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ABSTRACT

Federated Learning (FL) has been widely applied to content
popularity prediction in caching systems to enhance Quality of Ex-
perience (QoE). In cross-silo FL, distributed organizations with local
caches collaboratively train a global model coordinated by a central
server. As the global model is a public good, caches may benefit
without contributing, leading to free-riding. Since local request
data is time-varying, repeated FL tasks form a long-term game in
which free-riding destabilizes social welfare, defined as the sum of
expected payoffs of all caches. This paper proposes a multi-player
multi-action zero-determinant (MMZD) strategy to dominate free-
riders and control social welfare. Using the FedML framework and
YouTube datasets, experiments show that MMZD achieves stable
and high social welfare.

Index Terms— Content popularity prediction, cross-silo feder-
ated learning, domination strategies, social welfare control

1. INTRODUCTION

The explosive growth of content, especially videos, has driven
the development of caching technologies supported by Content
Providers (CPs, e.g., YouTube, TikTok) and Internet Service Providers
(ISPs). Caching reduces transmission delays and improves Quality
of Experience (QoE) by proactively storing popular content, which
typically follows the Zipf-law distribution [1-3]. By caching highly
popular content in local servers, ISPs can offload network traffic and
allow users to fetch content without contacting the original server.

However, due to business competition and privacy concerns,
ISPs are unwilling to share raw data for centralized training. Fed-
erated Learning (FL) provides a privacy-preserving alternative that
enables collaborative model training across ISPs without exposing
local data [4-6]. In cross-silo FL, each ISP trains locally while a cen-
tral server coordinates aggregation, and the resulting global model
is jointly owned. Since the model is a public good—non-excludable
and non-rivalrous—caches may benefit without equivalent contri-
bution, giving rise to the free-riding problem [7]. As illustrated in
Fig. 1, a free-rider can skip uploading its local model but still obtain
the global one, reducing accuracy and lowering the collective pay-
off. This behavior degrades prediction performance, reduces social
welfare, and destabilizes repeated FL tasks.

We define social welfare as the sum of expected payoffs of all
caches, and cooperation among caches optimizes the social welfare
in cross-silo FL. However, during this cooperation, some caches may
cheat to gain a higher payoff, resulting in unsatisfactory social wel-
fare for the others. This leads to selfish behavior where caches, in-
stead of fully participating in local training, contribute minimally
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Fig. 1. Content popularity prediction in cross-silo FL-based caching.

but still benefit from the global model. This phenomenon is called
free-riding [7], e.g., cache j in Fig. 1 is a free-rider that does not
upload its local model. Free-riding results in a non-optimal global
model, which lowers social welfare and harms the long-term stability
and sustainability of cross-silo FL tasks. Such cross-silo FL is a re-
peated game, with caches cooperating daily to train the global model
for content popularity prediction. However, due to free-riding, social
welfare fluctuates, becoming unstable and suboptimal.

To address free-riding and maintain stable social welfare at a
maximal possible value, we should resolve two challenges: (1) As
the number of caches increases, the action space becomes large,
leading to unstable social welfare. How can we achieve stable and
maximal social welfare? (2) By considering the existence of free-
riding, how to incentivize the caches under the cross-silo federated
learning for content popularity prediction?

In this paper, we propose a multi-player multi-action zero-
determinant strategy (MMZD) to control social welfare and mitigate
free-riding. The zero-determinant strategy is a class of probabilistic
and conditional strategies [8, 9], where a player unilaterally sets
the sum of expected payoffs (social welfare) or adjusts the payoff
ratio between themselves and their opponents, independent of their
opponents’ strategies. We model content popularity prediction in
cross-silo FL as a repeated game characterized by a Markov chain.
In each iteration, one cache adopts the MMZD strategy, while others
decide how many rounds of global aggregation they will partici-
pate in. The cache adopting MMZD can control the social welfare
unilaterally, maintaining it at a stable and maximal value. This is
done by performing extra aggregations based on the involvement of
participants, with free-riders contributing less. We also define the
controllable range of social welfare and discuss its influence with
MMZD. Our main contributions are summarized as follows:

(1) We utilize MMZD to control social welfare and mitigate free-
riding in cross-silo FL, maintaining a stable and maximal value of
social welfare.

(2) We provide a theoretical analysis of social welfare control in
repeated cross-silo FL, deriving the controllable range and explain-
ing its role in ensuring stability against free-riding.

