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Abstract—Along with the generation of Internet of Things (IoT), the values of tremendous volumes of sensing data will be slowly
unlocked. Thus, crowd-sensed data trading as a new business paradigm has recently attracted increasing attention. A typical data
trading system contains a platform, data consumers, and crowd workers. The platform recruits crowd workers to collect data and then
sells the data to consumers. In this paper, we design a differentially private crowd-sensed data trading mechanism, called DPDT, to
preserve the identity privacy of consumers and the task privacy against crowd workers during the data collection process,
simultaneously. DPDT consists of a differentially private auction-based data pricing algorithm and a differentially private data collection
algorithm. The data pricing algorithm achieves a good approximation to the maximum revenue. Meanwhile, it guarantees
(e2−1)ϵ-truthfulness and 2ϵ-differential privacy, where ϵ>0 is a small constant. The data collection algorithm is able to effectively
protect the data collection task privacy against crowd workers. We prove that this data collection algorithm achieves δ-approximate
ϵ-differential privacy, where δ<1/e is a small constant, and meanwhile guarantees a tight bound of the expected approximation ratio.
At last, extensive simulations are conducted to verify the significant performance of DPDT.

Index Terms—Auction, approximate truthfulness, data trading, differential privacy, mobile crowdsensing.
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1 INTRODUCTION

R ECENTLY, with the proliferation of mobile devices e-
quipped with more and more components, a new

sensing paradigm called mobile crowdsensing has been
proposed [6, 33]. Since mobile crowdsensing can coordinate
a group of mobile users to collect tremendous volumes
of sensed data (such as traffic condition monitoring, noise
pollution monitoring, wireless indoor location, etc.) over an
urban environment that individual users cannot cope with,
it has attracted much attention. Essentially speaking, mobile
crowdsensing is a special form of data trading [7, 15, 23, 39]
where mobile users get some monetary reward by sharing
their collected data. Generally, in the data trading market,
data consumers can access sufficient data to conduct some
research, while data providers will obtain some monetary
reward. Therefore, data trading has huge commercial value
and bright application prospects. To fully deliver the poten-
tial of the data trading market, more and more data trading
platforms (such as DataExchange, Datacoup, Terbine, Cit-
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izenMe, Thingspeak, etc.) have emerged to enable crowd-
sensed data to be exchanged on the web.

A typical data trading system mainly consists of three
parts: a platform, data consumers, and crowd workers
(a.k.a. providers), as shown in Fig.1. The platform recruits
crowd workers to collect sensed data and then sells the data
to consumers. The ultimate goal of the data trading system
is to maximize its profit, i.e., the difference between the rev-
enue of selling data to consumers and the cost of recruiting
crowd workers. So far, there has been some research on the
crowd-sensed data trading problem [10, 15, 39]. For exam-
ple, [10] studies an exchange market approach to mobile
crowdsensing; [15] proposes some accountable protocols for
big data trading against dishonest consumers; [39] designs
the profit-driven data acquisition scheme for crowd-sensed
data market. Nevertheless, these existing works rarely in-
volve the significant privacy-preserving issues.

In this paper, we focus on designing a privacy-
preserving crowd-sensed data trading mechanism to max-
imize the profits of the platform, where the identity privacy
of data consumers (i.e., buyers) and the task privacy against
crowd workers during the data collection process can be
protected effectively. In fact, only a few literatures [7, 23, 37]
show concern for privacy issues in the crowd-sensed data
trading market. Among them, [37] protects image privacy
based on the concept of feature-indistinguishability (i.e.,
MinHash mechanism), while [7, 23] adopt homomorphic
encryption (and partial electronic signature technique) to
protect either the bid privacy or the identity privacy of data
contributors (i.e., sellers). Here, the homomorphic encryp-
tion requires high computation complexity, and the Min-
Hash mechanism is actually used to generate an electronic
signature. Thus, both of them do not apply to our crowd-
sensed data trading scenario. Moreover, our data trading
needs to consider both the identity privacy (data pricing)
and task privacy (data collection). Furthermore, data pricing
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Fig. 1. Illustration of the data trading scenario.

also involves the competition among data consumers. In
this paper, we study how to design an efficient privacy-
preserving crowd-sensed data trading mechanism. In fact,
designing such a mechanism has the following challenges:

First, due to the competition among data consumers, as
well as the selfishness and individual rationality of con-
sumers, a truthful (a.k.a. strategy-proof) auction mechanism
which motivates bidders to report their true valuation as
bids [5, 31, 34] is indispensable here. However, the absolute
truthfulness may lower the revenues of the platform [22, 42],
so we need to properly relax the notion of absolute truthful-
ness. Finding the tradeoff between revenue maximization
and truthfulness is challenging.

