
IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 1

Auction-based VM Allocation for Deadline-
Sensitive Tasks in Distributed Edge Cloud

Guoju Gao, Mingjun Xiao, IEEE Member, Jie Wu, IEEE Fellow,
He Huang, IEEE Member , Shengqi Wang, and Guoliang Chen

Abstract—Edge cloud computing is a new paradigm in which the computation and storage services of remote cloud data centers are
moved to Edge Cloud Nodes (ECNs) in network edges. Compared to traditional cloud data centers, ECNs are geographically close to
mobile users so the communication latency is significantly reduced. In this paper, we study the problem of allocating Virtual Machine
(VM) resources in geo-distributed ECNs to mobile users by using the auction theory. First, we treat mobile users and ECNs as the
buyers and sellers of the VM resource auction, respectively. Then, we model the VM resource allocation problem as an n-to-one
weighted bipartite graph matching problem with 0-1 knapsack constraints. Since this problem is NP-hard, we design a greedy
approximation algorithm to determine the winners of the auction, based on which we propose a truthful Auction-based VM resource
Allocation (AVA) mechanism to solve the problem. Moreover, we prove that the AVA mechanism not only achieves an approximately
optimal solution for winner selection, but also has the properties of truthfulness, individual rationality, and computational efficiency.
Finally, we conduct extensive simulations on real traces to verify the significant performances of the proposed AVA mechanism.

Index Terms—Auction mechanism, edge cloud, mobile cloud computing, virtual machine allocation.

F

1 INTRODUCTION

R ECENT years have witnessed the proliferation of mo-
bile cloud computing, through which mobile users

can migrate various applications from their smart devices
to remote cloud data centers such as Amazon EC2 [4],
Microsoft Azure [18], and so on. By using the resources
(such as computation, storage, etc.) in clouds, these smart
devices can break through resource limitations to com-
plete complicated applications, significantly enriching their
functionality. However, since mobile users are usually far
away from remote cloud data centers, migrating applica-
tions will inevitably lead to a long communication delay
as well as a heavy network load, severely downgrading
mobile users’ experience. To mitigate such negative influ-
ences, a new mobile cloud computing paradigm, called edge
cloud [8, 13, 21, 24, 25], also known as fog computing or
cloudlets [14, 15, 17, 32], is proposed. In the edge cloud
paradigm, a number of small-scale computing and storage
servers are placed at network edges to form some Edge

• G. Gao, M. Xiao, S. Wang, and G. Chen are with the School of Computer
Science and Technology / Suzhou Institute for Advanced Study, Univer-
sity of Science and Technology of China, Hefei, P. R. China.
Correspondence to: xiaomj@ustc.edu.cn

• J. Wu is with the Department of Computer and Information Sciences,
Temple University, 1805 N. Broad Street, Philadelphia, PA 19122.
E-mail: jiewu@temple.edu

• H. Huang is with the School of Computer Science and Technology,
Soochow University, Suzhou, China.
E-mail: huangh@suda.edu.cn

This research was supported in part by the National Natural Science Founda-
tion of China (NSFC) (Grant No. 61872330, 61572457, 61379132, U1709217,
61303206, 61572342, 61502261), NSF grants CNS 1757533, CNS 1629746,
CNS 1564128, CNS 1449860, CNS 1461932, CNS 1460971, IIP 1439672,
the NSF of Jiangsu Province in China (Grant No. BK20131174, BK2009150),
and Anhui Initiative in Quantum Information Technologies (Grant No.
AHY150300). Additionally, the support provided by China Scholarship Coun-
cil (CSC) during a visit of ’Guoju Gao’ to Temple University (Grant CSC No.
201806340014) is acknowledged.

Cloud Nodes (ECNs). Mobile users can directly access n-
earby ECNs so that the latency and network load can be
reduced significantly.

A typical Mobile Edge Cloud (MEC) framework is com-
posed of lots of mobile users, some ECNs, and a Centralized
Cloud (CC). The ECNs, which are deployed by some cloud
service providers, are distributed at network edges. The
mobile users can connect to the ECNs via a wireless local
area network [2, 11, 17], (also known as radio access net-
work [2, 3, 31], wireless metropolitan area network [14, 24],
etc.), while these ECNs connect to the remote CC through
core network [2, 8] (also known as backbone/backhaul
network [11, 13, 25], wide area network [8, 17, 31], etc.),
as shown in Fig. 1. Compared to the remote CC, ECNs
are geographically distributed and small-scale. Some mobile
users will first send cloud service requests to an ECN. Then,
if the ECN cannot provide cloud service for these mobile
users, it may upload part of the requests to the CC via
core network, which would inevitably incur a very long
transmission delay.

Virtual Machine (VM) resource allocation is one of the
most important issues in edge clouds [12, 13, 15, 22, 30].
Consider that a lot of mobile users have some cloud com-
puting applications (i.e., tasks) that need to be dealt with.
However, these users lack sufficient storage and computing
resources. Thus, they need to rent VM resources from the
ECNs. In order to ensure the quality of the cloud computing
applications, the transmission delay of each task must be no
larger than a deadline (called deadline constraints). Mean-
while, the ECNs would complete the allocated tasks only
when the total VM resources requested by mobile users are
no larger than the VM resource capacity of the ECNs (called
capacity constraints). However, if the capacity constraint of
an ECN cannot be satisfied, the ECN may upload part of
the allocated tasks to the CC under the deadline constraints.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 2

Mobile

Users

Edge Cloud

Nodes

Core Network

Centralized Cloud

Fig. 1. An illustration of the mobile edge cloud computing framework.

In this paper, we focus on the VM resource allocation
for deadline-sensitive cloud computing tasks in distribut-
ed edge cloud, attempting to avoid overwork and wasted
resource in any of ECNs. Moreover, due to the competition
for VM resources between users, we study the problem of
allocating VM resources in ECNs to mobile users by using
auction theory. Actually, it is very challenging to design the
auction-based VM resource allocation mechanism in MEC.
We summarize three major challenges.

Firstly, different from the traditional two-layer cloud
structure, the mobile edge cloud is actually a three-layer
structure, as shown in Fig. 1. When the requested VM
resources exceed the capacity constraints of ECNs, the ECNs
can upload part of the allocated tasks to the CC. That is to
say, the CC can be seen as the ultimate resource pool for all
ECNs. Thus, the VM resource allocation among distributed
ECNs is a special multiple 0-1 knapsack problem. Especial-
ly, when involving the heterogeneous deadline constraints,
such VM resource allocation problem in MEC is nontrivial.

Secondly, the bandwidths of ECNs are heterogeneous.
Here, the bandwidths of an ECN include the bandwidth
associated with the CC and the bandwidth allocated to
mobile users. This indicates that the transmission delays of
uploading these deadline-sensitive tasks to different ECNs
are heterogeneous. Also, if a task is uploaded from an ECN
to the CC, the transmission delay contains two parts: the
time of transmitting the task from users to an ECN and
the time of uploading the task from the ECN to the CC.
Therefore, the transmission delay of a task is dynamic,
which depends on the specific allocation decisions.

Thirdly, due to the heterogeneous resource configura-
tion of ECNs including VM resource capacity, bandwidth,
communication cost, etc, mobile users might have different
preferences for each ECN. Thus, many users might compete
for the limited resources in the same ECN. The users who
lose the competition have to seek alternative resources from
other ECNs, which results in competition for resources in
other ECNs. Additionally, to ensure that each mobile user
will not manipulate its bids (i.e., truthfulness) and each
user’s payoff is nonnegative (i.e., individual rationality), a
proper auction mechanism for such VM resource competi-
tion across multiple geo-distributed ECNs is needed.

In fact, there have been some works devoted to the
resource allocation and workload scheduling in edge clouds.
For example, Tan et al. [24] proposed the OnDisc algorithm
to dispatch and schedule jobs between ECNs and cloud
data centers, so as to minimize the total response time;

Jia et al. [14] investigated how to schedule tasks between
multiple cloudlets, so as to minimize the maximum average
response time. However, most of these works study the
resource allocation problem in edge clouds mainly from
the viewpoint of workload scheduling without considering
the competition for resource requests from an economic
point of view. Among the existing works, only a few stud-
ies [15, 22, 30] are close to our problem to a certain extent.
More specifically, [15] proposes two truthful mechanisms to
coordinate the resource auction between users and ECNs.
However, this work simply assumes that all ECN resources
are homogeneous, and it allows each ECN to serve only one
request, which does not apply to real application scenarios.
In contrast, [30] studies the problem of stimulating mobile
device clouds to compete for mobile users’ computation
tasks. Essentially, it is a crowdsourcing-based task allocation
problem, different from the resource allocation in ECNs.
[22] designs an online auction mechanism for virtual cluster
provisioning in geo-distributed clouds, which is modeled as
an online combinational knapsack problem. This also differs
from our VM allocation problem in distributed ECNs.

In this paper, we propose an Auction-based VM resource
Allocation (AVA) mechanism to solve the problem of mo-
bile users with deadline-sensitive tasks competing for VM
resources in heterogeneous geo-distributed ECNs. In the
AVA mechanism, mobile users and ECNs (including CC)
are seen as the buyers and sellers of VM resource auction,
respectively. The capacities of VM resources in ECNs are
seen as heterogeneous knapsacks. Then, the VM resource
allocation is modeled as an n-to-one weighted bipartite graph
matching problem with 0-1 knapsack constraints, unlike existing
cloud auction problems such as [22, 23, 34]. Since the prob-
lem is NP-hard, we adopt a greedy strategy to determine
the winners of the auction so that the AVA mechanism can
achieve a near-optimal social welfare performance.

More specifically, our major contributions are summa-
rized as follows:

• We formalize the competitive VM resource allocation
problem for deadline-sensitive tasks in a three-layer
edge cloud structure and propose the Auction-based
VM resource Allocation (AVA) mechanism, which
mainly consists of a greedy winning bid selection al-
gorithm and a payment determination algorithm.

• We prove that the winning bid selection problem of
AVA is NP-hard. We first remove the deadline con-
straints, and then transform the three-layer edge cloud
structure into a two-layer one. Based on this, we pro-
pose a greedy winning bid selection algorithm and
further analyze its approximation ratio.

• We also design a truthful payment determination algo-
rithm. Then, we prove that the AVA mechanism has the
properties of truthfulness, individual rationality, and
computational efficiency.

• We conduct extensive simulations on real traces to
evaluate the performances of the proposed AVA mech-
anism. The results show that AVA not only achieves
better social welfare performances than the compared
algorithms, but also guarantees truthfulness, individual
rationality, and computational efficiency.

