
Towards Problem of First Miss under Mobile Edge
Caching

Yanpeng Luo∗, Chao Song∗, Haipeng Dai†, Zhaofu Chen‡, Nianbo Liu∗, Ming Liu∗ and Jie Wu§
∗School of Computer Science and Engineering, University of Electronic Science and Technology of China, CHINA

†State Key Laboratory for Novel Software Technology, Nanjing University, CHINA
‡Huawei, CHINA

§Center for Networked Computing, Temple University, USA
Email:{chaosong, csmliu}@uestc.edu.cn, haipengdai@nju.edu.cn, jiewu@temple.edu

Abstract—Mobile Edge Caching (MEC) can cache content at
the edge of the network to reduce the delay and overhead of
content transmission, which has become an effective method to
solve the explosive growth of network traffic. To make good
use of the limited resources in edge devices, many contents
caching strategies use various methods to predict the popularity
of content. However, caches get close to the edge of the network
can lead to the rapid increase of caches’ number and the user’s
requests are dispersed into a large number of caches, which leads
to the popularity distribution of contents in edge caches is quite
different and the number of first miss requests (the corresponding
content is requested for the first time and is not in the cache)
in edge caches becoming an essential factor affecting the cache
hit rate. This paper first demonstrates the significant impact of
the first miss requests through dataset analysis and establishes a
mathematical model for the first miss problem in the edge cache.
Then we analyze the similarity of requests received by caches
and propose a proactive push algorithm based on similarity to
improve the hit rate of edge caches. Through the trace-driven
simulation experiment, we verify that the methods proposed in
this paper can significantly improve the caches’ hit rate.

I. INTRODUCTION

Mobile Edge Caching (MEC) utilizes storage provided
by mobile edge servers and is a use case of Mobile Edge
Computing [1]. A cache-enabled mobile edge server can be
an independent server attached to Base Stations (BSs) or
User Equipment (UE). Proactive caching at the edge of the
network has fully demonstrated its advantages in improving
user experience and offloading traffic [2]. It avoids network
congestion and reduces the delay of contents transmission by
pushing contents to caches in advance. The previous works
are mainly divided into two categories, one focus on analyzing
and optimizing caching policy with known content popularity.
Since the popularity of contents changes dynamically, other
types of works are mainly to predict the popularity of content.

Most of the early work assumed that the popularity of
contents, i.e., the probability of contents being requested,
was known. C. Yang etl. in [3] advocate proactively caching
popular contents when the network is off-peak. At the same
time, the popularity of content is difficult to obtain, Y. Zhan
etl. in [4] use neural networks to predict the popularity of
contents. Since contents popularity changes fast, the dataset
will quickly become out of date, S. Li etl. in [5] propose an
online learning algorithm that learns the short-term popularity

Edge
cache

Base
station

Original server

1 2

5
2

4

First miss
request

retrieve

request

53 4

Original server

A B C

1
3

move

User
move

1 2

Base
station

53 4

Central cache

move

User
move

1 2

Content

(a) Central cache.

Edge
cache

Base
station

Original server

1 2

5
2

4

retrieve

53 4

Original server

A B C

1
3

move
User

move

1 2

Base
station

53 4

Central cache

move
User

move

1 2

Content

(b) Edge cache.

Fig. 1. The problem of first miss in central/edge cache: (a) count of first miss
requests is 2, (b) count of first miss requests is 5.

of content. When caches are close to users, the number of
requests received by caches will decrease [6] [7] [8], which is
difficult to make accurate predictions. By gathering requests
from local caches, [8] propose an age-based algorithm, which
solves the problem of small samples in the local caches. The
key to all the above works is to obtain the popularity of
contents. They all assume that some contents in caches have a
higher probability of being requested than other contents. i.e.,
the popularity of contents in caches meets the Zipf distribution.