Second, reporting the true valuations (i.e., the submitted
bids) on the data will reveal consumers’ identity-related
information, which might result in the disclosure of the
critical commercial secrets [7, 8, 26, 39]. One (other than
the platform) may infer the private valuation of a bidder
according to the outcomes of auction. In particular, the data
(e.g., traffic monitoring data in a certain location) is con-
stantly updated over time. Therefore, the data consumers
would soon compete again for the updated data of the same
kind. This makes the derivation of the bidders’ identities
easier [4, 42].

Third, the crowd-sensed data to be sold may reveal
the ongoing work of consumers, which will also incur
a privacy leakage problem [21, 24, 35]. Since the crowd-
sensed data in the platform is transparent to consumers,
data privacy is not a concern among consumers. However,
the data privacy may be leaked to crowd workers during
the collection process. Unfortunately, it is fairly difficult
to minimize the recruitment cost while guaranteeing the
privacy of the collected data.

In this paper, to address the above challenges, we pro-
pose a Differentially Private crowd-sensed Data Trading
mechanism, called DPDT. DPDT consists of a differentially
private auction-based data pricing algorithm and a differ-
entially private data collection algorithm. First, in order to
balance the revenue maximization and truthfulness [22, 42]
and at the same time protect the identity privacy of data
consumers, we combine the concept of approximate truth-
fulness with the differential privacy (exponential mechanis-
m). Then, we design a differentially private auction-based
data pricing algorithm for DPDT, which achieves a good
approximation to the maximum revenue, preserves the i-
dentity privacy of consumers, and also guarantees that data
consumers have limited incentives to lie. Second, in order
to minimize the cost of collecting data while protecting
the data collection task privacy against crowd workers, we
model the data collection problem as a special set cover
problem with differential privacy. Based on this, we devise

a differentially private data collection algorithm for DPDT.
To the best of our knowledge, we are the first to study
the consumers’ identity privacy, truthfulness, and the data
collection task privacy in the data trading field. Our major
contributions are summarized as follows:

• We propose a differentially private crowd-sensed data
trading mechanism, consisting of a differentially pri-
vate auction-based data pricing algorithm and a dif-
ferentially private data collection algorithm. Both the
consumers’ identity privacy and the data collection task
privacy can be protected effectively by DPDT.

• The data pricing algorithm not only achieves 2ϵ-
differential privacy, but also guarantees (e2 − 1)ϵ-
truthfulness, where ϵ>0 is a small constant. Addition-
ally, this data pricing algorithm can achieve an expected
revenue of at least opt−3 ln(e+ ϵ|P|opt)/ϵ, where opt is
the optimal revenue and P is the set of possible prices.

• The data collection algorithm can obtain δ-approximate
ϵ-differential privacy where δ<1/e is a small constant,
and at the same time can achieve an expected approxi-
mation ratio of O(ln |U|+(ln(|W| ln(e/δ)))/ϵ), in which
U and W are the sets of total data collection tasks and
crowd workers, respectively.

• We conduct extensive simulations to evaluate the per-
formance of DPDT. The simulation results show that
DPDT can obtain good revenues, and can also effec-
tively protect the identity privacy of consumers and the
task privacy during data collection process.

The remainder of the paper is organized as follows.
We first describe the crowd-sensed data trading model
and introduce some related solution concepts in Sections 2.
Then, we design the differentially private auction-based
data pricing algorithm and the differentially private data
collection algorithm in Sections 3 and 4, respectively. In
Section 5, we evaluate the performance of the proposed
algorithms. After reviewing the related work in Section 6,
we conclude the paper in Section 7.

2 SYSTEM MODEL
In this section, we first describe the overview of the

crowd-sensed data trading system. Then, we present the de-
tailed data pricing and data collection modules, respectively.
Finally, we introduce some relevant solution concepts about
differential privacy and the auction theory.