The remainder of the paper is organized as follows. We first

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 3

describe the auction model and problem formulation in Sec-
tion 2. Then, we present the design of our mechanism and
the theoretical analysis in Sections 3 and 4, respectively. In
Section 5, we evaluate the performances of our mechanism
through extensive simulations. After reviewing the related
works in Section 6, we conclude the paper in Section 7.

2 MODEL & PROBLEM FORMULATION
2.1 Model

Consider that some cloud service providers have de-
ployed many ECNs and are willing to sell the extra VM
resources in their ECNs. These ECNs connect to the remote
CC via core network. On the other hand, a lot of mobile
users wish to execute some deadline-sensitive cloud com-
puting applications, but they cannot afford to deploy their
own ECNs. In order to address such a problem with a
low cost, these users can rent the VM resources of ECNs
from cloud service providers. Different from the traditional
distributed cloud computing scenario, ECNs can upload
part of the allocated tasks to the CC if the required VM
resources of tasks exceed the capacity of ECNs. However,
this will inevitably incur a long transmission delay.

In this paper, we design a mechanism to support the
trade of VM resources between cloud service providers and
mobile users. In order to successfully run this mechanism,
we first build a platform, which also acts as the auction-
eer. The platform continuously receives deadline-sensitive
computing requests from mobile users and collects ECNs’
state information from the cloud service providers. Based
on this, the platform makes the decision to allocate the
deadline-sensitive computing tasks via auction. The auction
is conducted periodically. The ECNs and mobile users are
seen as the VM resource sellers and buyers, respectively.
If a mobile user applies for VM resources that cover more
than one auction cycle, it will submit multiple requests.
Additionally, since the allocated VM resources will be solely
occupied by the winning mobile users in each auction cycle,
the execution time of a cloud computing task in the ECNs
and in the centralized cloud is identical. Thus, we only
consider the transmission delay in this paper.

Since the VM resource capacity of each ECN is limited,
multiple mobile users might compete for the same ECN
simultaneously. If a user does not win the most preferred
ECN during the auction, it will be assigned to other ECNs.
In this way, as many mobile users’ requests as possible can
be met. If the required VM resources of the allocated tasks
exceed the capacity of an ECN, this ECN might upload
part of the tasks to the CC, while guaranteeing that the
transmission delay of each task is less than its deadline.

More specifically, the interactions between mobile users
and ECNs via the platform in each round of auction, which
is illustrated in Fig. 2, are presented as follows:

1) When a mobile user wishes to rent VM resources
to run its deadline-sensitive cloud computing applications,
it first generates a request and then submits the request
to the platform. The request is composed of the user’s
maximum tolerable latency (i.e., deadline), the amount of
required VM resources and the amount of input data. We
use ri={Ti, Ai, Ii} to denote the i-th mobile user’s request,
where Ti, Ai and Ii mean the deadline, the total VM

Bids

Run applications

and pay rewards

Requests

State

information

Publicize

ECNs

Assignment

results

Assignment

results

Ru

rmation results

Cloud Platform

ECNs

Users

Fig. 2. The auction model for distributed edge cloud.

resources and the amount of input data. Moreover, the set
of all requests is denoted by R.

2) The platform will periodically collect the state in-
formation of each ECN, and then publicize it to the mo-
bile users who submit requests. The state information
includes several main parameters: VM resource capacity,
bandwidths, unit cost of renting VM resources and unit
cost of transmitting data to the CC. Here, the bandwidths
of an ECN contain the bandwidth linked with the CC
and the bandwidth associated with mobile users. We use
sj={Lj , c

v
j , c

t
j , b

↑
j , b

↓
j} to denote the state information of the

j-th ECN where Lj denotes the VM resource capacity of
ECN sj . cvj and ctj denote the unit cost of VM resources and
the unit cost of transmitting data to the CC, respectively.
b↑j means the bandwidth between sj and the CC, while b↓j
indicates the bandwidth between sj and the mobile users.
The set of all ECNs is denoted by S . Furthermore, we let cv0
denote the unit cost of VM resources in the CC. Here, cv0 is
much less than cvj (for ∀sj ∈S).

3) Then, the mobile user values differently to the ECNs
according to the state information. At the same time, the
mobile user determines a bid for each ECN. For each request
ri, we use bij and vij to denote the bid and valuation of i-th
mobile user to the j-th ECN, respectively. The set of all bids
is denoted by B. The mobile users will send their bids to the
platform.

Remarks: bij here is the reward that the i-th user claims to
pay for renting the VM resources on the j-th ECN (i.e., sj),
while vij is the true valuation that the i-th user evaluates if
it runs its application on sj . The valuation vij is actually
known to nobody except ri itself. The value bij is not
necessarily equal to vij , since the user might manipulate the
claimed reward. Such strategic manipulation might cause
the platform and the ECNs to get less reward. Thus, the
whole mechanism needs to ensure that each mobile user
will not manipulate its bids, i.e., truthfulness.

4) Based on the received bids and requests from mobile
users, the platform determines the winners of the auction,
makes the scheduling decision for the winners, and computes the
corresponding payments.

Remarks: Each request will be assigned to at most one
ECN, and each ECN can serve multiple requests under the
capacity and deadline constraints. The scheduling decision
for the winning bid means that the winning task will be first
uploaded to an ECN, and then the ECN either completes the
task by itself or uploads the task to the CC.

5) Mobile users upload the input data to the ECNs
to run their cloud computing applications, and then pay

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 4

the corresponding rewards. According to the scheduling
decisions for winning bids, ECNs decide to upload some
tasks to the CC and pay the CC.

In this paper, we let a request correspond to only one
deadline-sensitive cloud computing application. For sim-
plicity, we suppose that each mobile user only submits one
request in each round of auction. Actually, if a user wants
to submit more than one request for multiple computing
applications, we can use multiple virtual users, each of
whom has only one request, to replace this mobile user.
Additionally, we use dij to denote the transmission delay
between the request ri and the ECN sj , which is calculated
as follows:

dij =

Ii

b↓j
; (ri → sj)

Ii

b↓j
+

Ii

b↑j
; (ri → sj → CC)

(1)

where ri→sj means the request ri is allocated to the ECN sj
and is completed by sj itself, while ri→ sj →CC indicates
that the request ri is allocated to sj and then is uploaded
to the CC by sj . Moreover, we suppose that Ii here is the
amount of the input data plus the output data. That is, dij
here has included the transmission delay of downloading
output data from ECNs or CC to mobile users.

2.2 Problem Formulation
The above auction model involves two main problems:

the Winning Bid Selection (WBS) problem and the Payment
Determination (PD) problem.

Considering the set of requests, R, the set of ECNs, S
and the set of all bids, B, we formalize the WBS problem
as follows. First, we let Φ denote a solution to the WBS
problem, called the winning bid set, which is composed of
the bids that win the auction. Moreover, we use ΦE and
ΦC to denote the winning bid scheduling solution. A bid
bij ∈ ΦE means that the request ri will be assigned to the
ECN sj and be completed by sj itself (i.e., ri → sj), while
bij ∈ΦC indicates that ri will be uploaded to the CC through
sj (i.e., ri → sj →CC). Moreover, due to ΦE∩ΦC = ϕ, we
get Φ=ΦE∪ΦC .

Second, we give the definition of social welfare, which is
the optimization objective of the WBS problem.

Definition 1. [Social Welfare] The social welfare is the total
valuations of the winning bids minus the total costs, i.e.,∑

bij∈ΦE (vij−Ai ·cvj)+
∑

bij∈ΦC

(
vij−Ai ·(ctj+cv0)

)
, where

Ai · cvj denotes the cost of sj conducting request ri while
Ai · (ctj+cv0) means the cost of transmitting ri to the CC
and the CC conducting ri.

Based on this, we formalize the WBS problem as follows.

max
∑

bij∈ΦE

(vij−Ai · cvj)+
∑

bij∈ΦC

(
vij−Ai · (ctj+cv0)

)
(2)

s.t. ΦE ∩ ΦC = ϕ, (3)
ΦE ∪ ΦC = Φ ⊆ B (4)∑
j:bij∈Φ 1 ≤ 1, ∀ri ∈ R (5)∑

i:bij∈ΦE Ai ≤ Lj , ∀sj ∈ S (6)
dij ≤ Ti, ∀ri ∈ R (7)

Remarks: Here, Eq. 3 means that a request cannot be
completed by ECNs and the CC simultaneously; Eq. 4
indicates that a solution to the WBS problem, which is a
subset of the bid set, consists of two winning bid scheduling
sets (i.e., ΦE and ΦC); Eq. 5 points out that each request
is assigned to at most one ECN; Eq. 6 shows that the VM
resource capacity of each ECN should be satisfied; Eq. 7
denotes that the transmission delay of each request should
be less than its deadline.

Moreover, since our auction mechanism is truthful, we
can use each bid to replace the corresponding true valuation,
i.e., vij = bij , in Eq. 2. We will prove the truthfulness in
Section 4 to ensure the correctness of vij = bij . Thus, the
optimization objective of the WBS problem is equivalent to
maximizing

∑
bij∈ΦE (bij−Ai ·cvj)+

∑
bij∈ΦC

(
bij−Ai ·(ctj+cv0)

)
.

Additionally, we can assume bij−Ai · cvj ≥ 0 and bij−Ai ·
(ctj+cv0)≥ 0 for ∀ri ∈R and ∀sj ∈ S . Actually, if a bid bij
cannot cover the cost Ai · cvj or Ai · (ctj+cv0), the platform
will directly delete the bid.

Next, the PD problem is to determine the payment for
each winning bid so that the whole auction model satisfies
the truthfulness and individual rationality, which are de-
fined as follows:
Definition 2. [Truthfulness] [10, 20, 30, 35, 38] For each

winning bid bij , we let pij(bij) denote the corresponding
payment determined by the payment computation al-
gorithm of an auction mechanism. Then, the i-th user’s
payoffs for the truthful bid and the untruthful bid are
vij−pij(vij) and vij−pij(bij), respectively. The truthful
mechanism means that

vij−pij(vij) ≥ vij−pij(bij). (8)

The truthfulness of the auction mechanism can ensure
that each user reports its true valuation, since an untruthful
bid will lead to a worse payoff.
Definition 3. [Individual Rationality] [15, 16, 23, 36, 37] In

order to guarantee that each winning mobile user can
receive a nonnegative payoff, the payment of one mobile
user should be no more than its corresponding valuation,
that is, vij ≥ pij(bij), ∀ri ∈ R and ∀sj ∈ S .

Here, each mobile user’s true valuation must cover its
corresponding payment. Otherwise, it is not motivated to
participate in the edge cloud computing.

In addition, we define the computational efficiency of an
auction mechanism as follows.
Definition 4. [Computational Efficiency] [7, 19, 34, 40, 41] An

auction mechanism has the property of computational
efficiency, if it can be conducted in polynomial time.

