by 𝜖 for a sensor might be

andom noise in practical health signal measurement. We take z mea-

ured signals to be transmitted to one-hop neighboring sensors. But it

ay also be influenced to some extent by a possible security attack on

he signals. 

Assume that a subset of signals is not security compromised at a cy-

le t in patient body health monitoring application. In the BSN-enabled

ealthcare application, when all of the measured signals are not secu-

ity compromised, it is no problem to make a decision on the accurate

ignals and decide that the acquired signals are dependable. However,

f one or a subset of measured signals is compromised, a sensor i may

ecide the measured signals is security compromised by analyzing latest

ignals, such as those from history or signals of its one-hop neighboring

ensor, and by using correlation statistics and the extent of 𝜖. 

Correlation of measured signal is a metric of two acquired signals

f the patient health of the BSN. Correlation is a broadly used notion

n signal processing, which is a degree of in what way two signals are

quivalent. It can be calculated by multiplying the two signals and sum-

ing the result over a given signal acquisition cycle. As shown in Fig. 4 ,

he two signals look indistinguishable and, therefore, their correlation

s within -1 or 1. But the two signals of patient body are uncorrelated,

o distinguishing one of the signals cannot offer any information on the

ther. 

.3. Signal dependability verification 

Mutual Signal Information Independence (MSII). It is a function

enoted by Φ() that calculates the amount of correlation or statistical depen-

ence between two signals sets Z and Z ′ . In other words, the function is used

o quantify the deviation between signals from a signal correlation pattern. 
38 
We first think that there can be security attacks on the patient body

ignal measurements. Consider that a security attack on patient body

ignals may occur at any time t . A subset D ⊂P of signals of patient body

s perhaps security compromised, which are mixed with other collected

ignals making signal collection undependable. To make a decision on

dentifying compromised signals, the followings are used to distinguish

he signals: 

Z = body signals supposed to be dependable 

Z’ = signals supposed to be compromised ( undependable ) 

𝑍 ∩𝑍 

′ = {} and 𝑍 ∪𝑍 

′ = 𝐷, where D ⊂P 

Normally, we assume that other signals of patent health in a cycle

ay be irregular due to attack or many reasons. However, regarding the

atient health monitoring, we focus more on uninterrupted monitoring

f signals of a sensor whose signal behaviors are altered remarkably (due

o an attack, fault, or other reason). 

We apply mutual signal information independence (MSII) as a func-

ion of indirect patient body signal measurement. We suppose that a

orrelation pattern CP of measured signals exists [24] . We can provide

P as a standard signal subset, which is temporally buffered data in the

ensors memory acquired when there are no security attacks. The MSII

mongst two signals q and r at any time t in subset of signals D , is given

y: 

( 𝑧 𝑞 , 𝑧 𝑟 , 𝐶𝑃 ) (2)

We take the measured signals in Z and Z ′ as the latest and current

ealth signals of a patient, respectively. Hence, MSII of signals of Z and

 ′ can be specified as follows: 

( 𝑧 𝑍 , 𝑧 𝑍 ′ , 𝐶𝑃 ) (3)

iven Q consecutive signals, the MSII is used to estimate the correlation

etween z Z and z Z at time t as: 

( 𝑍 , 𝑍 

′) = 

𝑄 ∑
𝑡 =1 

Φ( 𝑧 𝑍 ′ , 𝑧 𝑍 , 𝐶𝑃 ) − 

𝑄 ∑
𝑡 =1 

Φ( 𝑧 𝑍 , 𝑧 𝑍 , 𝐶𝑃 ) (4)

Δ( Z, Z ′ ) is obtained by decreasing the difference amongst normal sig-

als in Z , and by increasing the difference amongst normal signals in Z

nd compromised signals in Z ′ . D is regulated by the BSN user regard-

ng signal density. Intuitively, normal signals should be consistent with

ach other, while the compromised should be inconsistent. Note that

or generalization we do not adopt that the compromised signals can be

ncorrelated. 

.4. Decision-making on the signal dependability verification 

This subsection explains normal signals collection and an algorithm

o detect compromised signals of patient health, according to the model

escribed earlier. The layer is described in Fig. 5 . 