When the popularity of contents on edge caches does not
meet the Zipf distribution, the caches hit rate will be decreased.
When new content is requested for the first time in an edge
cache and causes a miss, we term this request as a first miss
request. From the perspective of the entire network, the small
number of contents has most of the traffic, and the popularity
of the contents should conform to the Zipf distribution [6].
However, with the rapid growth of the number of caches,
requests are dispersed into more caches, and the popularity
of the contents in the cache no longer follows the Zipf
distribution. The problem of first miss at edge cache is shown
in Fig. 1(a), when there is only one central cache in the entire
network, there will only be one first miss request for each
content. When the cache is close to the edge of the network,
shown in Fig. 1(b), due to the increase in the number of
caches, the requests are directed to the nearest caches, and the
first miss requests generated by each content will increase as
the number of corresponding caches increases. These missed

requests will lead to cache retrieve content from the original
server, resulting in high latency and network overhead. First
miss requests did not attract enough attention because it is
generally believed that there will be a large number of requests
for some contents in caches, and the first miss requests only
account for a small part of all requests. However, due to the
limitation of coverage, the difference of contents popularity
on edge caches is tiny, then the first miss requests in the edge
caches will account for a large proportion of the requests, thus
affecting the caches hit rate and causing a bad user experience.
We call this problem as the problem of first miss at edge cache.

In this paper, we model the problem of first miss at edge
cache and solve this problem by proactive pushing contents in
advance according to the similarity between caches. We first
analyzed that broadcasting contents can improve the cache hit
rate when the cache capacity is unlimited. Then the cache
is divided into several parts through the graph partition to
limit the scope of contents push. And finally, the Probability
Multicast Algorithm is proposed to adapt to the change of
similarity between caches. Through experiments, it is verified
that our proposed methods can effectively solve the first miss
problem and improve the cache hit rate. The contributions of
this paper are summarized below:

First, as far as we know, this is the first to demonstrate the
impact of first miss requests on the cache hit rate at the edge
of the network, and we verify the existence of this problem
through real datesets. Second, we propose Domain-constraint
Multicast Algorithm (DMA) to proactively push content and
reduce the number of first miss requests. Finally, we deal with
the problem caused by dynamic changes in similarity by a
Probabilistic Multicast Algorithm (PMA).

The rest of the paper is organized as follows: Section
II introduces related work. In Section III, we describes the
system model and introduce formally the caching problem.
Graph partition model and probability model are presented
in Section IV. Our evaluation results show in Section V. We
conclude our work in Section VI.

II. RELATED WORK

Researches on contents placement issues can also be
roughly classify into reactive caching and proactive caching
according to the order of content pushing and requests arrival.

Reactive caching: If the content is pushed after the request
arrives, called reactive caching. There are many related studies
in this category: [9] and [10] consider the cooperation mecha-
nism between caches and the overhead of transferring data to
make content placement decisions. Y. Hao etl. in [11] consider
the computing resource requirements of transcoding between
different content levels. S. Li etl. in [5] propose an online
content popularity prediction mechanism according to features
attached to requests. K. Poularakis etl. in [12] study the
problem of base stations handover caused by user mobility in
the edge cache scenario. [8] aggregates edge caches’ requests
for analysis and solve the small sample problem in caches.

Proactive caching, If the content is pushed before the
request arrives, it is called proactive caching. The neural

TABLE I
DESCRIPTION OF FREQUENTLY-USED NOTATIONS.

Notation Description
c content
l edge cache
xi,l,j whether the global ith request is the jth request on l
yl,j whether the content of the jth request on l is cached

pi,l,j
whether to push the content of the global ith request to l,
which is also the jth request on l.

∆k maximum number of contents store on the cache
µlc probability of l receives a request of c
puv probability of pushing content from cache u to cache v

network is used to predict the popularity of contents and
the availability of p2p nodes, and push popular contents to
cache nodes in advance to reduce the traffic of the original
server at the peak time [4]. [13] assumes the popularity
of the contents is known, the time is divided into multiple
cycles, and contents in caches are updated at the beginning of
each cycle. The author gives a joint decision of caching and
multicasting to minimize the expected energy cost. S.Shukla
etl. in [14] consider the cost of content caching duration. With
the popularity of contents is given, they propose a strategy of
contents placement and the duration of contents in caches to
optimize the cost caused by proactive caching and misses.