Since an auction cycle is not large, the winning bid set
and the corresponding payment must be output in near-real
time. In reality, an algorithm with computational efficiency
is more important than an optimal algorithm with a high
computational complexity.

For ease of reference, we summarize the commonly used
notations throughout the paper in Table 1.

3 DESIGN OF THE AVA MECHANISM
In this section, we propose an Auction-based VM re-

source Allocation (AVA) mechanism for deadline-sensitive

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 5

TABLE 1
Description of major notations.

Notations Description
ECN and CC the abbreviations of Edge Cloud Node and Centralized Cloud, respectively.
i and j (i.e., ri and sj) the indexes for users (i.e., requests) and ECNs, respectively.
ri={Ti, Ai, Ii} the deadline, the required VM resource and the amount of input data of the i-th request.
sj ={Lj , c

v
j , c

t
j , b

↑
j , b

↓
j} the capacity, the unit cost of renting VM resources, the unit cost of transmitting data to the CC, the

bandwidth linked with the CC, and the bandwidth associated with users of the j-th ECN.
bij , vij the claimed bid and true valuation of ri for sj , respectively.
R, S and B the sets of all requests, all ECNs and all bids, respectively.
cv0 the unit cost of renting VM resources in the CC.
dij the transmission delay between ri and sj .
ri→sj ri will be allocated to sj and be completed by sj itself.
ri→sj→CC ri will be uploaded to the CC through sj and be completed by the CC.
Φ a solution to the WBS problem (a winning bid set).
ΦE and ΦC the winning bid scheduling solution: bij ∈ΦE means ri→sj , while bij ∈ΦC indicates ri→sj →CC.
S and B the sets of virtual ECNs and virtual bids, respectively.
Ŝ and B̂ the sets of ECNs and bids including virtual ECNs and bids (i.e., Ŝ=S∪S and B̂=B∪B), respectively.
pij(bij) the payment of ri for sj based on the bid bij .
G, E and ⟨ri, sj⟩ a bipartite graph, the set of edges and the index for an edge, respectively.

computing tasks in geo-distributed edge clouds. The AVA
mechanism mainly consists of a Winning Bid Selection (WB-
S) algorithm and a Payment Determination (PD) algorithm.
We first analyze the NP-hardness of the WBS problem, and
then, we design a greedy winning bid selection algorithm
and a truthful payment determination algorithm to solve
the WBS and PD problems, respectively.

3.1 Problem Hardness Analysis
First, we prove that the WBS problem cannot be solved

in polynomial time unless P = NP . More specifically, we
have the following theorem:
Theorem 1. The WBS problem is NP-hard.

Proof : We first consider a special case of the WBS prob-
lem, where the ECNs cannot upload tasks to the CC, the
number of ECNs is equal to 1, and at the same time we let
Ti≥di1= Ii/b

↓
1 for ∀ri∈R. Then, the special WBS problem

is formalized as “maximize:
∑

bi1∈ΦE (vi1−Ai · cv1), subject
to:

∑
i:bi1∈ΦE Ai≤L1 for ∀ri∈R, ΦE⊆B.”

Now, we introduce the trivial 0-1 knapsack problem [28]:
“maximize:

∑n
i=1 wi ·xi, subject to:

∑n
i=1 vi ·xi ≤ C, xi ∈

{0, 1}.” Here, wi and vi denote the weight and volume of
the i-th item, and C means the capacity of the knapsack.

By mapping C, wi and vi in the trivial 0-1 knapsack
problem to L1, vi1−Ai·cv1 and Ai in the special WBS problem,
we get the two problems to be equivalent. That is to say, the
special case of the WBS problem is a trivial 0-1 knapsack
problem, which is NP-hard. Thus, the more general WBS
problem is at least NP-hard. �

3.2 Winning Bid Selection: Basic Solution
The WBS problem is how to select the winning bid set,

so that we can maximize the social welfare, while ensuring
that the deadline constraints of requests and the capacity
constraints of ECNs can be satisfied simultaneously. Since
the WBS problem has both deadline constraints and capacity
constraints, we divide our solution into two phases. We take
the deadline and capacity constraints into consideration in
the two phases, respectively.

First phase: We focus on removing the deadline con-
straints of requests. First, we use d1ij = Ii/b

↓
j and d2ij =

Ii/b
↓
j+Ii/b

↑
j to denote the transmission delay of uploading

ri to sj and the transmission delay of uploading ri to the CC
through sj , respectively. Apparently, we have d2ij ≥ d1ij . For
simplicity, we call d1ij and d2ij the good and bad transmission
delay, respectively. Second, according to the relationships of
Ti, d1ij and d2ij , we update the bid set B and the ECN set
S . That is, we will remove the bids which cannot satisfy the
deadline constraints, and add some virtual bids and ECNs if
the deadline is larger than the bad transmission delay. More
specifically, we have the three following cases:

• Case 1: if the deadline of ri is less than the good
transmission delay, i.e., Ti<d1ij , we will directly delete
the bid bij from the bid set B. This is because that the
bid bij cannot satisfy the deadline constraint.

• Case 2: if Ti is less than the bad transmission delay but
no less than the good transmission delay, i.e., d1ij≤Ti<
d2ij , we will take no action.

• Case 3: if Ti is no less than the bad transmission
delay, i.e., Ti ≥ d2ij , we will create a virtual ECN sj∗
and a virtual bid bij∗, where sj∗ = {Lj∗ = Ai, c

v
j∗ =

ctj+cv0, c
t
j∗=b↑j∗=b↓j∗=0} and the value of bij∗ is equal

to that of bij . Here, the procedure of generating virtual
ECNs and bids means removing the CC from the edge
cloud computing scenario and transforming a three-
layer edge cloud structure into a two-layer structure.
We use S and B to denote the virtual ECN and bid sets,
respectively. Then, we will add the virtual ECN sj∗ and
the virtual bid bij∗ into S and B, respectively.

Second phase: We concentrate on the WBS problem with
the capacity constraints. We first model the winning bid
selection as an n-to-one weighted bipartite graph matching
problem with 0-1 knapsack constraints. Since the problem is
NP-hard due to the capacity constraints, we adopt a greedy
strategy to determine a maximum matching, which has the
approximately maximum weight in total. For simplicity, we
let Ŝ and B̂ denote the updated ECN and bid sets which
contain the virtual ECNs and bids, respectively. That is,
Ŝ = S ∪ S and B̂ = B ∪ B. Then, the winning bids are
determined as follows.

First, we construct the weighted bipartite graph with
capacity constraints, denoted as G={R, Ŝ, E : B̂}, where R

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 6

Algorithm 1 Preprocessing Algorithm
Require: R, S, B, cv0 .
Ensure: S, B, Ŝ , and B̂.

1: Initialize S = B = ϕ;
2: for ri ∈ R do
3: for sj ∈ S do
4: d1ij = Ii/b

↓
j , d2ij = Ii/b

↓
j + Ii/b

↑
j ;

5: if Ti < d1ij then
6: Remove bij from B, i.e., B = B − {bij};
7: else if d1ij ≤ Ti < d2ij then
8: Continue; //Case 2;
9: else if d2ij ≤ Ti then

10: Generate a virtual ECN sj∗, S = S+ {sj∗};
//sj∗={Lj∗=Ai, c

v
j∗=ctj+cv0, c

t
j∗=b↑j∗=b↓j∗=0};

11: Generate a virtual bid bij∗, B = B+ {bij∗};
12: Ŝ = S∪S and B̂ = B∪B;
13: return S, B, Ŝ and B̂;

and Ŝ are two separate vertex sets, and E refers to the edge
set between R and Ŝ . We let ⟨ri, sj⟩ ∈ E denote the edge
between ri and sj for convenience. Here, each bid bij ∈ B̂
corresponds to an edge ⟨ri, sj⟩. For each vertex ri ∈R, the
required VM resources Ai is seen as the volume of item in
the trivial 0-1 knapsack, while for each vertex sj ∈Ŝ , the VM
resource capacity Lj is seen as the capacity of the knapsack.
Moreover, each edge ⟨ri, sj⟩ corresponds to a weight, which
is defined as the social welfare per unit VM resource. Let wij

denote the weight of the edge ⟨ri, sj⟩∈E . Then, we have

wij=
bij
Ai

− cvj , for ∀⟨ri, sj⟩∈E . (9)

Based on the weighted bipartite graph G, we can simpli-
fy and re-formalize the WBS problem. After removing the
CC and adding some virtual ECNs and bids, the three-layer
edge cloud structure is changed into a two-layer structure.
For the two-layer edge cloud structure, each request can
only be allocated to one ECN. So we get the winning bid
set ΦC = ϕ, and further have Φ = ΦE . Accordingly, we re-
formalize the WBS problem:

max
∑

bij∈Φ(bij−Ai · cvj) (10)

s.t. Φ ⊆ B̂, (11)∑
j:bij∈Φ 1 ≤ 1, ∀ri ∈ R (12)∑
i:bij∈Φ Ai ≤ Lj , ∀sj ∈ Ŝ (13)

Second, after constructing the weighted bipartite graph
with the capacity constraints, we greedily select some edges
to form a maximum matching of G with the approximately
maximum weight. More specifically, in each round, we
select the edge with the largest weight. Without loss of
generality, let this edge be ⟨ri, sj⟩. Now, we have the two
following cases.

(1) Ai≤Lj : This means that the remaining capacity Lj of
ECN sj is not less than the amount of resources Ai. Then, we
add the corresponding bid bij into the assignment solution
Φ. Moreover, we directly remove the request vertex ri from
R and delete all edges relevant to ri from E in G. We also
update the value of Lj by subtracting Ai for the vertex sj .

(2) Ai > Lj : We directly delete the edge ⟨ri, sj⟩ from E

Algorithm 2 Winning Bid Selection (WBS) Algorithm

Require: G = {R, Ŝ, E : B̂}.
Ensure: Φ.

1: Initialize Φ = ϕ;
2: while R̸=ϕ and Ŝ ̸=ϕ and E ̸=ϕ in G do
3: Select the edge with largest weight, denoted as⟨ri, sj⟩;
4: if Ai ≤ Lj then
5: Add bij into Φ, i.e., Φ=Φ+{bij};
6: Remove ri fromRand delete all edges related to ri;
7: Update Lj⇐Lj−Ai for the vertex sj in ⟨ri, sj⟩;
8: else
9: Remove ⟨ri, sj⟩ from E and continue;

10: return Φ;

and continue to find the edge with the next largest weight.
Note that when an edge is deleted from the bipartite

graph, the related weight is also deleted. This selection
process is repeatedly conducted until R, Ŝ , or E becomes
an empty set. Finally, we get an assignment solution Φ. If
bij ∈Φ, it indicates that the bid bij wins and the request ri
is assigned to the ECN sj .