(3) We validate the proposed MMZD strategy through numerical
analysis and experiments, demonstrating its effectiveness in control-
ling social welfare within the derived range.
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2. SYSTEM MODEL

2.1. Caching and Cross-silo FL. Model

Caching improves user experience by storing popular content on
cache servers, reducing congestion and delays. Different ISPs own
caches with heterogeneous request patterns, as shown in Fig.2,
where YouTube video demands vary across regions'. Since lo-
cal records are limited, accurate prediction requires collaboration
across caches. To preserve privacy, we adopt a cross-silo Federated
Learning (FL) framework [10], in which a central server coordinates
training while caches perform local updates and share parameters
for aggregation, as illustrated in Fig.1. Each cache executes K
local updates and may join r global aggregations selectively due
to self-interest, with its contribution represented by an action vec-
tor x = (1:1, T, ..., xn), where x; denotes the number of global
aggregations that cache ¢ participates in during the FL task.

2.2. Motivation

In cross-silo Federated Learning (FL), caches can benefit from the
global model without contributing, leading to free-riding. This hap-
pens when caches participate minimally in local training but still
gain from the trained model. We conducted an experiment with three
caches in cross-silo FL, as shown in Fig. 3, where the number near
each marker indicates the rounds of participation in global aggrega-
tion. The results demonstrate that prediction error (MSE) increases
when more caches behave as free-riders, confirming their negative
impact on model performance. We further evaluated different partic-
ipation probabilities (e.g., 0.2, 0.4, 0.7, 1) in each aggregation round.
As shown in Figs. 4(a) and 4(b), prediction accuracy consistently
improves with higher participation probabilities, achieving the best
performance when all caches fully cooperate (prob = 1). These find-
ings indicate that free-riding leads to a non-optimal global model,
lowers social welfare, and threatens the long-term stability of cross-
silo FL tasks. Therefore, controlling free-riding behavior is essential
to ensure stable social welfare in FL-based caching systems.

2.3. Payoff of the Cache

In cross-silo FL, all caches receive the same global model after each
FL task. The payoff of cache 7 is defined as: U; (x) = fi(x)—g:(x),
where f;(x) and g;(x) represent the income and cost of cache i,
respectively. Inspired by [11], we define the income function as:
fi(x) = 0i(p(0) — p(x)), where o; is the unit revenue of cache
i, p(0) is the loss of the untrained global model, p(x) is the loss
of the trained model with action vector & and modeled as p(x) =
W‘W, where 6y and 6; are coefficients determined by the
loss function, neural network, and local datasets. The income of
cache ¢ is proportional to the difference in loss between the untrained

Uhttps://www.kaggle.com/datasets/datasnaek/youtube-new
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Fig. 4. Performance of global model when free-riders exist.
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Fig. 5. Repeated game of cross-silo FL among multiple local caches.

and trained global models. Increasing participation rounds reduce
the theoretical loss p(x), with diminishing marginal decreases. The
cost of cache i is defined as: g; () = p; Kz; + C™, where p; is the
computation cost per iteration in cache 4’s local training, K is the
number of local updates per round, and C" is the communication
cost for uploading and downloading model updates. If cache ¢ does
not participate in global aggregation (z; = 0), it only submits a zero
vector. The payoff function of cache 7 is then:

0
Uh(a) = 0i(p(0) = s
1€ g

where U; () is the payoff of cache ¢ with action vector , used to
calculate the MMZD strategy in subsection 3.1. The assumption
is that the payoff of any local cache i € N is negative if it only
uses its local data for training a local model. Thus, this assumption
motivates the caches to participate in global model training the cross-
silo federated learning.

) — (piKzi +C™), (1)

2.4. Repeated Game

The cross-silo FL game is a repeated game because caches cooperate
in multiple FL tasks over time, as shown in Fig. 5. Each game
iteration corresponds to a specific FL task. In this game, caches act
as players, with cache ¢’s action denoted by z; € {0,1,2,...,r} and
its payoff as U;(x). This is a multi-player, multi-action repeated
game, where we focus on long-term social welfare.

Definition 1 (Social Welfare). Social welfare E,;; is defined as
the sum of expected payoffs of all caches in the long term, Eq;; =
Y ien Ei, where E; is the expected payoff of cache i.

In the repeated cross-silo FL game, free-riders cause fluctuating
social welfare. Thus, we aim to avoid free-riding and stabilize social
welfare at a maximal possible value, modeling this as follows:

Problem 1 (Social Welfare Control). The social welfare is required
to be controlled at a stable and maximal possible value, which indi-
cates the social welfare shows little changes and maintains around
a maximal possible value with increase of the game iteration.
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Fig. 6. Numerical results of different A on controllable range by a study case.

where o, refers to a weight of E;, and vy is a variable in a range of
social welfare [Ymin, Ymaz -

The constraint in Eq. (2) ensures that social welfare remains
constant. The objective and constraint aim to maintain social welfare
at a stable and maximal value.