2.1 Crowd-Sensed Data Trading System
We consider a typical crowd-sensed data trading system,

as shown in Fig.1, which is mainly composed of a platform
in a cloud, multiple registered data consumers (e.g., govern-
ment departments, companies, individuals, etc.) and lots of
registered crowd workers. The platform mainly consists of a
control center and a data pool, and actually acts as a bridge
between data consumers and crowd workers. The platform
recruits crowd workers to collect some sensed data which
will be sold to data consumers in the future. It aims to max-
imize the profit, which is defined as the difference between
the revenue of selling data to consumers and the cost of
recruiting crowd workers. Thus, the platform concentrates
on simultaneously maximizing the revenue and minimizing
the recruitment cost, while protecting the identity privacy of
consumers and task privacy against crowd workers during
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the data collection process. Based on this, the data trading
system can be divided into two separate modules: data
pricing and data collection.

2.2 Data Pricing in DPDT
In the data pricing module, the platform focuses on

setting an appropriate price for the owned data so that it
can maximize its revenue, where the revenue is the total
payment received from consumers. At the same time, the
identity privacy preservation for data consumers and the
competition among consumers should be taken into consid-
eration. Consequently, we combine differential privacy with
auction in the data pricing module. We consider a collusion-
free auction where the platform also acts as the auctioneer.
Note that the platform might hold multiple datasets to be
sold, and each dataset will be set an independent price. For
simplicity of following descriptions, we only consider one
dataset in the platform, and we let the platform conduct the
same operations for other datasets in the practical scenario.

Consider that a set of data consumers registered in the
platform, denoted by N={1, 2, · · · , n}, will compete for the
dataset. Each consumer (a.k.a. buyer or bidder) i∈N has a
valuation on the dataset, denoted by vi. He also determines
a bid bi (the claimed valuation), and sends bi to the platform.
The platform only knows the claimed valuation bi instead
of the true valuation vi. In fact, vi is known to nobody
except bidder i itself. Bidder i may strategically manipulate
vi to get a higher utility. Such strategic manipulation might
reduce the revenues of the platform. Thus, the data pricing
algorithm must ensure that each bidder will not manipulate
its bids, i.e. truthfulness. However, absolute truthfulness may
also lower the revenues of the platform [22, 42]. Accordingly,
to maximize the revenues while ensuring that bidders have
limited incentives to lie, a concept of approximate truthful-
ness [22, 42] is adopted here. The detailed definition will be
described in Section 2.4.

For simplicity of following computation, all values of
vi and bi for i ∈ N are normalized into (0, 1]. Let V =
{v1, v2, · · · , vn} and B = {b1, b2, · · · , bn} denote the val-
uation and bid sets, respectively. Note that the claimed
valuation bi is closely related to the sensitive identity in-
formation, which needs to be kept private [7, 39]. On the
other hand, the auctioneer (i.e., platform) initializes a finite
set of candidate prices P={p1, p2, · · · , pκ}, including all the
possible valuation/bid values in (0, 1].

After receiving the bid set B, the platform selects a feasi-
ble price p∈P, determines the winning bid set, and further
computes the payment for winning bidders. Each bidder
i∈N, as a selfish and rational person, will always maximize
its utility. In fact, a bidder’s (e.g., i) utility depends on sever-
al factors: his bid bi and valuation vi, other bidders’ bids B−i

(here, B−i means the bid set except i, i.e., B=B−i+{bi}), and
the selected price p. Note that the winning bid set depends
on bi and B−i, while the payment for winning bids relies on
the value p. Here, we let ui(·) denote the utility of bidder i,
which is calculated as follows:

ui(bi,B−i, vi, p) =

{
0; bi ≤ p,

vi − p; bi > p.
(1)

Problem Formulation: The platform concentrates on max-
imizing its revenues, i.e., the total payment from buyers,
under the privacy restrictions. Concretely speaking, the

TABLE 1
Description of major notations.

Variable Description
N, W the sets of data consumers and crowd workers.
i, k the indexes for consumers and workers.
vi, bi the valuation and bid of the i-th data consumer.
V, B the valuation and bid sets, respectively.
P, p the set of candidate prices and a price instance.
B−i the set of bids except the consumer i.
B̃(p) the set of bids where ∀bi∈ B̃(p)≥p.
R, T the sets of true and noisy data collection tasks.
U the sets of total tasks, i.e., U=R∪T.
Ω the collection of the subsets of U and |Ω|= |W|.

Pr,Pr[·] the probability vector and a probability value.
Q(B, p) the revenue function based on B and p.
ϵ, δ the parameters of differential privacy.
E[·] the expected function.

platform aims at selecting one of the prices according to the
received bids B, so that it can maximize its revenues, while
protecting the identity (i.e., bid) privacy of bidders and
guaranteeing the approximate truthfulness, simultaneously.