Body health sensors signals are likely to be compromised by secu-

ity attacks. We apply a joint Gaussian distribution-based correlation

attern. We find that multivariate Gaussian distribution is applied to

recisely pattern the correlation of different kinds of signals in the lit-

rature [25] . Every measure signal is compared with the latest signals

nd the signal unicasted to its one hope neighbor. Let sensor i th signals

e 𝑧 𝑡 
𝑖 
∈ 𝑧 𝑡 

𝐷 
and j th signals be 𝑧 𝑡 

𝑗 
∈ 𝑧 𝑡 

𝐷 
; i, j ∈ D and Z ⊆D and D ⊂P . For the

onvenience’s sake, 𝑧 𝑡 
𝑖 

as q and 𝑧 𝑡 
𝑗 

as r are denoted hereafter. 

We calculate the statistical signal independency amongst signals q

nd r that are described in the joint probability density p ( q, r ) of mea-

ured signals in the following: 

 ( 𝑞, 𝑟 ) = 

1 
2 𝜋𝜏𝑞 𝜏𝑢 

√
1 − 𝜌𝑞𝑟 

𝑒 − 

1 
2(1 − 𝜌2 

𝑞𝑟 
) 

⎡ ⎢ ⎢ ⎣ 
( 

𝑞− 𝜇𝑞 

𝜏2 
𝑞 

) 2 

− 2 𝜌𝑞𝑟 
( 𝑞 − 𝜇𝑞 )( 𝑟 − 𝜇

𝑢 
) 

𝜏𝑞 𝜏𝑢 
+ 

( 

𝑟 − 𝜇
𝑢 

𝜏2 
𝑢 

) 2 ⎤ ⎥ ⎥ ⎦ (5) 
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Fig. 5. 1-DM: the first layer decision-making. 
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Here, the averages and the standard deviations of the measured sig-

als q and r are denoted as 𝜇q , 𝜇u , 𝜏q , and 𝜏u , respectively. We com-

ute the correlation coefficient amongst two signals denoted by 𝜌qr . We

resent it as follows: 

𝑞𝑟 = 

𝐸 

{
( 𝑞 − 𝜇𝑥 )( 𝑟 − 𝜇𝑦 ) 

}
𝜏𝑞 𝜏𝑢 

(6) 

We can also utilize the correlation coefficient to decide if signals

 and r are statistically independent. If |𝜌𝑞𝑟 | = 1 , we think that there

s a sufficient correlation amongst q and r . Alternatively, if |𝜌𝑞𝑟 | = 0 ,
ignals q and r have no sufficient correlation. This type of correlation is

ssumed as poor statistical dependency between signals. According to

iterature [26] , it can be seen that two random variables, which have no

orrelation amongst them, are to be statistically related or dependent.

egarding this situation, we put emphasis on the statistical dependency

r independency amongst signals. We take 𝜌q and 𝜌u of the signals q and

 of the product of the marginal densities, respectively, which is stated

s follows: 

 ( 𝑞, 𝑟 ) = 𝑝 ( 𝑞) 𝑝 ( 𝑟 ) (7)

To make a decision on the signal dependency/independency, we

ompare the (5) and (7). If the outcome of (7) is identical to the outcome

f the marginal densities in (9), we decide that the measured signals can

e solely independent. To confirm this, we quantify the statistical depen-

ency amongst signals q and r , which is to calculate the MSII of q and r

nd is given in the following: 

( 𝑞, 𝑟, 𝐶𝑃 ) = ∫ ∫ 𝑝 ( 𝑞, 𝑟 ) log 𝑝 ( 𝑞, 𝑟 ) 
𝑝 ( 𝑞) 𝑝 ( 𝑟 ) 

𝑑 𝑞 𝑑 𝑟 (8)

The logarithm basis regulates the units in which signal information

s measured. Based on the information in (3), it can be depicted that if

ignals q and r are not dependent, Φ happens to be zero. 

We think of a forward approach to split the range of q and r into some

nite bins and we quantify the amount of sampled signal pairs of ℎ 𝑜 =
 𝑞 𝑜 , 𝑟 𝑜 ) , 𝑜 = 1 , 2 , ⋯ , 𝑛, which fall into the finite bins. The quantification

ermits nearly estimating the probabilities through substituting (9) by

he finite sum: 

𝑏𝑖𝑛 ( 𝑞, 𝑟, 𝐶𝑃 ) = 

∑
𝑎,𝑏 

𝑝 𝑞𝑟 ( 𝑎, 𝑏 ) log 
𝑝 𝑞,𝑟 ( 𝑎, 𝑏 ) 
𝑝 𝑞 ( 𝑎 ) 𝑝 𝑟 ( 𝑏 ) 