In this work, we also use multicast, but unlike the previous
works, we don’t know the popularity of contents, and the
multicast decision is not static. Besides, the above researches
do not consider the impact of first miss requests on edge
caches’ hit rate when caches gets closer to the users.

III. SYSTEM MODEL AND PROBLEM FORMULATION

For ease of reference, we list some notations in Table I

A. Motivation

Analysis of YouTube datasets [15] (which are campus
requests collections) drives our work. We call each content
server in the dataset as local cache, and the collection of
all requests as the global view. Although content servers
are not deployed at the edge of the network, they have a
large number of caches just like edge caches. We sort the
contents on the global / single cache in descending order of
popularity, and compare the similarity between the first 10%
contents sets. The similarity is based on Jaccard coefficient,
sim(Cl, Cg) =

|Cl∩Cg|
|Cl∪Cg| , where Cl is the collection of the

popular contents in cache l and Cg is the collection of the
global popular contents. As shown in the Fig. 2(a), the global
popular contents are not necessarily popular in local caches,
so it is invalid to make decisions in local caches according to
global popularity information. In Fig. 2(b), we calculate the
skewness of the global content popularity distribution and the
average skewness in the local caches. Skewness is a measure of
the asymmetry of the probability distribution of a real-valued

random variable about its mean, Skew = E

[(
X−µ
σ

)3]
,

where X is a random variable of content popularity on a
cache, µ is it mean, σ is it standard deviation. We can see

200 400 600 800 1000
Cache num

0.00025

0.00050

0.00075

0.00100

0.00125
Av

g
sim

ila
rit

y

(a) Similarity.

200 400 600 800 1000
Cache num

10

20

30

Sk
ew

ne
ss

global
local

(b) Skewness.

Fig. 2. YouTube Dataset analysis, the difference between request distribution
in local cache and global view.

that the popularity skewness on local caches is much lower,
which indicates that the requests received on local caches are
more arbitrary. Since requests are distributed in many caches,
the percentage of first miss requests increases a lot.

Definition 1 (first miss request): If a request first appears in
a cache, and there is no corresponding content in the cache,
then we call the request as first miss request.

We count the distribution of requests on local caches and
find that many contents on local caches were only requested
once, and the number of first miss requests in the dataset is
891,121, accounting for 66.9% of the total number of requests.
A large number of first miss requests seriously affect the hit
rate of local caches. If there is only one cache, the number of
first miss requests is 580,598, accounting for 39.7% of the total
number. It means that the number of first miss requests will
increase with the increase of the number of caches. Compared
with the scene of the dataset, MEC needs deploy more caches
at the edge of network, and the impact of first miss requests on
edge caches’ hit rate will be more serious. To prove this, we
generated two request sequence and mapped them to different
numbers of caches to simulate the requests received in caches.

We first use the SNM [6] to generate global requests se-
quence and then map these generated requests into each cache
according to [8] to simulate the requests sequence received by
edge caches in reality. In our experiment, we generated two
types of requests sequences. The first is Zipf based SNM,
like the practice in [8], we set the popularity of each content
according to Zipf law then generate 279,880 requests for 4000
contents. The second is YouTube based SNM, we get the
requests’ profile from the dataset [16] instead of generating it
follow Zipf law. This dataset crawls the statistical information
of 64,239 videos on YouTube, including video ID, age of
video, views, etc. We determine the first arrival time of each
content according to the age of the video and determine the
number of requests generated by this video according to the
views. We map the number of requests for each content to a
total of 10,000 caches according to [8], and then randomly
select 100 caches, count the number of requests for each
content to generate the real request sequence. We generated
403,587 requests with a total of 21,314 contents. After we
generate the global requests sequence, like the practice in [8],
we randomly set feature vector for content and cache, and then
map requests to different caches.

0 500 1000
Content id

0.000

0.005

0.010

0.015

Re
qu

es
ts

 ra
tio

Zipf based SNM
YouTube based SNM

(a) Popularity distribution.