2.3 Data Collection in DPDT
In the data collection module, the platform concentrates

on selecting a minimum number of crowd workers to collect
sensed data. The fewer the number of workers, the less the
recruitment cost. Since the collected data will be sold to
consumers in the future, the sensed data should be kept
private from crowd workers during the collection process.
To this end, we need to protect the data collection tasks from
being directly revealed to crowd workers. We first adopt the
perturbation method in the data collection task publishing
process, and then apply the differential privacy (exponential
mechanism) in the worker recruitment process.

In the task publishing process, consider that the platform
has a total of R types of crowd-sensed data collection
tasks. These tasks are distributed at different locations. We
use R to denote the task set. In order to protect the data
privacy against crowd workers, the platform cannot publish
R directly. For this reason, we first generate a set of noisy
tasks (denoted by T), and then add T into R. Instead of R,
the platform will publish R ∪ T to the crowd workers to
hide its true task set R (called perturbation). Generally, the
distributions of R and T are similar, and the cardinalities of
R and T are on the same order of magnitude. For simplicity,
we use U = R ∪ T to denote the total task set, and let W
denote the set of crowd workers. Then, each worker k ∈W
replies to the platform with the set of tasks that it can com-
plete, denoted by Gk⊆U. We use Ω={Gk|k∈W} to denote
the returned results of all workers. It is inevitable that the
total task set U after adding noisy tasks will burden crowd
workers more. We assume that the data consumers will bear
these additional expenses, since the fundamental reason for
the platform generating noisy tasks is to protect the data
privacy of consumers. Actually, the size of the noisy task set
T will have effect on the achieved differential privacy level
and the expected approximation ratio, simultaneously. We
will analyze the impact of T in detail in Section 4.

Problem Formulation: In the worker recruitment process,
based on the true task set R, the total task set U, and the
collection Ω={Gk|k∈W}, the platform focuses on selecting
a minimum number of workers (denoted by Φ⊆W) so that
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R can be covered, while R is kept private against all crowd
workers. “covered” here means that the data collection tasks
in R can be performed by crowd workers in Φ successfully.

2.4 Solution Concepts
In this subsection, we introduce some related solution

concepts from differential privacy and auction theory. First,
we present the definition of differential privacy.
Definition 1. [Differential Privacy] [4, 9, 25] A randomized

mechanismM has ϵ-differential privacy if for two input
profiles D1 and D2 where the two input profiles differ in
a single element, and for all outcomes M⊆Range(M),
Pr[M(D1) ∈M ] ≤ exp(ϵ)× Pr[M(D2) ∈M ], (2)

where ϵ>0 is the privacy budge/level (a small constant).
Moreover, we also introduce a laxation of differential

privacy, which allows a small additive term in the bound.
Definition 2. [Approximate Differential Privacy] [4, 9] We

say a randomized mechanism M has δ-approximate ϵ-
differential privacy if for two input profiles D1 and D2

differing in one element, and for all outcomes M ⊆
Range(M),
Pr[M(D1) ∈M ] ≤ exp(ϵ)× Pr[M(D2) ∈M ] + δ, (3)
where δ>0 is a small constant.

Second, we present a powerful technique used in d-
ifferential privacy, called exponential mechanism [11, 22],
which can construct differentially private algorithms over
an arbitrary range P of outcomes and any object function
Q(B, p) that maps a pair consisting of a bid set B and a
feasible outcome p ∈ P to a real-valued score. Note that
here B is the claimed valuation set of bidders, and p is
the payment for each winning bidder. Thus, we have the
following definition.
Definition 3. [Exponential Mechanism] [11, 22] Given a

range P, a bid set B, a revenue function Q, and a privacy
parameter ϵ, the exponential mechanism Exp(P,B, Q, ϵ)
selects an outcome p from P with the probability

Pr[Exp(P,B, Q, ϵ) = p] ∝ exp(
ϵ

2∆
Q(B, p)), (4)

where ∆ is the Lipschitz constant of the revenue func-
tion Q, i.e., for any two adjacent input data profiles B1

and B2, and for any outcome p in the range P, the scores
Q(B1, p) and Q(B2, p) differ by at most ∆.
Third, we introduce the concept of approximate truth-

fulness in auction theory. Before defining the approximate
truthfulness, we first review the dominant strategy (i.e.,
truthfulness) in an auction mechanism [34, 42]. That is, the
strategy si of bidder i is a dominant strategy, if for any
strategy s′i ̸= si and other bidders’ strategy profile s−i,
then ui(si, s−i) ≥ ui(s