(9)

ere p q ( a ) ≈ n q ( a )/ Z and p q ( b ) ≈ n q ( b )/ Z are the likelihoods on the

mount of points n q ( a ) and n r ( b ) that falls into a th bin of q and the

 th bin of r , respectively. Then, we can have the joint probability as

 qr ( a, b ) ≈ n ( a, b )/ Z taking the amount Z ( a, b ) of points falling into
39 
he box number a and number b . The MSII should be non-negative and

ymmetric: 

( 𝑞, 𝑟, 𝐶𝑃 ) = Φ( 𝑟, 𝑞, 𝐶𝑃 ) ≥ 0 (10)

he MSII for all likely mixtures of outcomes of BSN-enabled health

evice signals as z u and z v (with the exception of 𝑢 = 𝑣, where 𝑖 =
 , 2 , ⋯ , 𝑢, 𝑗 = 1 , 2 , ⋯ , 𝑣 ) is estimated. This guides to an Φ-matrix for the

otal possible mixtures of r and s . The main concept here is that the MSII

lters when f v is appeared, which is due to be a security attack on sen-

ors signals or other reasons. We infer that f v can be in r th channel or

ndex: 

̃ 𝑢 = 𝑧 𝑢 + 𝑓 𝑣 (11) 

his change happens just in the r th channel. As a result, we can find

hat all possible combinations with index r have to demonstrate a drop

n the Φ. This help us make a decision on the compromised signals of

 sensor. More signals can be concurrently identified, accordingly. We

an visualize the compromised signals by using the relative change as a

ompromised signal indicator denoted by ΘΦ
𝑧 𝑢 
, given by: 

Φ
𝑧 𝑢 

= 

|Φ𝑧 𝑢 
− Φ𝑛𝑜𝑟 |
Φ𝑧 𝑢 

(12) 

here z u is a real signal set and the lower index nor is one normal ref-

rence signal set. The layer grounded on the MSII is capable to identify

ompromised sensors signals in different combinations of them. 

.5. Algorithm 1 : Undependable signal detection 

In every decision-making cycle, a body sensor makes a decision on

he compromised signals, mainly on the basis of current signals, k latest

ignals, and signals obtained from the one-hop neighboring device. 

In Algorithm a, if a decision made locally on a sensor measured sig-

als, ΘΦ
𝑧 𝑢 

> 0 . 5 , then the device’s some or all of its signals might be com-

romised. We imply that MSII can be highest on the device’s collected

ignals. This decision-making requires at least a neighboring sensor to

e synchronized. In addition, the decision-making on signal detection is

early direct and real-time, since a sensor does not demand to keep wait-

ng for the signals of a neighboring sensor. Furthermore, the identified

et of compromised signals is not transmitted towards the aggregator,

herefore, the transmission cost may become comparatively low. 

The MSII should not depend on a specific kind of security attacks.

lgorithm 2 depending on the MSII may identify different kinds of com-

romised signals. Note that, the MSII might fail to identify missing sig-

als from a body sensor or sensor failing. 
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Algorithm 1 1st-Layer Decision-making on the Signal Dependability. 

Decision: ( ΘΦ
𝑧 𝑢 
≤ 0 . 5 : dependable signal), ( ΘΦ

𝑧 𝑢 
> 0 . 5 : undependable signal) 

for device 𝑖 ∈ 𝑍 where 𝑍 ⊆ 𝐷 do: 

(ΘΦ
𝑧 𝑢 
) 𝑖 ⟵ 0 // each sensor 𝑖 ’s signal is dependable 

loop 

for every device 𝑖 do: 

(ΘΦ
𝑧 𝑢 
) 𝑗( 𝑛𝑒𝑖𝑔 ℎ𝑏𝑜𝑟𝑖𝑛𝑔 𝑆𝑒𝑛𝑠𝑜𝑟 ) ⟵ receive neighboring 𝑗th signals 

samples ⟵ 𝑍 samples from (ΘΦ
𝑧 𝑢 
) 𝑗( 𝑛𝑒𝑖𝑔ℎ𝑏𝑜𝑟 ) 

for every sample 𝑢 do: // 𝑢 is an index 

𝐺 𝑢 ⟵ normal signals 

𝐶 𝑢 ⟵ compromised signals 

𝐶 𝑢 ⟵ ( 𝐺 𝑢 , 𝐶 𝑢 ) //Eq. 3 

for every device 𝑖 do: 

if ΘΦ
𝑧 𝑢 
> 0 . 5 then 

𝑖 indicates as producing compromised signals 

if 𝑖 is not acting for signals then 

𝑗 indicates 𝑖 as a compromised signal producing device 

end 

Algorithm 2 Signal Collection at the Aggregator for Dependability Ver- 

ification. 