After getting the winning bid set Φ, we then make
scheduling decisions for each bid bij ∈ Φ. That is, for a
winning bid bij , we either let sj complete the task ri or
upload ri to the CC through sj , i.e., we need to determine
the winning bid scheduling sets ΦE and ΦC .

3.3 Winning Bid Selection: Detailed Algorithm
Based on the above solution, we first design a Preprocess-

ing Algorithm, as shown in Algorithm 1, to remove the dead-
line constraints. By deleting some bids and adding some
virtual bids and ECNs, Algorithm 1 will update the ECN
set and the bid set. More specifically, In Step 1, we initialize
the virtual ECN and bid sets (i.e., S and B). In Steps 2-4,
the good and bad transmission delay (i.e., d1ij and d2ij) are
calculated. According to the relationships among Ti, d1ij and
d2ij , we remove some bids that cannot satisfy the deadline
constraints in Steps 5-6. In Steps 7-8, if d1ij ≤ Ti < d2ij , we
take no action. If d2ij ≤ Ti, we first generate a virtual ECN
sj∗ and a virtual bid bij∗, and then add them into S and B,
respectively, in Steps 9-11. In Step 12, we get the updated
ECN set Ŝ and the updated bid set B̂. At last, Algorithm 1
outputs S, B, Ŝ and B̂ in Step 13..

Next, we construct a weighted bipartite graph with
capacity constraints G = {R, Ŝ, E : B̂}. Based on this, we
design a greedy Winning Bid Selection (WBS) algorithm, as
shown in Algorithm 2. First, we initialize the assignment
solution in Step 1. Then, we conduct the greedy winning
bid selection procedure in Steps 2-9. More specifically, in
Step 3, the edge (e.g., ⟨ri, sj⟩) with the largest weight (i.e.,
wij) is selected. Then, we compare the remaining capacity
Lj of sj with the amount of VM resources Ai in Step 4. If
Ai≤Lj , the assignment solution is expanded in Step 5, i.e.,
Φ = Φ+{bij}. In Steps 6-7, all edges related to the vertex
ri in G are deleted, and the vertex mark Lj is updated by
subtracting Ai. If Ai > Lj , Algorithm 2 directly removes
⟨ri, sj⟩ from E in G and continues to conduct the selection
procedure in Steps 8-9. When R, Ŝ , or E becomes an empty
set, Algorithm 2 terminates and outputs Φ in Step 10.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 7

Algorithm 3 Winning Bid Scheduling Algorithm
Require: Φ and S.
Ensure: ΦE and ΦC .

1: Initialize ΦE = ΦC = ϕ;
2: for bij ∈ Φ (corresponding to ⟨ri, sj⟩) do
3: if sj ∈ S then
4: ΦC = ΦC+{bij};
5: else
6: ΦE = ΦE+{bij};
7: return ΦE and ΦC ;

We can straightforwardly demonstrate the correctness of
Algorithm 2 in the following theorem:
Theorem 2. Algorithm 2 is correct, that is, it will terminate

for sure and produce a feasible assignment solution.

Proof : Since only one edge in E is selected at each round
where E is a limited set, Algorithm 2 will terminate for sure.
Moreover, when a bid bij is added into the solution Φ, ri
will be removed from R and the vertex mark Lj of sj is
minus Ai. Based on this, the constraints of Eq. 5 and Eq. 6
in the formalized WBS problem can be satisfied. Thus, the
produced solution must be feasible. �

Besides, we design a winning bid scheduling algorithm,
as shown in Algorithm 3. According to the winning bid set
Φ and the virtual ECN set S, Algorithm 3 can determine
the winning bid scheduling sets ΦE and ΦC . In Step 1, we
initialize ΦE and ΦC . Then, for each winning bid bij ∈ Φ,
we determine if the corresponding ECN sj belongs to the
virtual ECN set S: if yes, we add bij into ΦC ; otherwise, we
add bij into ΦE , in Steps 2-6. At last, Algorithm 3 outputs
the winning bid scheduling sets ΦE and ΦC , in Step 7.

3.4 Payment Determination: Basic Solution
The truthful payment determination computes the pay-

ment for each winning bid, ensuring that each user honestly
reports its true valuation for its cloud service request. In
this paper, we adopt the rule of critical payment introduced
by Myerson [19] to determine the payment for each winning
bid. The critical payment is defined as follows.
Definition 5. [Critical Payment] The payment for bid bij ,

denoted as pij(bij), is said to be critical value if the
user declares a bid that is not smaller than pij(bij), the
submitted bid must win; otherwise, it will not win.

According to Definition 5, in order to determine the
critical payment for bid bij , we first need to determine the
alternative bid of bij . Here, the alternative bid of a winning
bid bij is such a bid that will replace bij to become a
winning bid when we remove bij from B̂. More specifically,
we first remove the corresponding edge ⟨ri, sj⟩ from E in
G to get a new weighted bipartite graph without bij . For
convenience, we use E−ij and G−ij to denote the edge set
and the new bipartite graph without the edge ⟨ri, sj⟩, that
is, G−ij={R, Ŝ, E−ij : B̂−{bij}}. According to G−ij , we re-
select a new winning bid set using Algorithm 2 and let Φ−ij

denote the new assignment solution. Here, the alternative
bid of bij must belong to Φ−ij . Accordingly, we have two
cases: the request ri is assigned to another ECN sj′ , or the
ECN sj has accepted some requests so that it has no enough

Algorithm 4 Payment Determination (PD) Algorithm

Require: G = {R, Ŝ, E : B̂}, Φ = ΦE∪ΦC and B.
Ensure: P = {pij(bij)|bij ∈Φ}.

1: for each bij ∈Φ do
2: E−ij=E−{⟨ri, sj⟩} and G−ij={R, Ŝ, E−ij :B−{bij}};
3: Execute Algorithm 2: Φ−ij = WBS(G−ij);
4: Determine wiminj =min{wi1j , wi2j , · · · , wiκj ∈Φ−ij :

Lj−
∑

wixj≥wiyj
Aix ≥Ai};

5: pij(bij)=Ai ·(cvj +max{wij′ , wiminj}); // bij′ ∈Φ−ij

6: if bij ∈ B then
7: User ri pays the ECN sj∗ with the reward pij(bij);

//sj here is the virtualization of sj∗, i.e.,
//sj={Lj=Ai, c

v
j =ctj∗+cv0, c

t
j=b↑j =b↓j =0};

8: else
9: User ri pays the ECN sj with the reward pij(bij);

// sj here is a real ECN.
10: return P ;

remaining capacity to provide cloud service for request ri.
For the alternative bid of bij in Φ−ij , we assume that bid
bij′ is the winner related to ri, and bi1j , bi2j , · · · , biκj are
the winners relevant to sj , respectively. The corresponding
weights are wij′ and wi1j , wi2j , · · · , wiκj . Note that bij′ for
the first case is exactly a candidate alternative bid of bij . For
the second case, we can find the critical weight for the ECN
sj , denoted as wiminj for convenience. That is, we have

wiminj=min{wi1j , wi2j , · · · , wiκj : Lj−
∑

wixj≥wiyj

Aix ≥Ai}. (14)

Here, Lj−
∑

wixj≥wiyj
Aix ≥Ai indicates that sj always

selects the requests with relatively large weights until it has
no enough remaining capacity for request ri. Accordingly,
the bid biminj is exactly another candidate alternative bid of
bij . Moreover, if wij′ ≥wiminj , bij′ will become the alterna-
tive bid of bij . Otherwise, if wij′ < wiminj , the alternative
bid of bij will be biminj .

Thus, the critical payment pij(bij) is determined by:

pij(bij) = Ai · (cvj + max{wij′ , wiminj}). (15)

Remarks: We do not distinguish the virtual bids from
the winning bids at first. In fact, whether a winning bid
is virtual or real is irrelevant to the payment determina-
tion process. For a virtual winning bid bij∗ ∈ Φ in which
sj∗ ∈ S, the mobile user ri will pay the ECN sj with the
reward pij∗(bij∗) where sj∗ is the virtualization of sj (i.e.,
sj∗={Lj∗=Ai, c

v
j∗=ctj+cv0, c

t
j∗=b↑j∗=b↓j∗=0}).

3.5 Payment Determination: Detailed Algorithm
Based on the above method, the payment determination

algorithm is shown in Algorithm 4. For each winning bid bij
in the original solution Φ (i.e., bij ∈Φ), we first re-construct
a new bipartite graph G−ij without bij in Step 2. Then, we
execute the greedy WBS algorithm based on the input G−ij

and get a new assignment solution Φ−ij in Step 3. Here,
we use the form “Output = WBS(Input)” to denote the
execution of the WBS algorithm for convenience. In Step 4,
we determine the critical weight for the ECN sj , i.e., wiminj ,
according to Eq. 14. In Step 5, the critical payment for the bid
bij is determined according to Eq. 15. If bij is a virtual bid,

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 8

r1

4

4

6

Ti

r2 r3 r4 r5 r6

Ai

Ii

3

3

4

4

5

6

5

2

7

3

1

5

2

6

8

Lj

6

5

s1 2

3

1

2

2

2

3

4s2

cj
v

cj
t

bj
 bj
↑

(a) (b)

dij
1 dij

2

s1 s2

r1

r2

r3

r4

r5

r6

3
5

3
4.5

2
3.3

2
4

3
5

3
4.5

3.5
5.8

3.5
5.3

2.5
5.3

2.5
3.8

4
6.7

4
6

s1 s2

r1

r2

r3

r4

20

18

8

48

bij

r5

33

45 20

10 9

16

s1 s2

r1

r2

r3

r4

3

4

2

9

wij

r5

8

7 1

8 6

5

(c) (d)

Fig. 3. An illustration of removing deadline constraints and calculating
edge weights based on bids.

3 4 7
2

8 9
88

1 5 6

s1 s2

r1 r2 r3 r4 r5

Ai 4 3 5 2 1

Lj 6 5

3 4 7
2

8 9
88

1 5 6

s1 s2

r1 r2 r3 r4 r5

Ai 4 3 5 2 1

Lj 0 1
(a) (b)

p12=44 p31=30 p51=9

Fig. 4. Illustrations of the execution of the WBS and PD algorithms.

we identify the ECN which will obtain the payment in Steps
6-7. That is to say, the real ECN sj∗ where sj is the virtual-
ization of sj∗, i.e.,sj={Lj=Ai, c

v
j =ctj∗+c

v
0, c

t
j=b↑j =b↓j =0},

will get the payment pij(bij). Otherwise, when bij is a real
bid, i.e., bij ∈ B, the real ECN sj will naturally obtain the
payment pij(bij) in Steps 8-9. After computing the critical
payments for all winning bids in Φ, the algorithm terminates
and outputs the results in Step 10.