′
i, s−i). Based on this, we have the

following definition.
Definition 4. [γ-Truthful] [42] The expected utility of bidder

i based on the dominant strategy si is denoted by
E[ui(si, s−i)]. Then, for any strategy s′i ̸= si and other
bidders’ strategy profile s−i, we say that a mechanism is
γ-truthful, if we have

E[ui(si, s−i)] ≥ E[ui(s
′
i, s−i)]− γ, (5)

in which γ > 0 is a small constant. The approximate
truthfulness of the auction mechanism can ensure that

Algorithm 1 Differentially Private Data Pricing Algorithm
Require: N, P, B, ϵ
Ensure: a probability vector, selected price, and winner set.
Phase 1: platform publishes the dataset to N;
Phase 2: data consumers submit their bid set B;
Phase 3: platform calculates the probability distribution;
1: for p ∈ P do
2: update bidder set B̃(p) = {bi|bi ∈ B ∧ bi ≥ p};
3: calculate the revenue Q(B, p) = p× |B̃(p)|;
4: end for
5: for p ∈ P do
6: calculate probability Pr[p] = exp(ϵQ(B,p))∑

pj∈P exp(ϵQ(B,pj))
;

7: end for
Phase 4: platform determines the price and winner set;
8: select a price p∈P according to the vector Pr;
9: determine the winner set B̃(p)={bi|bi ∈ B ∧ bi ≥ p};

each data consumer has limited incentives to lie, which
may increase the total revenues of the platform.
Additionally, we summarize the commonly used nota-

tions throughout the paper in Table 1.

3 DPDT: DATA PRICING ALGORITHM
In this section, we design a differentially private auction-

based data pricing algorithm, in which we combine the
exponential mechanism with the auction mechanism to
achieve both approximate revenue maximization and differ-
ential privacy. The algorithm is actually based on a posted
pricing auction mode, where we select a price from the set
of prices according to a designed probability distribution.
The probability of selecting a price is proportional to the
achieved revenues. In the following, we will present the
calculation of probability distribution and price selection in
detail. After that, we will describe the detailed algorithm
and give the performance analysis.

3.1 Probability Calculation & Price Selection
For each price pj ∈ P and the bid set B, we first remove

the bidders whose claimed bids are less than pj . Then, the
original bid set B is changed to B̃(pj), that is,

B̃(pj) = {bi|bi ∈ B ∧ bi ≥ pj}. (6)

Since the tentative price for the candidate bidders in
B̃(pj) is pj , the platform’s total revenues are calculated by

Q(B, pj) = pj × |B̃(pj)|, (7)
where | · | denotes the cardinality of a set.

After calculating the revenues of the platform by setting
all possible prices in P, the algorithm computes the prob-
ability distribution for each single price. More specifically,
the probability of selecting p ∈ P is proportional to the
corresponding revenues, i.e.,

Pr[p ∈ P] =
exp(ϵQ(B, p))∑

pj∈P exp(ϵQ(B, pj))
. (8)

After obtaining the probability vector Pr =
(Pr[p1], P r[p2], · · · , P r[p|P|]), we choose a price p ∈ P
as the auction payment for the single dataset with the
corresponding probability. That is, we set the price for the
data for sale successfully. Moreover, the candidate bidders
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in B̃(p) whose bids are not less than p are the final winners.
Each winner will be allocated to the dataset and be charged
with the payment p.

3.2 Detailed Algorithm
The differentially private data pricing algorithm is

shown in Algorithm 1. In the first two phases, after receiving
the description about the data to be sold, each consumer
submits her/his bid to the platform. In the third phase,
for each price p ∈ P, the platform first updates the bid set
and then computes the corresponding revenue in Steps 1-4.
Next, the probability distribution is calculated in Steps 5-
7. In the fourth phase, the price for the data is determined
according to the probability distribution in Step 8. Based on
the selected price, the winning bidder set is also determined
in Step 9. The computation overhead of Algorithm 1 is dom-
inated by Step 2, which can be denoted by O(|N|·|P|). Since
both N and P are finite sets, Algorithm 1 has a polynomial-
time computational complexity.