Input: Signal transmission within a given neighborhood range 

Output: Decision on the undependable signals in the neighborhoods 

𝑡 ⟵ signal transmission at any time slot 

𝑖 transfers own signals to the aggregator device 𝑗 

for each signal collection cycle do: 

for everybody sensor 𝑖 do: 

If 𝑖 ’s signal is transmitted to 𝑗 in 𝑡 then 

transfers a new signal to 𝑗 

run Algorithm 3 
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. 2-DM: The 2nd-Layer decision-Making for data dependability 

erification 

In the previous section, we have verified data dependability at the

ignal level and then the body sensors are supposed to transmit the data

o an aggregator. In this section, we have verified data dependability

t the local aggregator, which is done before making the aggregation.

 decision can be made in two phases: (1) examining whether or not

he data sent by the sensors in the BSN is authentic; (2) guaranteeing

hat the data sent by the sensors in the BSN is not altered after data

cquisition. However, we do not cover the authentication phase in this

aper. We assume that there are conventional security mechanisms and

rotocols used in data transmission from the BSN-enabled health device

oward an aggregator. 

In this section, we carry out data dependability verification of the

ata transmitted by the individual BSNs. The verification is carried out

efore the data aggregation with the aim that the data found with de-

endability concern should be included in the data aggregation (such

s sum, count, avg). A number of body sensors can in parallel send the

ollected data toward the aggregators. With the data dependability ver-

fication, patients health data aggregation can be effective. 

The local aggregator calculates the MSII for signals, and selects the

ignals with the greatest independence for dealing with the security at-

ack. Distributed decision-making on the signal dependability is not ap-

ropriate for resource-limited IoT health devices. If every IoT device

emands to transmit all of the acquired signals, including compromised

nes to the central station (where each sequence of signals can be from

 0kb to X 000kb, 𝑋 = 1 , 2 , …), the centralized BSN-enabled healthcare

pplication might not be capable to function properly for a given period

f time. On the contrary, a decision on the compromised signal acqui-

ition may run distributedly when each of the device has a decision on

he acquired signals locally, as shown in Fig. 5 . The decision also indi-

ates signal dependability of an IoT device based on the signals from
40 
 neighboring device and decides whether the devices collected data is

ompromised. 

We apply theoretical procedures to verify the data in one-hop to

ulti-hop communication in the DependData framework. In the pa-

ient healthcare monitoring scenario, the wireless transmission range of

ealth sensors can be constrained, say a few centimeters to several me-

ers in a local neighborhood, in which the IoT health sensors send the

ignals towards a local aggregator. We bound the sensors to transmit

he signals within 1-hop neighboring sensors assuming that transmis-

ion within two or more hops is not efficient. In decision-making on the

ransmitted data dependability, we take sensors in one-hop away from

he local aggregator so that a sensor can transmit the data straightfor-

ardly. 

As shown in Fig. 6 we see the second-layer of decision-making on

he dependability of collected patient health data. Corresponding to

he 2nd-layer of Fig. 5, Fig. 6 shows the decision-making framework.

lgorithm 2 is used for data collection and decision making, which

hows data collection based on the neighborhood. 

The signal collection algorithm functions in 2 stages as follows. In

tage 1, each sensor transmits the collected signals to the aggregator,

hile it also gets acquired signals of the neighboring sensors. In stage 2,

ach device carries out Algorithm 3 , which is called “decision-making

or the signal dependability verification. Whether signals are faulty or

ot can be known through this algorithm. 

lgorithm 3 Decision-Making on the Undependable Collected Data. 

ecision: ( ΘΦ
𝑧 𝑢 

≤ 0 . 5 : dependable), ( ΘΦ
𝑧 𝑢 

> 0 . 5 : undependable) 

oop: 

for Signals of each body device 𝑖 in the neighborhood do: 

(ΘΦ
𝑧 𝑢 
) 𝑗 ⟵ receiving signal from 𝑗 

Signal set ⟵ 𝑍 signals from (ΘΦ
𝑧 𝑢 
) 𝑗) 

for every signal 𝑢 do: 