3. DOMINATION STRATEGY FOR FREE-RIDING

In this section, we use the Multi-player Multi-action Zero-Determinant

(MMZD) strategy [12, 13] for social welfare control in cross-silo FL
of caching and provide a theoretical analysis. The motivation for
using MMZD stems from its ability to enable unilateral control of
long-term outcomes in repeated games. In contrast to Nash-based
or evolutionary strategies that require mutual cooperation or adap-
tive learning, MMZD allows one player to fix the expected payoff
(social welfare) regardless of opponents’ strategies. This is particu-
larly valuable in federated caching systems where full cooperation
cannot be guaranteed and free-riding behavior is unpredictable.
MMZD empowers a cache with market power to stabilize system
performance under worst-case assumptions.

3.1. MMZD Strategy

In the repeated game [14], the strategy profile determines a stochas-
tic process, which can be modeled as a Markov chain. We define
the action, state, and strategy as follows: Each cache ¢’s action is
z; € {0,1,2,...,7}, and there are (r + 1)™ possible action-tuples
per game iteration. The mixed strategy p’ for cache i is the proba-
bility distribution over actions. The utility vector u’ represents the
utility for each possible action and outcome.

The multi-player game can be characterized by a Markov chain
with a transition matrix M. If M is regular, a stationary vector v
exists, and the expected utility of cache ¢ in the stationary state is:

T i

=21 . The total expected utility is:

el
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If cache ¢ adopts a zero-determinant strategy, it can control the
social welfare to a fixed value y, independent of other caches’ strate-
gies. For example, with a; = 1, the social welfare is Y7 | a; B =
7, and the optimal social welfare is obtained by solving below con-
strained optimization problem:

3
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Here, A controls the convergence rate to the stable state. When
A > 0, we can obtain
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When A\ < 0, we can obtain

Ymaz=min{y  wl, Y Uyt ©
1 n i 1 n i
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Thus, the cache 1 adopts the MMZD strategy p' and can con-
trol the expected social welfare at a stable and maximal value Y a2z,
where p' satisfies p' = A(37"_, a;u’ — ~1), and each element in
p' is calculated by:

A = Yman)+1m=1,2, 0, (4 1)

" i — n—1 n+1
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@)

1
Pm=

where p}., refers to the m-th element in p'.

In practice, if cache 1 is chosen to adopt the MMZD strategy,
cache 1 has the following prior knowledge: (1) The number of global
aggregations r of an FL task before the repeated game starts and (2)
the payoff functions of each cache. Cache 1 utilizes its prior knowl-
edge to calculate each element (probability) of the MMZD strategy,
then it selects the action based on the MMZD strategy in the re-
peated FL game. That is, it selects how many global aggregations it
will take to participate in an FL task by a probability.

3.2. Controllable Range of MMZD

Actually, the MMZD strategy that cache ¢ adopts can control social
welfare at a value ~, which is a range. We define the controllable
range of social welfare by MMZD as follows:

Definition 2 (Controllable Range of Social Welfare). The social
welfare is controlled at v by the MMZD adopter, and ~y has a maxi-
mal value Ymaz and a minimal value Vmin. We denote the control-
lable range of social welfare as [Ymin, Ymaz)-

Due to the range of social welfare control (e.g., [Ymin, Ymaz])s
it is not easy to be expressed by the equation. We present the numer-
ical analysis of the controllable range for a better understanding. For
simplicity, we use a two-player two-action game as a study case. We
define two players X and Y with two actions {1, 50}, which refer to
a low and a high number of participation in the global aggregation.
The payoff matrix is [1, 6,3, 5.5], [1, 2, 7, 5] under the action-tuples
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{(1,1),(1,50), (50,1)(50,50)}. The zero determinant strategy is
calculated by Eq. (7). Some values of A > 0 are feasible in this
case. We choose A as 0.005, 0.13, and 0.15 in the numerical anal-
ysis. As shown in Fig. 6, when A is set as different values, the
controllable range is different. The controllable range of Fig. 6(a)
is [8,10]. While in Fig. 6(b) and Fig. 6(c), the controllable ranges
are in [8.65,9.35] and [8.8,9.25], respectively. This indicates that
the controllable range narrows when )\ increases to a certain value.
Furthermore, we can see that A with a larger value will speed up
the convergence rate. When A = 0.005, the social welfare becomes
stable at about 2000 iteration in Fig. 6(a), but in Fig. 6(b), the so-
cial welfare becomes stable at about 400 iterations; in Fig. 6(c), the
social welfare becomes stable at about 300 iterations.