3.6 A Walk-Through Example
To better understand Algorithms 1-4, we present an

example to show the procedure, in which 6 users request
cloud services from 2 ECNs. That is, S = {s1, s2} and
R={r1, r2, r3, r4, r5, r6}. The detailed parameter values are
shown in Fig. 3(a). Based on Algorithm 1, we can calculate
the transmission delay, which is shown in Fig. 3(b). Since
T6 < d161 and T6 < d162, we delete the bids b61 and b62
from B directly. Then, we display the updated bid set in
Fig. 3(c). Before conducting Algorithm 2, we first compute
the weights of all edges. The results are shown in Fig. 3(d).
Afterwards, Fig. 4 (a) displays the bipartite graph, including
the edge weights, the amount of VM resources for each
request, and the capacity constraints of ECNs. Based on
Fig. 4 (a), the greedy WBS algorithm (i.e., Algorithm 2) is
conducted as follows.

In the first round, Φ = ϕ. Algorithm 2 selects the edge
with the largest weight, that is, ⟨r1, s2⟩. Because of A1≤L2,
we add b12 into Φ. After removing r1 and its corresponding
edges, we update the remaining capacity of s2, i.e., L2 ⇐
L2−A1 = 1. In the second round, Φ = {b12}. The largest
weight in the new graph is w22 =w51 =8. Because of A2 =
3 > L2 = 2, we add b51 into Φ. Similarly, we remove r5
and update L2 ⇐L2−A1 =5. In the third round, we select
b31 and get L1 =0. Now, no bids can be added into Φ due
to Ai > Lj for each remaining vertex ri, and Algorithm 2
outputs Φ={b12, b51, b31} in Fig. 4 (b).

Due to no virtual bids in the example, we get Φ = ΦE

by conducting Algorithm 3. Next, we describe the proce-
dure of the truthful payment determination algorithm (i.e.,
Algorithm 4).

First, for bid b12, we remove ⟨r1, s2⟩ from G. After exe-
cuting Algorithm 2 based on G−12, we get a new solution:
Φ−12 = {b22, b51, b31, b42}. Then, we determine the critical
weight for ECN s2 (i.e., selecting wimin2 from {w22, w42}).
According to Eq. 14, we get wimin2 = w22. Thus, we get
p12(b12) =A1 ·(cv2+max{0, w22}) = 44 according to Eq. 15.
Second, for bid b51, we execute Algorithm 2 according to
the new graph without the edge ⟨r5, s1⟩ and get Φ−51 =
{b12, b31, b52}. Likewise, we have wimin1=w31, and further
get p51(b51)=A5 ·(cv1+max{w52, w31})=9. In the same way,
for the bid b31, we can also obtain Φ−31={b12, b51, b21, b41}.
After determining the critical weight for s1 according to
Eq. 14, i.e., wimin1 = w21, we compute the corresponding
payment, i.e., p31(b31) = A3 · (cv1+max{0, w21}) = 30. The
determined payments are shown in Fig. 4 (b).

We can find that requests r3 and r5 are assigned to ECN
s1 and r1 is assigned to s2, respectively. Due to Φ = ΦE ,
none of the requests will be uploaded to the CC. Moreover,
we find that the payment of each winning bid is no larger
than its true valuation.

4 THEORETICAL ANALYSIS

In this section, we present the theoretical analysis, show-
ing that the AVA mechanism is truthful, individually ra-
tional, and computationally efficient. Also, we analyze the
approximation ratio of the greedy WBS algorithm.

4.1 Truthfulness

To demonstrate that the AVA mechanism is truthful,
we need to reveal that each user will honestly submit its
real valuation when the strategies of other users are given.
According to Myerson’s theorem [19], our AVA mechanism
is truthful if and only if the following two conditions hold:
(1) the winning bid selection algorithm (i.e., allocation rule)
is monotonic, and (2) each winning bid is paid the critical
payment as introduced in Definition 5.
Lemma 1. The WBS algorithm is monotonic. More specially,

for each bid bij , if bij wins according to the WBS algo-
rithm, then b̃ij=bij+θ will also win, where θ≥0.

Proof : For an arbitrary request ri ∈ R and ECN sj ∈ Ŝ ,
if the bid bij wins, then a larger bid b′ij ≥ bij must win
according to the greedy strategy used in Algorithm 2. �
Lemma 2. Each winning bid is paid the critical payment.

Proof : For an arbitrary winning bid bij , we assume
that in Φ−ij , ri is assigned to another ECN sj′ (i.e., bij′
wins in Φ−ij), and sj connects to other users (i.e., the bid
set {bi1j , bi2j , · · · , biκj ∈ Φ−ij} wins). Then, the critical
payment of bid bij is determined by pij(bij)/Ai − cvj =
max{wij′ , wiminj} according to Eqs. 14 and 15. Here, if
user ri claims a higher bid b ≥ pij(bij) for ECN sj , then
b/Ai − cvj ≥ wij′ and b/Ai − cvj ≥ wiminj hold. Thus, the
claimed bid b will be selected prior to bij′ and biminj

according to the greedy strategy of Algorithm 2. If b ≤
pij(bij), we have three sub-cases: (1) b/Ai−cvj ≤ wij′ and
b/Ai − cvj ≤ wiminj ; (2) wij′ ≤ b/Ai − cvj ≤ wiminj ; and
(3) wiminj ≤ b/Ai − cvj ≤ wij′ . Based on this, the follow-
ing conclusion holds in all three sub-cases: ri is assigned
to sj′ or sj corresponds to {ri1 , ri2 , · · · , riκ |biκj ∈ Φ−ij}

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 9

where ri ̸= riκ . Note that when biminj is replaced by bij ,
the capacity constraint of sj is still satisfied according to
Eq. 14. This means that biminj is actually the alternative
bid for bij when max{wij′ , wiminj} = wiminj . Thus, in
this case, bid bij will lose the auction. This means that
pij(bij)=Ai ·(cvj+max{wij′ , wiminj}) is the critical payment
exactly. The lemma holds. �

After proving the monotonicity of WBS algorithm and
the critical payment for winning bids in the above lem-
mas, we get that the proposed AVA mechanism satisfies
Myerson’s theory [19]. Therefore, we can directly prove the
truthfulness of the AVA mechanism as follows.
Theorem 3. The proposed auction mechanism is truthful.

Proof : Based on Lemmas 1 and 2, the theorem holds. �

4.2 Individual Rationality
The individual rationality means that mobile user’s true

valuation must cover its corresponding payment according
to Definition 3. Thus, we just need to prove that each
winning user will receive a nonnegative payoff in the AVA
mechanism. As a result, we have the following theorem.
Theorem 4. The AVA mechanism is individually rational.

Proof : In the AVA mechanism, if a user does not win the
cloud service from the ECNs, its payoff is zero. Otherwise,
if ri wins the cloud service from sj with the bid bij , its
corresponding payoff is vij −pij(bij) according to Defini-
tion 2. We suppose pij(bij) = Ai · (cvj +max{wij′ , wiminj})
where wiminj = min{wi1j , wi2j , · · · , wiκj ∈ Φ−ij : Lj −∑

wixj≥wiyj
Aix ≥Ai}. Since bij is selected prior to bij′ and

biminj in Φ, we have bij/Ai−cvj =wij ≥max{wij′ , wiminj}.
That is, bij≥Ai ·(cvj +max{wij′ , wiminj})=pij(bij). Because
of the truthfulness of the mechanism in Theorem 3, we get
bij = vij . Hence, we have vij ≥ pij(bij). The theorem is
correct. �

4.3 Computational Efficiency
To prove the computational efficiency of the AVA mech-

anism, we just need to prove that AVA can be conducted in
polynomial time according to Definition 4.
Theorem 5. The mechanism is computationally efficient.

Proof : First, we determine that the algorithmic proce-
dure of Algorithm 1 is in polynomial time and that the
computational overhead is O(|R| · |S|), where | · | means
the cardinality of the set. Second, we give the computa-
tional overheads of Algorithm 2 and Algorithm 3, that is,
O(|R|2 · |Ŝ|2) and O(|Φ|), respectively. At last, Algorithm 4
is also in polynomial time and its computational complexity
is O(|Φ| · |R|2 · |Ŝ|2). According to Definition 4, we get that
the AVA mechanism is computationally efficient. �

4.4 Approximation Ratio Analysis
The WBS problem is an n-to-one weighted bipartite

matching problem with capacity constraints, which is a
strongly NP-hard problem [28]. Algorithm 2, adopting the
greedy selection strategy, can produce an approximate solu-
tion. Here, we adopt the mathematical induction method to
analyze the approximation ratio.

Theorem 6. Algorithm 2 can achieve a (γ+1)-approximation
of the optimal assignment solution, where γ =
max{Lj/Ai|ri∈R, sj ∈Ŝ}. Moreover, (γ+1) is an urgent
bound.

Proof : Let Φopt be the optimal solution of G= {R, Ŝ, E :
B̂}. For the simplicity of the following descriptions, we
use α =

∑
bij∈Φopt

(bij −Ai · cvj)/
∑

bij∈Φ(bij −Ai · cvj) =
Φopt(G)/Φ(G) to denote the approximation ratio, in which
we let Φ(G) and Φopt(G) denote our solution and the
optimal solution based on the bipartite graph G, respective-
ly. Then, we prove α ≤ γ+1 by using the mathematical
induction method. Consider that Ŝ is given and R changes.

First, when |R|=1, we directly have α=1≤γ+1.
Second, we assume that α≤ γ+1 holds when |R| ≤m.

Then, we consider |R|=m+1. We here need to establish a
link between |R|=m+1 and |R|≤m. Without loss of gener-
ality, we consider b11/A1−cv1=w11=max{wij |⟨ri, sj⟩∈E}.
Thus, b11 must belong to Φ. According to this, we analyze
the two cases as follows.