𝐺 𝑢 ⟵ dependable signals 

𝐶 𝑢 ⟵ undependable signals 

𝐶 𝑢 ⟵ ( 𝐺 𝑢 , 𝐶 𝑢 ) 
for signals of each 𝑖 do: // at the aggregator 

if ΘΦ
𝑧 𝑢 

> 0 . 5 then 

the signal of 𝑖 is indicated as undependable 

if a signal from 𝑖 is not received at the aggregator then 

the signal was undependable (then dropped) or was lost 

nd 

.1. Algorithm 3: Data dependability verification 

When applying a central signal monitoring framework, the base sta-

ion or sink node can easily verify compromised signal identification

rocedures. In a decision-making cycle, the sink can conduct a decision

n compromised or abnormal signals, on the basis of k latest signals

ransmitted by each of the BSN health devices. The sink estimates the

SII for the signals and indicates the signals with the signal indepen-

ence. The decision is that the highest signal independence indicates the

igh-sensitivity to the compromised or abnormal signals. However, re-

arding the IoT-based health monitoring scenario, we think distributed

ignal verification should be suitable in terms of various constraints and

ignal verification quality. Also, BSN-enabled health device is severely

esource-constrained. It may be infeasible if each body device transmits

ll its signals to the sink. Rather, we perform compromised signal detec-

ion (see Algorithm 3 ) that runs distributedly. 

In the algorithm, the distributed decision-making on the signals is

ade. If ΘΦ
𝑦 𝑢 

> 0 . 5 , a signal seems to be compromised or abnormal. This

ndicates that when the MSII is the highest on the acquired health sig-

als, these signals are compromised. The distributed framework only

nvolves neighboring sensors signals to be synchronized, since an ag-

regator requires to keep waiting for the signals from local sensors.
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Fig. 6. 2-DM: the 2nd-layer decision-making. 
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urthermore, the set of identified undependable signals are not sent.

s a result, the transmission energy can be comparatively minimal. 

MSII does not depend on particular security attacks or device ab-

ormalities. Algorithm 3 using the basis of MSII is capable to identify

ifferent types of undependable signals (as modeled before). 

. 3-DM: The 3rd-Layer decision-Making for data dependability 

erification 

In the previous sections, we have verified data dependability at the

wo decision-making layers. In this section, we verify data dependability

t the data user layer. 

.1. The 3rd layer decision-making 

It is important to offer dependable data to BSN-enabled healthcare

sers using the BSN-enabled user interface. This is an intrinsically tough

roblem demanding promising and effective solutions. This needs to as-

ociate numerous protocols and schemes, including security protocols,

ccess control protocol, privacy control, etc. At the current state of re-

earch, more than ever, data dependability in data collection and data

iewing at the data user should be important. We propose a 3rd-layer

ecision-making for data dependability in DependData for ensuring

ependable data access from the cloud storage. 

Fig. 7 shows an overview of proposed scheme for ensuring data de-

endability to the healthcare users. The scheme depicts how data col-

ected from the IoT data storage (cloud) are processed, data dependence

tatus are calculated, and presented to healthcare users. The proposed

cheme is comprised of 3 main modules: trustworthiness evaluation,

ser query and query policy evaluation, and the data quality manage-

ent. The function of each module is given in the following. 

Data dependability evaluation is comprised of data dependence lev-

ls with the data stored in the cloud. A data dependence level is a nu-

erical value varying from 0 to 1. Here, 0 implies the lowermost de-

endability and 1 implies the uppermost dependability. Such a data de-

endence level can be a crucial concept of DependData framework, as

t specifies dependability of the data item. This may be applied for data

imilarity or quality rating. Data dependence levels would be gained by

eans of numerous features such as the dependability of data providers

nd the layer in which the data is acquired. In DependData , we mainly

ut our emphasis on data dependency. 
41 
.2. Data dependence level 

The first phase is to calculate the patient health data dependence

evel in BSN-enabled healthcare. This calculation is based on the associ-

tion among all the stored patient health data items in the data storage.

his points out the dependability of each data item in the user inter-

aces. Data dependence level ranges between 0 and 1. A decision on the

ata dependency level can be as follows. 

 𝑗 = 

⎧ ⎪ ⎪ ⎨ ⎪ ⎪ ⎩ 
0 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑝𝑜𝑜𝑟 

. …

. …
1 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑎𝑡𝑎 𝑑𝑒𝑝𝑒𝑛𝑑𝑒𝑛𝑐𝑦 𝑙𝑒𝑣𝑒𝑙 𝑖𝑠 𝑛𝑜𝑏𝑙𝑒 

(13) 

The goal of knowing this level is to realize the quality of the stored

ata before a BSN-enabled healthcare data user accesses the data, and

t can also be used for data ranking. This level calculation is applied

longside with more circumstances (such as the context of data, real-

orld factors, history of data) for determining the usage of the data

tems. The data dependence level calculation scheme is due to the idea

f data provenance, which can be utilized as the proof about the data

rigin, i.e., where and how the data is produced. 