4. EXPERIMENT

In our experiment, we utilize FedML?, which is an open research
library for federated learning. We set K = 200, » = 100, £ =
0.2, and n = 0.0003. Inspired by [11], 6o = 23272 and 61 =
50194 are obtained from the dataset. A is set differently in social
welfare control. We apply Long Short Term Memory (LSTM) for the
local model training and aggregate the global model by the FedAvg
algorithm [15] to verify MMZD strategy.

We use the public dataset of YouTube® in the experiment. It
includes the records of each day’s popular videos for about one year
of 10 countries, so we set n = 10, which is reasonable because the
number of caches in cross-silo FL is small in general [16]. Each
cache contains a time series of local user request records for daily
popular YouTube videos, categorized by region and content type.
The training data includes features such as video category, daily view
count, comment count, and publication timestamp. Using a sliding
time window, all cache servers collaboratively train a global model
for predicting popular content the next day without sharing raw data.

Comparison Methods. (1) ALLC [17,18]: All cooperation
strategy means the caches always choose action 7 rounds for global
aggregation. (2) ALLD [17,18]: It is an all-defection strategy. That
is, the cache does not perform local training; it submits a zero vector
for global model aggregation. (3) Random [17,18]: A random strat-
egy is that a cache randomly selects a number by the probability ?11
from {0, 1,2, ...,r}, which is treated as the rounds of participating
in the global model aggregation. (4) Evolved [8]: An evolution-
ary player starts to choose a random action, and randomly selects
an action form {0, 1, ..., %} If the average payoff in the current
round is larger than that of the previous round, then the probability
of this action under this state increases. Otherwise, it will decrease.
In the evolved strategy, we define the action in {0, 1, ..., %} and

{L—;J + 1,...,7} as defection and cooperation, respectively. It will
be stable with the iteration increases.

Zhttps://github.com/FedML-AI/FedML
3https://www.kaggle.com/datasets/datasnaek/youtube-new
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Performance of content prediction on FL. Fig. 7 shows the
performance of the LSTM model applied to the prediction of content
prediction in FL; the size of the sliding window refers to the number
of past days in the sequential data. A lower MSE value reflects better
performance. Fig. 7(a) shows the MSE on the test data with the size
of the sliding window set as 4 and 10, respectively. On the whole,
MSE decreases as the number of rounds increases. The final value
of loss of the sliding window set at 10 is a little smaller than that
at 4, which indicates the LSTM is valid, and longer past sequential
request data contributes greater to the global model. Fig. 7(b) shows
the performance of the prediction model when one cache adopts the
MMZD strategy and other caches adopt different strategies. MSE
decreases as the rounds increase, which indicates that the MMZD
can coordinate caches with other strategies for model training and
obtain a good performance.

Experimental results on social welfare control. We choose
one cache to adopt MMZD, and other caches adopt one kind of
strategy chosen from ALLC, ALLD, Evolved, and random strate-
gies. As shown in Fig. 8(a), the social welfare tends to be stable
around 24, which is the stable and maximal value that MMZD can
control. The insight behind MMZD is that the cache adopted MMZD
has a higher probability of participating in the global aggregation for
maximum rounds if most of the rest of the caches are free-riders.
Thus, MMZD tries its best to maintain the social welfare at a pos-
sible maximal value in the worst case. Fig. 8(b) shows the average
payoffs of different strategies. Clearly, it infers that the contribu-
tion of the MMZD adopter is different when other caches adopt dif-
ferent strategies. When caches adopt ALLD, the MMZD adopter
contributes much to sustain their total payoffs. The average payofts
of caches adopted evolved, and ALLC strategies are similar, which
infers the evolved strategy tends to the ALLC in the end.

5. CONCLUSION

In this paper, we investigate the repeated game of cross-silo FL for
content popularity prediction. By taking the advantage of market
power, we utilize the MMZD strategy to dominate the free-riders and
control social welfare. We discuss the controllable range of MMZD
by numerical analysis and verify that the content prediction model
is feasible in FL. when caches adopt different strategies. Experiment
results show that the MMZD strategy can control the social welfare
to achieve a high and stable value.
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