20 40 60 80 100
Cache num

0.1

0.2

0.3

0.4

0.5

Fi
rs

t m
iss

 ra
tio

Zipf based SNM
YouTube based SNM

(b) Proportion of first miss requests.

Fig. 3. Analysis of the requests generated by Zipf/YouTube based SNM.

We analyze the distribution of the popularity of the requests.
The contents is sorted by popularity, and the id of the most
popular content is 0. As shown in Fig. 3(a), the requests fol-
lows the Zipf distribution. We map these contents to different
numbers of caches, as the number of caches increases, the
proportion of first misses requests is also increasing. As shown
in Fig. 3(b), when the number of caches increased from 10 to
100, the proportion of first miss requests to all requests has
tripled. This shows that the first miss problem will become
more serious as the number of caches increases.

B. System Model

Fig. 1(b) provides a system illustration. We consider a
mobile network consists of base stations (BSs), each BS is
endowed with a storage device that can satisfy the user’s
content request within its radio range. We denote the set of
edge caches by L = {l1, l2, ...}, contains |L| caches. In this
paper, we do not consider the overlap between BSs, assuming
that all users in a certain area will only connect to one BS. The
content provider has a set of contents C = {c1, c2, ...} that can
be requested by the end-users, contains |C| contents. Assum-
ing that contents are the same size, and each cache storage
is limited. There is an original server in the network, which
contains all contents, and can decide which content to push to
the cache. We denote set of requests by R = {req1, req2, . . .},
contains |R| requests, which come in sequence. Each request
in this set is represented by xi,l,j , which means that the ith

request in the global view is corresponding to the jth request
in cache l, and the content of the request is c(i), xi,l,j ∈ {0, 1}.

For each incoming request xi,l,j , the corresponding cache
l will first check the local cache. Formally, let yl,j ∈ {0, 1}
represent whether the content c(j) is cached in cache l when
the jth request of the edge cache arrives, yl,j = 1 means the
content c(j) is cached on l. If content c(j) is not found in the
corresponding cache, the cache retrieves it from the original
server and the original server will decide which edge caches to
push this content to, we define pi,l,j ∈ {0, 1} indicates whether
to push content c(i) to edge cache l when the ith request in the
global arrives, j means it is the jth request in cache l. When
the request is missed, a content push will be triggered. We use
|L| dimensional binary vector P i to represent the strategy of
pushing content when the ith request of global arrives, pi,l,j
is the lth dimension of the vector P i.

Original server

content

A

1

request CEdge
cache

B

1
1

domain

Original server

content

A

1

request CEdge
cache

B

1 1

p
domain

Original server

content

A

1

request CEdge
cache

B

1

Original server

content

A

1

request CEdge
cache

B

1
1

1

(a) Unicast

Original server

content

A

1

request CEdge
cache

B

1
1

domain

Original server

content

A

1

request CEdge
cache

B

1 1

p
domain

Original server

content

A

1

request CEdge
cache

B

1

Original server

content

A

1

request CEdge
cache

B

1
1

1

(b) Naive Broadcast

Original server

content

A

1

request CEdge
cache

B

1
1

domain

Original server

content

A

1

request CEdge
cache

B

1 1

p
domain

Original server

content

A

1

request CEdge
cache

B

1

Original server

content

A

1

request CEdge
cache

B

1
1

1

(c) Domain-constraint Multicast

Original server

content

A

1

request CEdge
cache

B

1
1

domain

Original server

content

A

1

request CEdge
cache

B

1 1

p
domain

Original server

content

A

1

request CEdge
cache

B

1

Original server

content

A

1

request CEdge
cache

B

1
1

1

(d) Probabilistic Multicast
Fig. 4. Content push strategies.