The concept behind the level calculation is that the more value of D j 

 data provider (such as a cloud server) provides, the more dependable

ata provider is. Based on this, an interdependency property can be found

etween health data providers and health data items regarding the cal-

ulation of the data dependency level. This is to say, the data depen-

ency level value of the collected health data influences the dependable

ata of healthcare providers, which has initiated and controlled the data,

tc. Therefore, the data dependability calculation module is calculated

y: 

• d as the dependence level value of the data items on the basis of data

providers, and 
• d p as the dependence level value of the data providers on the basis

of those of data items. 

For resolving the multiple data conflict from data providers or multi-

ources, we use the truth discovery approach [27,28] , which helps to

erify the data truth based on the reliability of data provider. This can

elp mitigate issues, such as when the sum (or average) value of data
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Fig. 7. 3-DM: the 3rd layer decision-making scheme. 
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roviders becomes big, even when the data is not dependable. To stay

ith the space limitation, we do not discuss it in this paper. 

.2.1. Data confidence policy 

The second phase is to specify the confidence policy [9,29] , which

an also be a part of the data dependability. The confidence policy ex-

cutes user query and data access policy. It can be done some existing

ork such as [30] . However, different IoT-based healthcare organiza-

ion and applications has different policies. Nowadays, policies are a

ig part of the data dependability assurance. Such a policy identifies an

rray of data dependence level. We apply the policy to a data item, or a

et of data items in the application or task. For example, a BSN-enabled

ealth user make a query denoted by Q with a confidence query policy

etric [ 𝑞 max , 𝑞 min ] , then get returned data items where data dependence

evel ranges from 𝑞 max to 𝑞 min . 

.2.2. The control of the quality of data 

It ensures the health data quality in a BSN-enabled healthcare appli-

ation. The quality can be included in the calculation of data depend-

bility. Based on the healthcare application user, a user may adjust the

xpected data quality and send a request to sensors to satisfy the data

equirement, as shown in Fig. 7 . 

According to the structure in Fig. 7 , whenever a healthcare data user

eeds to pool patient data from the cloud, it sends a data query to the

loud. The 3rd layer decision-making scheme runs the data dependence

ange 𝑄 [ 𝑑 min , 𝑞 max ] . With this range, the user can expect to data depend-

bility of the returned data. Then, the request goes to the dependence

core calculation. Based on the availability of the data in the cloud re-

arding 𝑄 [ 𝑑 min , 𝑞 max ] , the available data is selected to be returned to the

ser. Here, we think different healthcare users may have different data

ccess policies. The returned data then is filtered through the data ac-
42 
ess policy function. Only the data that is in D [ dis, s d ] with the policy is

eturned to the user. 

. Implementation and evaluations 

.1. Methodologies and datasets 

We have implemented DependData to validate the performance

valuation in simulations. We have fully developed the first two-layer

f decision-making in the BSN-enabled healthcare application. We have

artially developed the third layer of decision-making because of lim-

tations in the evaluation environment. We used a computer Core i5

rocessor, 4 GB of RAM, Win OS 10 with 64-bit and Python language to

rite programs. 

We consider a BSN consisting of 40 body sensors. We have adopted

wo real data sets of patient health status collected by the body sensors

n the proposed BSN-enabled healthcare application. The data sets are

rom MIT BIH database [31] and IMPACT [17] . / These data sets are

sed for the 40 sensors of the BSN in our simulations. We divided them

nto two classes: one includes 20 tri-axial accelerometers and the other

ne contains 20 ECG sensing sensors. The background patient health

ignals are simulated as patient health data influenced by the sensors

n the BSN. An arbitrary Gaussian noise is injected into all the signals.

he average of the noises is set to zero. The standard deviation is set to

0 percent (of actual health status signals of patients). We considered a

et of patient health signals from the data sets as a set of reference sig-

als to train the joint distribution. We considered another set of similar

ata for testing. These reference signals are regarded as normal health

ignals that incorporate signals of patients who have not suffered from

ny ailments or abnormal sinus rhythm ECG. Both data sets have noise.

s a result, the model of trained correlation can reflect the noises. 
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From both of the patients ECG and tri-axial accelerometer signals, we

ave randomly selected 4 patients ECG signals with abnormal morpho-

ogical information and 4 patients accelerometer signals, respectively,

nd injected compromised signal information (regarding the data ma-

ipulation attacks, signal compromised attacks) into signals of those sen-

ors. 