(1) b11 also belongs to Φopt. Then, we get a new bipartite
graph G∗ = {R−{r1}, Ŝ, E −{⟨r1, s1⟩} : B̂ −{b11}} after
removing b11 (i.e., the edge ⟨r1, s1⟩). Because of |R−{r1}|≤
m, we have α = Φopt(G

∗)/Φ(G∗) ≤ γ+1 according to the
inductive assumption, and we further get

α=
Φopt(G)

Φ(G)
=

(b11−A1 ·cv1)+Φopt(G
∗)

(b11−A1 ·cv1)+Φ(G∗)
≤ γ+1. (16)

(2) b11 does not belong to Φopt. Here, we assume that
some other bids are selected to access the ECN s1, and let the
set Φs1

opt = {bi1|bi1 ∈Φopt} denote it. For simplicity, we also
use R̃={ri|bi1 ∈ Φs1

opt} to denote the request set connecting
to s1. Moreover, we suppose that b1j′ is related to r1 in Φopt.
Based on this, we form two bipartite sub-graphs, denoted
as G∗ and G+. More specifically, G∗ is the sub-graph of G
where the request vertices {r1} ∪ R̃ and the corresponding
edges are removed, and the capacity constraints of L1 and
Lj′ are updated by using L1 = L1−

∑
ri∈({r1}∪R̃) Ai and

Lj′ =Lj′−A1, respectively. G+ is the sub-graph of G where
the request vertices {r1} ∪ R̃ and the corresponding edges
are removed, and the capacity constraint of L1 is updated
by using L1=L1−

∑
ri∈({r1}∪R̃) Ai. Thus, we have G∗⊆G+.

Here, |R−{r1}−R̃| ≤ m. Based on the assumption of
mathematical method, we have Φopt(G

∗)/Φ(G∗) ≤ γ+1.
Since G∗⊆G+ holds, we get

Φopt(G
∗) ≤ (γ+1)Φ(G∗) ≤ (γ+1)Φ(G+). (17)

Furthermore, we have

α=
Φopt(G)

Φ(G)
=

Φopt(G
∗)+(b1j′−A1 ·cvj′)+

∑
bi1∈Φ

s1
opt

(bi1−Ai ·cv1)

Φ(G+)+(b11−A1 ·cv1)

≤

(γ+1)Φ(G+)+(b1j′−A1 ·cvj′)+
∑

bi1∈Φ
s1
opt

(bi1−Ai ·cv1)

Φ(G+) + (b11−A1 ·cv1)
. (18)

Now, according to the foundation of the induction (i.e.,
b11/A1−cv1=w11=max{wij |⟨ri, sj⟩∈E}), we can get

b1j′−A1 ·cvj′ =w1j′ ·A1 ≤ w11 ·A1=b11−A1 ·cv1, (19)

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 10

TABLE 2
Statistics of Workload Logs.

Trace Number
of jobs

Number
of CPUs

Average
number of
CPUs

Average Run-
Time per job
(min)

DAS-2 1, 124, 772 400 4.3 6.2
SHARCNET 1, 195, 242 6, 828 1.5 533
NorduGrid 781, 370 2, 000 1.1 1, 488
AuverGrid 404, 176 475 1 420

and ∑
bi1∈Φ

s1
opt

(bi1−Ai ·cv1)≤L1 · w11=
L1

A1
· (b11 − cv1 ·A1) (20)

≤max{Lj

Ai
|ri∈R, sj ∈S} · (b11 − cv1 ·A1) (21)

=γ · (b11 − cv1 ·A1). (22)

According to Eqs. 18, 19, 20, 21, and 22, we have

Φopt(G)

Φ(G)
≤(γ+1)Φ(G+)+(1+γ)(b11−cv1 ·A1)

Φ(G+)+(b11−cv1 ·A1)
=γ+1. (23)

Based on the above induction, we conclude that α≤γ+1
holds for all cases.

In addition, we prove that γ+1 is an urgent bound. We
consider an extreme case in which R = {r1, r2, r3}, Ŝ =
{s1, s2}, {L1 =L+δ, L2 = 2L}, {A1 =L+δ,A2 =A3 =L},
cv1=cv2=c, and B̂={b11=(w+c)·A1, b12=(w+δ+c)·A1, b21=
(δ+c)·A2, b22=(w+c)·A2, b31=(δ+c)·A3, b32=(w+c)·A3},
where L, w and c denote three arbitrary positive numbers
and δ means a positive number which is infinitely close to
zero. Here, we have γ=L2/A2=2. According to the greedy
strategy used in Algorithm 2, we have Φ = {b12, b21} and
the social welfare is (w+δ)(L+δ)+ δ·L. In contrast, we have
Φopt={b11, b22, b32} and the corresponding social welfare is
w(L+δ)+2wL. In the worst case, the approximation ratio
α= (3wL + Lδ)/(wL+wδ+2Lδ+δ2) is infinitely close to
γ+1=3. Thus, we conclude that γ+1 is an urgent bound.

According to this, the theorem holds. �

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of the AVA
mechanism by using extensive trace-driven simulations,
and we compare it with two heuristic algorithms. We con-
duct the simulations on a computer with Intel(R) Core(TM)
i5-3470 CPU @3.2GHz and 8GB RAM under a Windows
platform. Moreover, all simulations are implemented in
C/C++ language.

5.1 Compared Algorithms

In addition to the WBS algorithm for the winner selec-
tion problem in the simulations, we also implement two
algorithms for comparison: “Nearest” and “Selfish” [24].
“Nearest” means that the platform always dispatches the
requests with the smallest latency to an ECN under the
capacity constraints. While in “Selfish”, each request only
cares about its own performance, and it expects to be
assigned to the ECNs with the largest true valuations (i.e.,
vij) under the capacity constraints.

DAS-2 SHARCNET NorduGrid AuverGrid

4.0x10
6

6.0x10
6

8.0x10
6

1.0x10
7

S
o

c
ia

l
W

e
lf

a
re

Workload Files

 WBS

 Nearest

 Selfish

Fig. 5. Performance comparisons on the social welfare with different files
(the numbers of requests and ECNs are 2000 and 20, respectively).

5.2 Simulation Settings
Because real user request data has not been publicly

released by cloud providers yet, we adopt a widely-used
dataset called Grid Workload Archive [1] in our simulations.
Similar to the works [20, 34], we select four out of six avail-
able logs in the Grid Workload Archive. More specifically,
these logs are called “DAS-2” (from a research grid at the
Advanced School for Computing and Imaging in Nether-
lands), “SHARCNET” (from SHARCNET clusters installed
at several academic institutions in Ontario, Canada), “Nor-
duGrid” (from the NorduGrid system), and “AuverGrid”
(from the AuverGrid system). In Table 2, we provide a brief
description of the used workloads.

In the simulations, we generate a user request by ex-
tracting the information of a job from the four log files.
For simplicity, we assume that the deadline of all requests
can be met. Thus, we only care about the following pa-
rameters: the VM resource amount requested by each user
(i.e., Ai), the capacity constraints of ECNs (i.e., Lj), and the
unit cost of VM resources in ECNs (i.e., cvj). The amount
Ai of VM resources for each request mainly depends on
RunTime (the time each job needs to complete its execution)
and ReqNumCPUs (the requested number of CPUs). Here,
since there are no ECNs provided in the four log files, we
artificially generate some ECNs in the simulations, each of
which has a limited resource capacity and a unique unit cost.
The number of ECNs is selected from {10, 20, 30, 40, 50}.
Moreover, we generate the capacity constraints of the ECNs
based on available CPUs in the four log files. The unit cost
cvj is generated from [1, 20] randomly. Here, the generation
process is based on the uniform distribution. Moreover, we
directly generate the user bids between 1000 and 10000
for different ECNs. Since the number of jobs in the files
is large, we use parts of the jobs as the user requests in
our simulations, and the number of requests is selected
from {1000, 2000, 3000, 4000, 5000}. In our simulations, the
default numbers of ECNs and requests are 20 and 2000,
respectively.

5.3 Simulation Results
In addition to the total social welfare, we also use the

following metrics to evaluate the performance of our AVA
mechanism: truthfulness, individual rationality, computa-
tional efficiency, and successful ratio. Truthfulness is the
property that no request can improve its payoff by sub-
mitting a bid different from the real valuation; Individual
rationality is the property that the payoff of each request is
non-negative; Computational efficiency is the property that

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 11

1000 2000 3000 4000 5000

3.0x10
6

6.0x10
6

9.0x10
6

1.2x10
7

S
o
c
ia

l
W

e
lf
a
re

Number of Cloud Requests

 WBS

 Nearest

 Selfish

(a) Workload file: DAS-2

1000 2000 3000 4000 5000

6.0x10
6

9.0x10
6

1.2x10
7

S
o
c
ia

l
W

e
lf
a
re

Number of Cloud Requests

 WBS

 Nearest

 Selfish

(b) Workload file: SHARCNET

1000 2000 3000 4000 5000

3.0x10
6

6.0x10
6

9.0x10
6

1.2x10
7

S
o
c
ia

l
W

e
lf
a
re

Number of Cloud Requests

 WBS

 Nearest

 Selfish

(c) Workload file: NorduGrid

1000 2000 3000 4000 5000

3.0x10
6

6.0x10
6

9.0x10
6

1.2x10
7

S
o
c
ia

l
W

e
lf
a
re

Number of Cloud Requests

 WBS

 Nearest

 Selfish

(d) Workload file: AuverGrid

Fig. 6. Performance comparisons based on four different workload files: total social welfare vs. the number of cloud requests.

10 20 30 40 50

2.0x10
6

4.0x10
6

6.0x10
6

8.0x10
6

S
o

c
ia

l
W

e
lf

a
re

Number of ECNs

 WBS

 Nearest

 Selfish

(a) Workload file: DAS-2

10 20 30 40 50

2.0x10
6

4.0x10
6

6.0x10
6

8.0x10
6

S
o

c
ia

l
W

e
lf

a
re

Number of ECNs

 WBS

 Nearest

 Selfish

(b) Workload file: SHARCNET

10 20 30 40 50

2.0x10
6

4.0x10
6

6.0x10
6

8.0x10
6

S
o

c
ia

l
W

e
lf

a
re

Number of ECNs

 WBS

 Nearest

 Selfish

(c) Workload file: NorduGrid

10 20 30 40 50

2.0x10
6

4.0x10
6

6.0x10
6

8.0x10
6

S
o

c
ia

l
W

e
lf

a
re

Number of ECNs

 WBS

 Nearest

 Selfish

(d) Workload file: AuverGrid

Fig. 7. Performance comparisons based on four different workload files: total social welfare vs. the number of ECNs.

the AVA mechanism can be conducted in polynomial time;
Successful ratio is the ratio of the number of successfully
assigned requests and the number of total requests.