C. The Problem of Optimal Content Push Strategy

We define hl to represent the number of hits in cache l.
When the request reqi arrives, and the corresponding content
is cached on edge cache l, it is calculated as a hit.

hl =

|R|∑
i=1

xi,l,j · yl,j (1)

If a cache l may cache the content requested by reqi, the
content must be pushed before the request arrives.

yl,j ≤
∑
j
′
l<jl

pi,l,j′ (2)

Whether the content is still in the cache or not depends on the
size of the cache, the cache strategy and the order in which
requests arrive. In this paper, we will not discuss the cache
strategy. Assuming that the requested content c was recently
pushed at the j

′th request, so we define the ∆k:

yl,j = 1 if j − j
′
< ∆k (3)

Our objective is to find a policy P =
[
P 1, P 2...P k

]
that

maximizes the overall cache hit rate so that we can achieve
the highest cache efficiency.

max
P

|L|∑
l=1

hl

s.t. (1) , (2) and (3)

The timing of content push is not at the off-peak time, but after
each request miss. Constraint 2 implies that a content must be
cached on the server after being pushed. The ∆kl in constraint
3 mainly depends on the size of the cache, the method of
content replacement, and the dynamics of the content.

IV. SIMILARITY BASED CONTENT PUSH STRATEGY

In this section, we first introduce the Naive Broadcast Algo-
rithm (NBA), then use Domain-constraint Multicast Algorithm
(DMA) to limit the scope of contents pushing, and finally
improve the precision of our content push through Probabilistic
Multicast Algorithm (PMA).

A. Naive Broadcast Algorithm (NBA)

To solve the first miss problem in edge caches, relevant
contents must be proactive pushed to the corresponding caches
before requests arriving. The simplest push strategy is broad-
cast, unlike unicast shown in Fig. 4(a), as long as a request
misses on the cache, as shown in Fig. 4(b), the corresponding
content will be pushed to all caches.

Take Fig. 1(b) as an example, there are 3 caches in the
network. Contents marked in green have been requested 3
times globally and these requests evenly fall on 3 caches in a
short enough time interval. If we broadcast this content to all
caches in the first miss, then the subsequent 2 requests will
be hit. Conversely, if we only push the content to the cache
requesting this content, then all 3 requests will be missed.

Theorem 1: The variable Lc is used to represent the set of
caches that have received requests for content c, the storage
capacity on each cache is infinite. Let Nf denote the max
number of first miss requests that can be reduced. The expected
max number of first miss requests that can be reduced is
E(Nf) =

∑
c∈C

∑
l∈L(1 −

∑Vc

v=0(−µlc)Vc−v) − |C|. The
probability that a request for content c comes from cache l
is µlc, and

∑
l∈L µ

l
c = 1. Vc is the total number of requests

for content c.
Proof 1: The max number of first miss requests that can

be reduced by broadcasting is E(Nf) =
∑
c∈C (|Lc − 1|). It

means that only the first request that arrives globally will be
missed, and other caches that subsequently receive this request
will not missed. The probability that the content c on BS l
has been requested at least once is plc = 1 − (1 − ulc)

Vc ,
E (|Lc|) =

∑
l∈L p

l
c. The expected maximum number of first

miss requests that can be reduced is E(
∑
c∈C (|Lc|))−|C| =∑

c∈C
∑
l∈L

(
1−

(
1− ulc

)Vc
)
− |C|) =

∑
c∈C

∑
l∈L(1 −∑Vc

v=0(−µlc)Vc−v)− |C|. �
NBA can solve the first miss problem in the edge cache

when the cache size is unlimited. But in reality, the cache size
is limited, and the broadcast strategy will bring huge overhead.

B. Domain-constraint Multicast Algorithm (DMA)

The undifferentiated broadcast will cause many caches to
push some contents that will not be requested at all, which
wastes network bandwidth and storage resources on the BS.
Recent studies have pointed out that caching strategies can
benefit from the cache location information [8] [15] [17]. We
believe that the cache’s preference for content is related to the

area it covers, for example, a cache covering a company may
receive a request for the same content as a cache covering a
coffee shop [8].