In order to detect exactly what happened in the signals, that is to

ay, to verify the received signal dependability, we used the proposed

ecision-making in three layers. In the first layer, each sensor used 1-

M to make the signal level data dependability verification locally. All

f the data passed through the 1-DM, including the signals that appear

o have data dependability concerns are fed into the upstream sensors

aggregators) of the BSN. Aggregators received signals from its sensors

n the neighborhood and used the 2-DM to make the data dependability

erification in a distributed manner. All the normal and compromised

ata are stored in a database. When a user requests to get data with a

ata dependence, the 3-DM is used to make data dependability verifica-

ion at the user/owner layer. 

.2. Performance measures 

For comparison, we did not find any appropriate existing scheme to

ompare to. Using the simulation results, we evaluate and compare the

erformance of DependData in several measures under the security

ttack information injections: 

• Performance of the MSII values . MSII values of any two signals are

calculated by the mutual dependence between the two signals. More

precisely, it quantifies the “amount of information ” gained about one

signal through monitoring the other signal. 
• Data dependability in terms of detection. It is defined by the detection

ability of DependData that can provide us an indication of how

much the DependData can cope with the security attacks on the

signals. Here, the detection ability is the percentage of the detection

of compromised signals over the total amount of injected compro-

mised signals. 
• Data Dependability Importance. To determine the overall dependabil-

ity of DependData , we consider the role of identifying the least

dependable decision-making functions of DependData in order to

improve future BSN for healthcare system design. By means of the

reliability importance measures, we find the relative importance of

each of the decision-making of DependData with respect to the

overall dependability of the DependData . According to the relia-
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43 
bility importance [14] , the data dependability is given by: 

𝐼 𝐷 𝑙 
= 

𝐷 𝑑 

𝐷 𝑙−( 𝐷𝑀) 
, 𝑙 = 1 , 2 , 3 (14)

where: D d is the data dependability of DependData and D l is the

dependability of each of the decision-making layers. 

However, we consider DependData ’s three-layer decision-making

scheme reliability-wise in series and then dependability of

DependData can be calculated as: 

𝐼 𝐷 𝑙 
= 𝐷 1− 𝐷𝑀 

∗ 𝐷 2− 𝐷𝑀 

∗ 𝐷 3− 𝑀 

(15)

.3. Simulation results 

.3.1. Performance of the signal analysis and MSII values 

In the initial set of simulations, we can see real ECG output and tri-

xes accelermeter output. Fig. 8 demonstrates the signal output wave-

orms of ECG and accelerometer, respectively. The ECG signals deliver

 record of compound electrical events happening in the heart. 

We execute the first two layers of decision-making under the com-

romised (undependable) signal injection detection. Each sensor of the

SN acquires signals and receives from its 1-hop neighboring sensors.

his includes undependable ECG signals with morphological abnormal-

ties and tri-axial accelerometer signals. Each sensor updates its MSII

ased on its signals, previous signals, and received signals. Fig. 9 shows

he MSII achieved through the 1-DM and 2-DM layers in the first two

uccessful simulations (Sim1, Sim2). 

There are no undependable signals in body sensors #1, #2, #4, #6,

7. This implies that the gathered data is distorted nearly in most of the

ensor’s signals by undependable signals sharing between any two sen-

ors’ signals except for such sensors as #3, #9, #14, #19, which show

he highest signal information. The reason is that the signals #9, #14

nly influenced by the signal of their neighboring sensors. It is observed

hat high MSII values exist at some sensors of the BSN, including sensor

3, sensor #7, and sensor #13. Their ECG signals become untrustwor-

hy or partially changed that is evidently noticed. In the 2-DM layer,

hen the amount of undependable signals rises, it can be seen that the

alues of the MSII at body sensors of the BSN in the neighborhood be-

ome maximum. This justifies the precision of the undependable signal

etection at the aggregator each time the aggregator receives such data.

he dependable signals are detected after executing the 1-DM or 2-DM.
ECG

X-axis

Y-axis

Z-axis

10

10

Fig. 8. Snapshots of the real ECG and accelerometer 

signals, respectively, under a patient’s normal health 

states. 
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hese signals may be dropped before aggregation or may be dealt with

y other approaches such as signal reestablishment process to reestab-

ish the signals. 