Evaluation of Social Welfare: We first evaluate the per-
formances of social welfare based on the four log files using
the WBS, Nearest, and Selfish algorithms under the default
settings. The results are shown in Fig. 5. We find that the
social welfare obtained by the WBS algorithm is the largest,
and WBS achieves about 126% better social welfare than
the Nearest algorithm and about 148% better than Selfish.
Then, we evaluate the performance (i.e., social welfare) of
the three algorithms when we change the number of cloud
requests based on the four used log files (DAS-2, SHAR-
CNET, NorduGrid, AuverGrid). We present the results in
Fig. 6. Also, we find that the WBS algorithm achieves at least
twice the social welfare that the two compared algorithms
achieve. Along with the increase in the number of cloud
requests, the total obtained social welfare of all algorithms
increases. In addition, we also evaluate the social welfare
performances of the three algorithms when we change the
number of ECNs based on the four used log files. The results
are shown in Fig. 7. We also get that the WBS algorithm
always outperforms the compared algorithms, along with
the increase in the number of ECNs. These simulations
validate our theoretical analysis results.

Evaluation of Truthfulness and Individual Rationality:
We verify the truthfulness of our AVA mechanism by
randomly picking a request and allowing it to submit a
bid that is different from its true valuation. Here, the true
valuation is fixed and given, which is equal to the originally
submitted bid. Without loss of generality, we conduct
the experiment based on the workload file “DAS-2”. The
result is illustrated in Fig. 8(a). We see that the payoff and
payment are both zero when the bid claims a lower value,
and they remain unchanged when the claimed bid is not
less than the corresponding true valuation. Moreover, we
verify the individual rationality of the AVA mechanism
by comparing the true valuation of each bid and the
corresponding payment under the default settings. The
results are shown in Fig. 8(b). We get that the payment
of each winning bid is less than its true valuation. These
results are consistent with our theoretical analysis.

Evaluation of Successful Ratio: We also evaluate the suc-

5x10
3

6x10
3

7x10
3

8x10
3

0.0

2.0x10
3

4.0x10
3

6.0x10
3

V
a
lu

e

Claimed Bid

 True Valuation

 Payment

 Payoff

(a) Truthfulness (b) Individual rationality
Fig. 8. Property verifications: truthfulness and individual rationality.

1000 2000 3000 4000 5000

0.25

0.50

0.75

S
u
c
c
e
s
s
fu

l
R

a
ti
o

Number of Cloud Requests

 WBS

 Nearest

 Selfish

(a) Successful ratio

5000
4000

3000
2000

1000

1.50x10
4

3.00x10
4

4.50x10
4

10

20

30

40
50R

u
n
n
in

g
 T

im
e
 (

m
s
)

N
um

be
rs

 o
f E

C
N
s

Numbers of Requests

(b) Computational efficiency
Fig. 9. Performance evaluations: successful ratio and computational
efficiency.

cessful ratio of the three algorithms, as shown in Fig. 9(a).
When the number of requests changes from 1000 to 5000,
the successful ratio decreases accordingly. This is because
the number of successfully assigned requests remains nearly
unchanged under the capacity constraints of the ECNs when
the number of total requests increases. Moreover, the WBS
algorithm achieves 36% and 40% higher successful ratios
than the “Nearest” and “Selfish” algorithms, respectively.

Evaluation of Computation Efficiency: Finally, we verify
the computational efficiency of the AVA mechanism. Along
with the increase in the number of ECNs and the number of
requests, the running time of the AVA mechanism increases,
as shown in Fig. 9(b). When the number of ECNs is 50 and
the number of requests is 5000, the execution time of AVA is
less than 47s, which is much smaller than the auction cycle
(dozens and hundreds of minutes). This means that the AVA
mechanism can work efficiently in real applications. These
simulation results remain consistent with our theoretical
analysis.

6 RELATED WORK
In this paper, we focus on the auction-based VM alloca-

tion problem for deadline-sensitive tasks in distributed edge

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 12

cloud. So far, there has been much research on edge cloud
computing, such as [2, 3, 6–8, 10, 12–17, 20–25, 29–39, 41].

The authors of [20, 36] and [23, 34] presented truthful
auction mechanisms for dynamic resource provisioning and
allocation in cloud computing. The authors of the former
took heterogeneous user demands into account, while the
latter designed combinatorial auction mechanisms. Further-
more, the authors in [12, 39] proposed auction mechanisms
for dynamic VM provisioning and pricing across different
geo-distributed data centers. The work [16, 37] studied the
online auction mechanisms for Infrastructure-as-a-Service
(IaaS) clouds, in which [37] focused on achieving the maxi-
mization of both social welfare and providers’ profit, while
[16] considered the unique features of an elastic model
for inputting time-varying user demands and a unified
model for requesting heterogeneous VMs together. Also,
Zhang et al. [38] designed an efficient randomized auction
mechanism for dynamic VM provisioning and pricing with
(1− ε)-optimal social welfare in expectation. The authors
in [35] presented a framework for truthful online auctions
in cloud computing where users with heterogeneous de-
mands can come and leave on the fly. Moreover, Anisetti
et al. [5] modeled the multi-cloud provisioning scenario as
a generalization of second price procurement e-auctions,
in which the cloud service customers and providers are
seen as the auctioneer and bidders, respectively. They pro-
posed an e-auction mechanism based on matching and
ranking algorithms to improve the truthfulness on the e-
auction outcome. Zheng et al. [40] proposed the first family
of strategy-proof double auctions for multi-cloud, multi-
tenant bandwidth reservation, which can achieve strategy-
proofness, ex-post budget balance, good social welfare, fine
cloud bandwidth utilization, and high tenant satisfaction
ratio, simultaneously. Different from the existing auction
mechanisms, we design a truthful auction-based VM alloca-
tion mechanism for deadline-sensitive tasks in distributed
ECNs, in which there exists the resource competition across
multiple geographically distributed ECNs. Moreover, the
deadline and capacity constraints are taken into consider-
ation simultaneously.

On the other hand, the works [14, 24, 39] focused on bal-
ancing the workload between multiple edge cloud servers
to minimize the total response time. Meanwhile, some oth-
er works [12, 13, 17] investigated how to configure edge
clouds dynamically by proposing online resource placement
methodologies. Additionally, [25] designed the edge cloud
as a tree hierarchy of geo-distributed servers and proposed a
workload placement algorithm that maximizes the amount
of peak workloads. [8] studied the multi-user computa-
tion offloading problem for mobile edge cloud in a multi-
channel wireless interference environment. Different from
these works, which mainly study the workload scheduling
and VM placement problem in edge clouds, we focus on
VM allocation from an economic view.

The works most relevant to our problem are [15, 22, 30].
The authors in [15] designed two double auction mecha-
nisms to stimulate cloudlets to serve nearby mobile devices,
in which the authors simply assume that the mobile users’
requests and cloudlet resources are homogeneous, and each
cloudlet can serve only one request. The authors in [30]
proposed two auction mechanisms for two task models,

which is essentially a crowdsourcing-based task allocation
problem. Neither of these works analyzes the approxima-
tion ratio of their proposed mechanisms. The authors in [22]
designed an online auction mechanism for dynamic virtual
cluster provisioning (including VM placement and inter-VM
traffic routing) and pricing in geo-distributed clouds, which
is modeled as an online combinational knapsack problem.

In contrast, we propose a truthful auction-based VM
resource allocation mechanism for deadline-sensitive tasks
in distributed edge cloud, which solves the problem of
mobile users competing for VM resources in geographically
distributed ECNs with capacity constraints. We model the
problem as an n-to-one weighted bipartite graph matching
problem with 0-1 knapsack constraints. Furthermore, we
analyze the approximation ratio of the winner selection
algorithm and further prove that the factor is urgent. Also,
our problem differs from the latest research on the online
knapsack problem and budgeted bipartite matching prob-
lem [27], in which two proposed online truthful algorithms
can achieve competitive ratios of 2e and 24, respectively.
Moreover, the auction method adopted in this paper is
different from the four basic auction types, where we apply
the rule of critical payment introduced by Myerson [19].
Meanwhile, the Vickrey-Clarke-Groves (VCG) auctions [26],
based on the optimal allocation, cannot be applied in this
paper, because the n-to-one weighted bipartite matching
problem with 0-1 knapsack constraints cannot be solved
optimally. The Generalized Second-Price auction [9], as a
non-truthful auction mechanism for multiple items, is not
suitable for the VM resource allocation problem, which
needs to guarantee the truthfulness.

7 CONCLUSION AND FUTURE WORK
In this paper, we have studied the problem of allocat-

ing heterogeneous VM resource requests to geo-distributed
edge cloud nodes with capacity constraints in order to
maximize the total social welfare. We propose a truthful
auction-based VM resource allocation mechanism, i.e., AVA,
which mainly consists of a greedy winning bid selection
algorithm and a truthful payment determination algorithm.
We prove that the AVA mechanism can ensure the properties
of truthfulness, individual rationality, and computational
efficiency. Moreover, we give the approximation ratio of the
winner selection algorithm, and prove that it is an urgent
bound. Finally, extensive simulations based on real traces
verify the performance of the AVA mechanism. In the future
research, we will study the VM resource allocation prob-
lem for the interaction-intensive cloud applications which
involve the migration of cloud computing tasks.

REFERENCES
[1] Grid workloads archive. Available [Online]:

http://gwa.ewi.tudelft.nl, Aug. 2018.
[2] N. Abbas, Y. Zhang, A. Taherkordi, and T. Skeie. Mobile

edge computing: A survey. IEEE Internet of Things Journal,
5(1):450–465, 2018.

[3] A. Aissioui, A. Ksentini, A. Gueroui, and T. Taleb. On
enabling 5g automotive systems using follow me edge-
cloud concept. IEEE Transactions on Vehicular Technology,
67(6):5302–5316, 2018.

[4] Amazon. “Amazon Elastic Compute Cloud”. Available
[Online]: https://aws.amazon.com/cn/ec2/, Aug. 2018.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 13

[5] M. Anisetti, C. A. Ardagna, P. A. Bonatti, E. Damiani,
M. Faella, C. Galdi, and L. Sauro. E-auctions for multi-
cloud service provisioning. In 2014 IEEE International
Conference on Services Computing, pages 35–42, 2014.

[6] A. Ceselli, M. Premoli, and S. Secci. Mobile edge cloud
network design optimization. IEEE/ACM Transactions on
Networking, 25(3):1818–1831, 2017.

[7] L. Chen, J. Wu, X. Zhang, and G. Zhou. TARCO: Two-stage
auction for d2d relay aided computation resource alloca-
tion in hetnet. IEEE Transactions on Services Computing,
pages 1–1, 2018.

[8] X. Chen, L. Jiao, W. Li, and X. Fu. Efficient multi-user
computation offloading for mobile-edge cloud comput-
ing. IEEE/ACM Transactions on Networking, 24(5):2795–
2808, 2016.

[9] B. Edelman, M. Ostrovsky, and M. Schwarz. Internet ad-
vertising and the generalized second-price auction: Selling
billions of dollars worth of keywords. American economic
review, 97(1):242–259, 2007.