We measure the similarity between caches according to the
requests received in the past. Through the different similarities
between caches, as shown in Fig. 4(c), we can divide caches
into different domains, when a miss occurs on cache A, the
original server will push the content to caches in the same
domain. We first divide the caches into two domains, construct
a graph G = (V,E), V = {l|l ∈ L}, E = {euv|u, v ∈ L},
each cache in L is regarded as a node in the graph. If the
same request exists in two caches, there is an edge between
the nodes corresponding to the two caches. The weight wuv on
each edge represents the similarity measure between node u
and node v. We use Weighted Jaccard similarity (also known
then as Ruzicka similarity) to measure the similarity between
two nodes. Assume that Ru = {V u1 , V u2 , ...} represents the
collection of requests received by cache lu, V lc means the num
of requests for content c on cache l, wuv =

∑
c∈C min(V

u
c ,V

v
c)∑

c∈C max(V
u
c ,V

v
c) .

We use Stoer-Wagner algorithm [18], with a computation
complexity of O

(
|V |3

)
, to solve this problem. The k-way

partitioning problem can be solved by recursive bisection
[19]. That is, we recursively divide each subgraph into two
subgraphs. After logk rounds of recursion, we finally get k
disjoint subgraphs. Thus, the problem of performing a k-way
partitioning is reduced to that of perform-ing a sequence of
bisections. A multilevel recursive bisection (MLRB) algorithm
has emerged as a highly effective method for computing a k-
way partitioning of a graph. The complexity of the MLRB for
a graph G = (V,E) is O (|E| logk).

C. Probabilistic Multicast Algorithm (PMA)

The change of contents popularity and the movement of the
crowd will lead to the change of similarity between caches.
However, due to the computational overhead, the domains can
not be updated frequently. That is, at the end of each cycle, the
similarity between caches may decrease significantly. To adapt
to these changes, we propose a Probability based Multicast
Algorithm to make the content push decision. We believe that,
in a short enough period time, the jaccard similarity between
the two caches does not change much, and the definition
of jaccard similarity has natural probabilistic interpretations:
Given two arbitrary cache u and v, their Jaccard’s similarity
is equal to the probability that a randomly chosen request of
u is also a request of v [20]. Let puv denote the probability
of pushing content between cache u and cache v as follows:

puv =

∑
c∈C min(ruc, rvc)∑
c∈C max(ruc, rvc)

, (4)

where ric represents the number of requests for content c re-
ceived by cache li in a short time. We calculate the probability
of pushing content for caches in the same domain, as shown in
Fig. 4(d), when a request is missed on cache A, we calculate
the push probability pAB of cache A and cache B which in
the same domain, and push content based on pAB .

V. EXPERIMENTAL RESULTS

In this section, we verify the performance of our proposed
caching strategies through simulation experiments based on
trajectory datasets. We compare six caching strategies: LRU,
NBA, DMA, PMA, age-based threshold strategy (ABT), and
ABT-prefetch strategy [8]. Due to space limitations, we did not
give a detailed introduction to the request sequence generated
and the parameters used in the comparison experiment. All the
information can be found in our public source code [21].

The choice of the domains’ number and the frequency
of domain updates need to be determined according to the
actual situation. Too few domains will lead to its performance
close to broadcast and waste a lot of resources while too
many domains will lead to its performance close to unicast.
Similarly, too fast domain update frequency will lead to a lot of
computing overhead, too slow will lead to a serious decline in
the similarity between caches. These two values are empirical,
as shown in Fig. 5, when the number of caches is 100 and the
cache size is 1000, we get the optimal number of domains is
8 and the optimal frequency of domain update is 4000.

Fig. 6 shows the hit rate of different caching strategies
under two requests sequences. As shown in Fig. 6(a), when the
cache size is small, the performance of ABT and ABT-prefetch
strategies is second only to that of PMA. This is because other
push strategies frequently switch in and out of contents when
the cache size is small, which leads to the drop in hit rate.
With the increase of cache size, the hit rate of ABT and ABT
prefetch strategies is lower than that of all the content push
strategies proposed by us. In Fig. 6(b), the performance of our
contents push strategies is always better than ABT and ABT-
prefetch. This is because there are a large number of requests
for each content in the data, resulting in a large number of
concurrent requests. This simulates some special situations,
such as hot news or hot games.