3.3 Performance Analysis
We first analyze the achieved differential privacy level in

the following theorem.
Theorem 1. The proposed data pricing algorithm can guar-

antee 2ϵ-differential privacy.
Proof: Consider two bid sets, denoted by B1 and B2,

which differ in only one bid (change, remove or add). Then,
the probability of selecting p ∈ P based on the two bid
profiles B1 and B2 are denoted by Pr[M(B1) = p] and
Pr[M(B2) = p], respectively. Thus, we have

Pr[M(B1) = p]/Pr[M(B2) = p] (9)

=
exp(ϵQ(B1, p))

exp(ϵQ(B2, p))
×

∑
pj∈P exp(ϵQ(B2, pj))∑
pj∈P exp(ϵQ(B1, pj))

≤ exp(ϵQ(B2, p) + ϵ∆)

exp(ϵQ(B2, p))
×
∑

pj∈P exp(ϵQ(B1, pj) + ϵ∆)∑
pj∈P exp(ϵQ(B1, pj))

≤ exp(2ϵ∆).

Here, ∆ means the Lipschitz constant introduced in
Definition 3. In our designed algorithm, the largest differ-
ence between the revenue values Q(B1, p) and Q(B2, p) for
∀p ∈ P and any two adjacent bid sets B1 and B2, i.e., ∆, is
∆=p×(|B̃1(p)|−|B̃2(p)|). Since B1 and B2 differ in one bid,
and the price values in P are mapped into (0, 1], we have

∆ = p× (|B̃1(p)| − |B̃2(p)|) ≤ p ≤ 1. (10)

Based on Eqs (9) and (10), we get
Pr[M(B1) = p] ≤ exp(2ϵ)× Pr[M(B2) = p]. (11)

Thus, our algorithm guarantees 2ϵ differential privacy. �
Here, 2ϵ-differential privacy can lead to a relaxation of

truthfulness, in other words, the incentive to lie for each
bidder is non-zero but tightly constrained. Next, we prove
the approximate truthfulness as follows.
Theorem 2. The proposed algorithm is (e2−1)ϵ-truthful.

Proof: For simplicity of following descriptions, we first
let E[ui(bi,B−i, vi,P)] denote the expected utility of bidder
i when it bids bi. If bi ̸=vi, we have two following cases.

1) When bi≤vi, we have
E[ui(bi,B−i, vi,P)] (12)

=
∑

p∈P
Pr[M(bi,B−i)=p]×ui(bi,B−i, vi, p)

≤
∑

p∈P
exp(2ϵ)Pr[M(vi,B−i)=p]×ui(vi,B−i, vi, p)

= exp(2ϵ)× E[ui(vi,B−i, vi,P)],
where Pr[M(bi,B−i)=p] means the probability of selecting
the price p based on the bid bi and the set of others’ bids B−i,
and ui(bi,B−i, vi, p) denotes the utility defined in Eq. (1).

Since ϵ is a small constant (less than 1), we have
exp(2ϵ) ≤ 1+(e2−1)ϵ, where e (≈ 2.72) is the base of the
natural logarithm. Moreover, due to p, vi, bi∈(0, 1], we have
0≤E[ui(vi,B−i, vi,P)]≤1. Then, we continue Eq. (12)

exp(2ϵ)× E[ui(vi,B−i, vi,P)] (13)
≤ (1 + (e2−1)ϵ)× E[ui(vi,B−i, vi,P)]
≤ E[ui(vi,B−i, vi,P)] + (e2−1)ϵ.

By combining Eqs. (12) and (13), the theorem holds.
2) When bi > vi, if the bidder i loses, its utility is 0.

However, if the bidder wins, i.e., bi ≥ p, we have two
following subcases: if vi < p ≤ bi, we get the utility (i.e.,
the value of vi−p) is negative; if p≤vi≤bi, the utility equals
to vi−p. More specifically,

E[ui(bi,B−i, vi,P)] (14)

≤
∑

p∈P∧(p≤vi)
Pr[M(bi,B−i)=p]×ui(bi,B−i, vi, p)

=
∑

p∈P∧(p≤vi)
Pr[M(vi,B−i)=p]×ui(vi,B−i, vi, p)

≤ E[ui(vi,B−i, vi,P)],

According to the above cases, we have that the false bid
reported by a bidder will lead his utility to non-positive.
This indicates that the data pricing algorithm can achieve
(e2−1)ϵ-truthfulness. �

Next, by letting opt denote maxp∈P Q(B, p)=maxp∈P p ·
|B̃(p)|, we give the approximation ratio of achieved rev-
enues in the following theorem.
Theorem 3. The proposed data pricing algorithm has an

expected revenue of at least opt−3 ln(e+ϵopt|P|)/ϵ.
Proof: Assume St = {p | Q(B, p) > opt − t} and

S2t = {p | Q(B, p) ≤ opt− 2t}. Then, after taking the
definition of the exponential mechanism into consideration,
the relationship between the probability Pr[p ∈ S2t] and
Pr[p ∈ St] satisfies:

Pr[p ∈ S2t]/Pr[p ∈ St] (15)

=

∑
p∈S2t

exp(ϵQ(B, p))/
∑

p∈P exp(ϵQ(B, p))∑
p∈St

exp(ϵQ(B, p))/
∑

p∈P exp(ϵQ(B, p))

=

∑
p∈S2t

exp(ϵQ(B, p))∑
p∈St

exp(ϵQ(B, p))
<

exp(ϵ(opt− 2t))|S2t|
exp(ϵ(opt− t))|St|

≤ exp(−ϵt)|P|/|St|.

Then, we can easily prove that Pr[p ∈ S2t] ≤
(|P| exp(−ϵt))/|St| based on the above results. This is be-
cause Pr[p ∈ St] ≤ 1. This means that we select price
p ∈ P which can generate at least opt− 2t revenue with
the probability of at least 1−(|P| exp(−ϵt))/|St|. Next, we
focus on how to select the suitable value of t (≥1/ϵ), so that
the probability is at least 1− t/opt. When we let t satisfy
t≥ ln(|P|opt/(t|St|))/ϵ, we have the following inequalities:

1−(|P| exp(−ϵt))/|St| (16)
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Algorithm 2DifferentiallyPrivate Data Collection Algorithm
Require: R, W, ϵ, δ
Ensure: Φ and Ψ
Phase 1: platform generates noisy data collection tasks T;
// The distributions of T and R are similar and the cardi-

nalities of T and R are on the same order of magnitude;
Phase 2: platform publishes U=R∪T to workers W;
Phase 3: each worker k ∈ W submits Gk to the platform,

where Ω={Gk|k∈W∧Gk⊆U};
Phase 4: platform privately selects suitable workers;
1: Initialize Φ←ϕ, i←1, Ri←R, Ωi←Ω, ϵ′← ϵ

2 ln(e/δ) ;
2: for i = 1, 2, · · · , |W| do
3: pick a set Gk from Ωi with the following probability

Pr[Gk∈Ωi] =
exp(ϵ′|Gk∩Ri|)∑

G∈Ωi
exp(ϵ′|G∩Ri|) ;

4: Φ = Φ ∪ {k} and Ψ = Ψ ∪ {Gk};
5: Ri+1←Ri − Gk, Ωi+1←Ωi − {Gk};
6: if Ri+1 = ϕ then
7: break;
8: end if
9: end for

10: output the selected worker set Φ and Ψ;
Phase5:the workers in Φ collect data and send it to platform;

≤ 1−(|P| exp(−ϵ(ln(|P|opt/(t|St|))/ϵ)))/|St|
= 1− t/opt.

This indicates that our algorithm can generate at least
opt− 2t revenue with the probability 1− t/opt. Next, the
expected revenues, denoted as Pr[rev(M)], satisfy:

Pr[rev(M)]≥(opt−2t)×(1−t/opt)>opt−3t. (17)

For t≥ ln(|P|opt/(t|St|))/ϵ and t≥1/ϵ, we have
ln(|P|opt/(t|St|))/ϵ < ln(|P|opt/(t))/ϵ (18)

< ln(e+ |P|opt/t)/ϵ< ln(e+ ϵ|P|opt)/ϵ.

By letting t=ln(e+ ϵ|P|opt)/ϵ where t≥1/ϵ, we get
Pr[rev(M)]≥opt−3t≥opt−3 ln(e+ϵ|P|opt)/ϵ. (19)

The theorem holds. �
In fact, the work [2] based on machine learning for

an absolute-truthfulness incentive mechanism is proved to
achieve opt − O(

√
opt) revenue in expectation. This means

that the proposed differentially private auction-based data
pricing algorithm can balance the maximum revenues and
the approximate truthfulness efficiently.

4 DPDT: DATA COLLECTION ALGORITHM
In this section, we design a differentially private data

collection algorithm. We first introduce the basic idea and
then present the detailed algorithm. Finally, we analyze the
privacy and performance of the proposed algorithm.