[10] G. Gao, M. Xiao, J. Wu, L. Huang, and C. Hu. Truthful
incentive mechanism for nondeterministic crowdsensing
with vehicles. IEEE Transactions on Mobile Computing,
17(12):2982–2997, 2018.

[11] L. Gao, T. H. Luan, S. Yu, W. Zhou, and B. Liu. Fogroute:
Dtn-based data dissemination model in fog computing.
IEEE Internet of Things Journal, 4(1):225–235, 2017.

[12] F. Hao, M. Kodialam, T. V. Lakshman, and S. Mukherjee.
Online allocation of virtual machines in a distributed
cloud. IEEE/ACM Transactions on Networking, 25(1):238–
249, 2017.

[13] I.-H. Hou, T. Zhao, S. Wang, and K. Chan. Asymptotical-
ly optimal algorithm for online reconfiguration of edge-
clouds. In ACM MobiHoc, pages 291–300, 2016.

[14] M. Jia, W. Liang, Z. Xu, and M. Huang. Cloudlet load
balancing in wireless metropolitan area networks. In IEEE
INFOCOM, pages 1–9, 2016.

[15] A.-L. Jin, W. Song, P. Wang, D. Niyato, and P. Ju. Auction
mechanisms toward efficient resource sharing for cloudlet-
s in mobile cloud computing. IEEE Transactions on Services
Computing, 9(6):895–909, 2016.

[16] J. Li, Y. Zhu, J. Yu, C. Long, G. Xue, and S. Qian. Online
auction for IaaS clouds: Towards elastic user demands and
weighted heterogeneous VMs. In IEEE INFOCOM, pages
1–9, 2017.

[17] Y. Li and W. Wang. Can mobile cloudlets support mobile
applications? In IEEE INFOCOM, pages 1060–1068, 2014.

[18] Microsoft. “Windows Azure”. Available [Online]:
http://www.windowsazure.com/, Aug. 2018.

[19] R. B. Myerson. Optimal auction design. Mathematics of
operations research, 6(1):58–73, 1981.

[20] M. M. Nejad, L. Mashayekhy, and D. Grosu. Truthful
greedy mechanisms for dynamic virtual machine provi-
sioning and allocation in clouds. IEEE Transactions on
Parallel and Distributed Systems, 26(2):594–603, 2015.

[21] T. G. Rodrigues, K. Suto, H. Nishiyama, and N. Kato.
Hybrid method for minimizing service delay in edge cloud
computing through vm migration and transmission power
control. IEEE Transactions on Computers, 66(5):810–819,
2017.

[22] W. Shi, C. Wu, and Z. Li. An online mechanism for
dynamic virtual cluster provisioning in geo-distributed
clouds. In IEEE INFOCOM, pages 1–9, 2016.

[23] W. Shi, L. Zhang, C. Wu, Z. Li, and F. C. M. Lau. An online
auction framework for dynamic resource provisioning in
cloud computing. IEEE/ACM Transactions on Networking,
24(4):2060–2073, 2016.

[24] H. Tan, Z. Han, X.-Y. Li, and F. C. Lau. Online job dispatch-
ing and scheduling in edge-clouds. In IEEE INFOCOM,
pages 1–9, 2017.

[25] L. Tong, Y. Li, and W. Gao. A hierarchical edge cloud

architecture for mobile computing. In IEEE INFOCOM,
pages 1–9, 2016.

[26] H. R. Varian and C. Harris. The VCG auction in theory and
practice. American Economic Review, 104(5):442–45, 2014.

[27] R. Vaze. Online knapsack problem and budgeted truthful
bipartite matching. In IEEE INFOCOM, pages 1–9, 2017.

[28] V. V. Vazirani. Approximation algorithms. Springer Science
& Business Media, 2013.

[29] H. Wang, Z. Kang, and L. Wang. Performance-aware
cloud resource allocation via fitness-enabled auction. IEEE
Transactions on Parallel and Distributed Systems, 27(4):1160–
1173, 2016.

[30] X. Wang, X. Chen, and W. Wu. Towards truthful auction
mechanisms for task assignment in mobile device clouds.
In IEEE INFOCOM, pages 1–9, 2017.

[31] X. Wang, K. Wang, S. Wu, D. Sheng, H. Jin, K. Yang, and
S. Ou. Dynamic resource scheduling in mobile edge cloud
with cloud radio access network. IEEE Transactions on
Parallel and Distributed Systems, pages 1–1, 2018.

[32] Z. Xu, W. Liang, W. Xu, M. Jia, and S. Guo. Efficient
algorithms for capacitated cloudlet placements. IEEE
Transactions on Parallel and Distributed Systems, 27(10):2866–
2880, 2016.

[33] H. Yin, X. Zhang, H. H. Liu, Y. Luo, C. Tian, S. Zhao,
and F. Li. Edge provisioning with flexible server place-
ment. IEEE Transactions on Parallel and Distributed Systems,
28(4):1031–1045, 2017.

[34] S. Zaman and D. Grosu. A combinatorial auction-based
mechanism for dynamic VM provisioning and allocation
in clouds. IEEE Transactions on Cloud Computing, 1(2):129–
141, 2013.

[35] H. Zhang, H. Jiang, B. Li, F. Liu, A. V. Vasilakos, and J. Liu.
A framework for truthful online auctions in cloud comput-
ing with heterogeneous user demands. IEEE Transactions
on Computers, 65(3):805–818, 2016.

[36] L. Zhang, Z. Li, and C. Wu. Dynamic resource provision-
ing in cloud computing: A randomized auction approach.
In IEEE INFOCOM, pages 433–441, 2014.

[37] X. Zhang, Z. Huang, C. Wu, Z. Li, and F. C. M. Lau. Online
auctions in IaaS clouds: Welfare and profit maximization
with server costs. IEEE/ACM Transactions on Networking,
25(2):1034–1047, 2017.

[38] X. Zhang, C. Wu, Z. Li, and F. C. Lau. A truthful (1-ε)-
optimal mechanism for on-demand cloud resource provi-
sioning. In IEEE INFOCOM, pages 1053–1061, 2015.

[39] J. Zhao, H. Li, C. Wu, Z. Li, Z. Zhang, and F. C. M. Lau.
Dynamic pricing and profit maximization for the cloud
with geo-distributed data centers. In IEEE INFOCOM,
pages 118–126, 2014.

[40] Z. Zheng, Y. Gui, F. Wu, and G. Chen. Star: Strategy-proof
double auctions for multi-cloud, multi-tenant bandwidth
reservation. IEEE Transactions on Computers, 64(7):2071–
2083, 2015.

[41] Z. Zhou, F. Liu, Z. Li, and H. Jin. When smart grid meets
geo-distributed cloud: An auction approach to datacenter
demand response. In IEEE INFOCOM, pages 2650–2658,
2015.

Guoju Gao received his B.S. degree in informa-
tion security from the University of Science and
Technology of Beijing, Beijing, China, in 2014.
He is currently working toward a PhD degree
on computer science and technology with the
School of Computer Science and Technology,
the University of Science and Technology of Chi-
na, Hefei, China. His research interests include
mobile cloud computing, mobile crowdsourcing,
privacy preservation, and incentive mechanism.

IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. XX, NO. XX, 2019 14

Mingjun Xiao is an associate professor in the
School of Computer Science and Technology
at the University of Science and Technology of
China (USTC). He received his Ph.D. from USTC
in 2004. His research interests include mobile
crowdsensing, mobile social networks, vehicu-
lar ad hoc networks, mobile cloud computing,
auction theory, data security and privacy. He
has published more over 60 papers in referred
journals and conferences, including TMC, TON,
TPDS, TC, INFOCOM, ICNP, etc. He served as

the TPC member of INFOCOM’18, ICDCS’15, Mobihoc’14, etc. He is
on the reviewer board of several top journals such as TMC, TON, TPDS,
TSC, TVT, TCC, etc.

Jie Wu is the Director of the Center for Net-
worked Computing and Laura H. Carnell profes-
sor at Temple University. He also serves as the
Director of International Affairs at College of Sci-
ence and Technology. He served as Chair of De-
partment of Computer and Information Sciences
from the summer of 2009 to the summer of 2016
and Associate Vice Provost for International Af-
fairs from the fall of 2015 to the summer of
2017. Prior to joining Temple University, he was
a program director at the National Science Foun-

dation and was a distinguished professor at Florida Atlantic University.
His current research interests include mobile computing and wireless
networks, routing protocols, cloud and green computing, network trust
and security, and social network applications. Dr. Wu regularly publishes
in scholarly journals, conference proceedings, and books. He serves
on several editorial boards, including IEEE Transactions on Services
Computing and the Journal of Parallel and Distributed Computing. Dr.
Wu was general co-chair for IEEE MASS 2006, IEEE IPDPS 2008, IEEE
ICDCS 2013, ACM MobiHoc 2014, IEEE ICPP 2016, and IEEE CNS
2016, as well as program co-chair for IEEE INFOCOM 2011 and CCF
CNCC 2013. He was an IEEE Computer Society Distinguished Visitor,
ACM Distinguished Speaker, and chair for IEEE Technical Committee on
Distributed Processing (TCDP). Dr. Wu is a CCF Distinguished Speaker
and a Fellow of the IEEE. He is the recipient of the 2011 China Computer
Federation (CCF) Overseas Outstanding Achievement Award.

He Huang is an associate professor in the
School of Computer Science and Technology
at Soochow University, Soochow, China. He re-
ceived the PhD degree in Department of Com-
puter Science and Technology from University
of Science and Technology of China in 2011.
His current research interests include spectrum
auction, privacy preserving in auction, wireless
sensor networks, and algorithmic game theory.
He is a member of IEEE computer society, and
a member of ACM.

Shengqi Wang received his B.S. degree in Ma-
terials Science from the University of Science
and Technology of China, Hefei, China in 2018.
He is now working toward a Master Degree on
Materials Science and Computer Science with
the School of Engineering, Cornell University,
Ithaca, USA. His research interests include mo-
bile cloud computing, algorithmic game theory,
machine learning and device-to-device commu-
nication.

Guoliang Chen received the B.S. degree from
Xi’an Jiaotong University, China, in 1961. Since
1973, he has been with the University of Science
and Technology of China, Hefei, China, a profes-
sor with the Department of Computer Science
and Technology, and the director of the School
of Software Engineering. From 1981 to 1983, he
was a visiting scholar at Purdue University, West
Lafayette, IN, USA. He is currently also the direc-
tor of the National High Performance Computing
Center at Hefei. He has published nine books

and more than 200 research papers. His research interests include
parallel algorithms, computer architectures, computer networks, and
computational intelligence. Prof. Chen is an Academician of Chinese
Academy of Sciences. He was the recipient of the National Excellent
Teaching Award of China in 2003.