The proactive content push strategy also brings extra over-
head. We measure this overhead by the average number of
times that each request needs to transmit content. From Fig. 7,
we can see that the overhead of ABT, ABT prefetch, and LRU
policies is relatively low, because the frequency of content
push is very low. The cost of the push strategy based on
probability in Fig. 7(b) is greater than that in Fig. 7(a). This is
because the request concurrency in this dataset is high, which
leads to the high similarity between caches, and finally leads to
the high probability of content push. In fact, due to the use of
multicast technology, the real network overhead is not linear
with the average number of transmissions per request. Fig.
8 shows the accuracy of contents push. When the content is
pushed to a cache, if any user accesses the content before it is
discarded, we think that the content push is effective. From the
experimental results, we can see that compared with NBA and
DMA, the PMA has the more stringent requirements on push
content, which makes it more accurate than other strategies.
The ABT-prefetch cache strategy needs to detect very popular
content before it can start content push, so its push accuracy
is the highest one.

4 8 12 16 20
domains num

0.32

0.34

0.36

0.38

0.40

hi
t r

at
e

(a) Influence of domains num.

2 4 6 8 10
domain threshold (*1000)

0.42

0.44

0.46

hi
t r

at
e

(b) Influence of domain threshold.
Fig. 5. Influence of parameter selection.

5 10 15 20
cache size(*100)

0.4

0.6

0.8

hi
t r

at
e LRU

NBA
DMA
PMA
ABT
ABT-prefetch

(a) Zipf based SNM.

5 10 15 20
cache size(*10)

0.4

0.5

0.6

0.7

0.8

0.9

hi
t r

at
e

LRU
NBA
DMA
PMA
ABT
ABT-prefetch

(b) YouTube based SNM.

Fig. 6. Hit rate.

20 40 60 80 100
cache num

0

20

40

60

80

tra
ns

m
iss

io
ns

 p
er

 re
qu

es
t

LRU
NBA
DMA
PMA
ABT
ABT-Prefetch

(a) Zipf based SNM.

20 40 60 80 100
cache num

0

2

4

6

8
tra

ns
m

iss
io

ns
 p

er
 re

qu
es

t
LRU
NBA
DMA
PMA
ABT
ABT-Prefetch

(b) YouTube based SNM.

Fig. 7. Number of transmissions.

5 10 15 20
cache size(*100)

0.0

0.1

0.2

0.3

0.4

0.5

pr
ec

isi
on

NBA
DMA
PMA
ABT-Prefetch

(a) Zipf based SNM.

5 10 15 20
cache size(*10)

0.0

0.1

0.2

0.3

pr
ec

isi
on

NBA
DMA
PMA
ABT-Prefetch

(b) YouTube based SNM.

Fig. 8. Precision.

VI. CONCLUSIONS

Based on the analysis of the dataset, this paper proposes for
the first time that the first miss requests under the edge cache
becomes the key factor affecting the overall hit rate of the edge
cache. According to the similarity between caches rather than
the popularity of content, we propose NBA, DMA and PMA.
In the experiment, we use the real dataset and SNM to simulate
the requests received by the edge cache, and verify that our
proposed content push strategy can effectively solve the first
miss problem in the edge cache under acceptable overhead,
and improve the hit rate in the edge caches.

VII. ACKNOWLEDGMENT

This work is supported by the National Natural Sci-
ence Foundation of China under Grant No. 62020106013,
61572113; the Science and Technology Achievements Trans-
formation Demonstration Project of Sichuan Province of
China No. 2018CC0094; and the Fundamental Research
Funds for the Central Universities No. ZYGX2019J075,
2082604401036.

REFERENCES

[1] J. Yao, T. Han, and N. Ansari, “On mobile edge caching,” IEEE
Communications Surveys & Tutorials, vol. 21, no. 3, pp. 2525–2553,
2019.

[2] J. Wu, C. Yang, and B. Chen, “Proactive caching and bandwidth
allocation in heterogenous networks by learning from historical numbers
of requests,” IEEE Transactions on Communications, 2020.

[3] C. Yang, Y. Yao, Z. Chen, and B. Xia, “Analysis on cache-enabled
wireless heterogeneous networks,” IEEE Transactions on Wireless Com-
munications, vol. 15, no. 1, pp. 131–145, 2015.