.4. Data dependability verification 

Given the dependability nature of compromised signal injections on

he sensors, we justify to identity the potential changes to the ECG sig-

als and tri-axial accelerometer signals very quickly so as to evade po-

ential harm to the patients, as shown in Fig. 8 . To detect exactly what

appened in the ECG and tri-axial accelerometer signals, we can no-

ice that the acquired signals of the compromised sensors is included in

he patient health status. Thus, the health status corresponding to the

ompromised signals are altered drastically. Considering compromised

ignals, we want to realize accurately what happened in patient health

tatus so that we can realize whether the BSN-enabled health monitoring

s dependable or not. 

We next observe the ECG collection in simulations. In the result anal-

sis, we have applied a mixture of the true positive and true negative

etection outputs in the device signal attack detection accuracy esti-

ation. We gather all the false positive and false-negative cases that

ppeared (obtained from a total of 30 simulation runs), and we obtain

n average. Then, we compute the data dependability in terms of com-

romised signal detection ability rate as: 

 − [( 𝑓𝑎𝑙𝑠𝑒 𝑝𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒𝑠 + 𝑓𝑎𝑙𝑠𝑒 𝑛𝑒𝑔𝑎𝑡𝑖𝑣𝑒 𝑟𝑎𝑡𝑒𝑠 )] (16)

This is shown in Fig. 10 . We can see the impact on the signals, in

hich the compromised signals are distorted under the security attacks
44 
nd can see the detection ability of 1-DM, 2-DM, and 3-DM. This indi-

ates that, if there is no proper undependable signal identification tech-

ique as well as protection to the undependable signals, achieving suc-

essful BSN-enabled patient health monitoring operations will be diffi-

ult. We can say the BSN-enabled health monitoring without addressing

he data dependability will not be dependable. 

.5. Dependability of DependData 

Finally, the dependability importance values of the decision-making

t the three layers are computed. As shown in Fig. 11 , the data depend-

bility is achieved by the dependability of each of the decision-making

ayers. The increase of dependability in one of the decision-making re-

ults contributed to the overall reliability of DependData . The de-

endability of three-layer decision-making scheme for a given time is

4%, calculated by: 

 𝐷 1− 𝐷𝑀 

∗ 𝐷 𝐷 2− 𝐷𝑀 

∗ 𝐷 𝐷 3− 𝐷𝑀 

= 0 . 74 (17)

here 𝐷 1− 𝐷𝑀 

= 0 . 93 , 𝐷 2− 𝐷𝑀 

= 0 . 91 , and 𝐷 3− 𝐷𝑀 

= 0 . 88 . 
We observe that data dependability concerns appear in all of the

hree-layers. If these concerns are not addressed properly, the data qual-

ty of the patient physiological signals can be achieved up to 88%. In

act, it can be much lower than 80% if the data dependability rate is

ow in any of the decision-making layers. It is evident that the depend-

bility of each of the DependData s decision-making layers demand

o be increased in order for the BSN-enabled healthcare application to

eet its goal. 
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Fig. 10. Compromised data detection ability through the 

decision-making in three layers of DependData : in the 

case of ECG and accelerometer signals. 
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. Conclusions 

In this paper, we have introduced a comprehensive dependable data

erification framework named DependData to guarantee data de-

endability in the BSN-enabled healthcare application. DependData
as come with a novel concept: data dependability verification before

ata utilization, i.e., the healthcare data user can check whether or

ot the collected data is dependable and whether they will use this

ata or not. Alongside with current studies on security and privacy

rotocols and algorithms, DependData has attempted to verify the
45 
ata dependability concerns regarding that the data may still be com-

romised at the acquisition and before aggregation/storing in severely

esource-constrained BSNs. This leads to data collection scheme becom-

ng meaningless or undependable i.e., an undependable BSN-Health.

ependData includes three-layer decision-making to verify data de-

endability in the three layers: signal level dependability at each sensor

ocally; data dependability at each of the aggregator of the BSN in a dis-

ributed manner; data dependability verification before the user views

he data in IoT-enabled interfaces. It is worthwhile to note that, in the

ependData framework, a significant amount of undependable (un-

rustworthy, meaningless) data can be reduced before processing and

ransmission in all three layers. DependData is very general and can

asily be applied to different application areas. 
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