[4] Y. Zhang, C. Gao, Y. Guo, K. Bian, X. Jin, Z. Yang, L. Song,
J. Cheng, H. Tuo, and X. Li, “Proactive video push for optimizing
bandwidth consumption in hybrid cdn-p2p vod systems,” in Proc. of
IEEE INFOCOM, 2018.

[5] S. Li, J. Xu, M. Van Der Schaar, and W. Li, “Popularity-driven content
caching,” in Proc. of IEEE INFOCOM, 2016.

[6] S. Traverso, M. Ahmed, M. Garetto, P. Giaccone, E. Leonardi, and
S. Niccolini, “Temporal locality in today’s content caching: why it mat-
ters and how to model it,” ACM SIGCOMM Computer Communication
Review, vol. 43, no. 5, pp. 5–12, 2013.

[7] G. S. Paschos, A. Destounis, L. Vigneri, and G. Iosifidis, “Learning to
cache with no regrets,” in Proc. of IEEE INFOCOM, 2019.

[8] M. Leconte, G. Paschos, L. Gkatzikis, M. Draief, S. Vassilaras, and
S. Chouvardas, “Placing dynamic content in caches with small popula-
tion,” in Proc. of IEEE INFOCOM, 2016.

[9] S. Borst, V. Gupta, and A. Walid, “Distributed caching algorithms for
content distribution networks,” in Proc. of IEEE INFOCOM, 2010.

[10] A. Gharaibeh, A. Khreishah, B. Ji, and M. Ayyash, “A provably
efficient online collaborative caching algorithm for multicell-coordinated
systems,” IEEE Transactions on Mobile Computing, vol. 15, no. 8, pp.
1863–1876, 2015.

[11] Y. Hao, L. Hu, Y. Qian, and M. Chen, “Profit maximization for video
caching and processing in edge cloud,” IEEE Journal on Selected Areas
in Communications, vol. 37, no. 7, pp. 1632–1641, 2019.

[12] K. Poularakis and L. Tassiulas, “Code, cache and deliver on the move:
A novel caching paradigm in hyper-dense small-cell networks,” IEEE
Transactions on Mobile Computing, vol. 16, no. 3, pp. 675–687, 2016.

[13] K. Poularakis, G. Iosifidis, V. Sourlas, and L. Tassiulas, “Exploiting
caching and multicast for 5g wireless networks,” IEEE Transactions on
Wireless Communications, vol. 15, no. 4, pp. 2995–3007, 2016.

[14] S. Shukla and A. A. Abouzeid, “Proactive retention aware caching,” in
Proc. of IEEE INFOCOM, 2017.

[15] M. Zink, “Watch global, cache local: Youtube network traces at a campus
network-measurements and implications,” IEEE Multimedia Computing
and Networking, 2018.

[16] X. Cheng, C. Dale, and J. Liu, “Dataset for statistics and social network
of youtube videos,” Available: http://netsg. cs. sfu. ca/youtubedata, 2008.

[17] K. Huguenin, A.-M. Kermarrec, K. Kloudas, and F. Taı̈ani, “Content
and geographical locality in user-generated content sharing systems,” in
Proc. of the 22nd international workshop on Network and Operating
System Support for Digital Audio and Video, 2012.

[18] M. Stoer and F. Wagner, “A simple min-cut algorithm,” Journal of the
ACM (JACM), vol. 44, no. 4, pp. 585–591, 1997.

[19] G. Karypis and V. Kumar, “Multilevelk-way partitioning scheme for
irregular graphs,” Journal of Parallel and Distributed computing, vol. 48,
no. 1, pp. 96–129, 1998.

[20] X. Wang, W. Lu, M. Ester, C. Wang, and C. Chen, “Social recommen-
dation with strong and weak ties,” in Proc. of ACM CIKM, 2016.

[21] Y. L. Chao Song, “Publicly available code,” Available:
https://github.com/YanpengLuo/Towards-Problem-of-First-Miss-under-
Mobile-EdgeCaching, 2021.