4.1 Basic Idea
To ensure that the data to be collected is kept private

against crowd workers, we first adopt the perturbation
method to hide the true data collection tasks and then use
the exponential mechanism to select a minimum number
of workers (according to the calculated probability distri-
bution). Concretely, the platform first generates some noisy

tasks and then adds them into the true tasks. Next, the
platform publishes all tasks, including true and noisy tasks,
to crowd workers. Each worker selects some tasks which
she/he is willing to perform, and then sends the results to
the platform. At last, the platform aims to select a mini-
mum number of workers to cover the private true task set.
Although the crowd workers receive all (true and noisy)
data collection tasks, they cannot specifically indicate these
true tasks. At the same time, by adopting the exponential
mechanism in the worker recruitment process, the true data
collection tasks can be protected efficiently.

More specifically, given the total data collection tasks U
consisting of true tasks R and noisy tasks T, i.e., U=R ∪ T,
the set Gk of tasks which each worker k ∈W is willing to
perform, and the collection of Gk, i.e., Ω={Gk|k∈W∧Gk⊆
U}, we select a minimum number of workers so that we can
cover a private subset R⊆U. The whole worker recruitment
process contains multiple rounds of iterations. Since only
one element (without loss of generality, denoted by Gk) in
Ω can be selected in each round, the uncovered tasks in R
are updated by R−Gk. Moreover, the collection Ω is also
updated by Ω−{Gk}. The probability of selecting a subset
of U (e.g., Gk) in Ω is proportional to the number of the
intersecting elements between Gk and R, that is,

Pr[Gk∈Ω] =
exp(ϵ′|Gk ∩ R|)∑
G∈Ω exp(ϵ′|G ∩ R|)

, (20)

where ϵ′=ϵ/(2 ln(e/δ)) is a small constant.

4.2 Detailed Algorithm
The differentially private data collection algorithm is

shown in Algorithm 2, which mainly consists of 5 phases.
In the first three phases, the platform first generates a noisy
task set T and then adds T into R. Here, the geographical
distributions of T and R are similar and the cardinalities
of T and R are on the same order of magnitude. Then,
the platform publishes all tasks U = R ∪ T to crowd
workers. Next, each worker responds to the platform with
the tasks that she/he is willing to perform. In the fourth
phase, the platform focuses on how to select a minimum
number of workers to collect data while protecting the
data privacy. More specifically, the platform first initializes
several parameters such as the selected worker set Φ, the
new differential privacy budget ϵ′, etc., in Step 1. Then,
the platform selects a set Gk from Ωi with the probability
exp(ϵ′|Gk ∩Ri|)/

∑
G∈Ωi

exp(ϵ′|G∩Ri|), and further adds k
and Gk into Φ and Ψ, respectively, in Steps 2-4. In Step 5, the
remaining elements in R are updated as Ri+1←Ri−Gk, and
Ω is updated as Ωi+1←Ωi−{Gk}. When no task exists in R,
i.e., R=ϕ, the algorithm terminates and outputs the selected
worker set Φ as well as Ψ, in Steps 6-8. In the fifth phase, the
selected workers are required to collect the corresponding
crowd-sensed data and then send the results to the platform.

By analyzing Algorithm 2, we show that the algorithmic
procedures are polynomial-time. Specifically, the computa-
tional overhead of Algorithm 2 is dominated by Step 3,
denoted by O(|W|2 · |R| · |G|), where |G|=maxk∈W |Gk|.

4.3 Performance Analysis
Now, we analyze the differential privacy level and the

approximation ratio. We first let |U|= x and |Ω|= |W|= y
for simplicity. Then, we get the following theorem.
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Theorem 4. For any δ<1/e and ϵ∈(0, 1), the proposed algo-
rithm can preserve δ-approximate ϵ-differential privacy.
Proof: For simplicity of following descriptions, we use R

and R+ to denote two private task set instances, in which R
and R+ differ in one element o. Also, we let Ωo denote the
collection of task sets containing o. Consider that an output
permutation is denoted by π. After the first i− 1 sets in
π have been added into the cover, we use si,k(R) to denote
the number of valid elements in the set Gk. “valid elements”
here mean those in the set Ri−1∩Gk. Based on this, we have:

Pr[M(R) = π]/Pr[M(R+) = π]

=
x∏

i=1

( exp(ϵ′si,πi(R))/
∑

k∈W exp(ϵ′si,k(R))
exp(ϵ′si,πi(R+)/

∑
k∈W exp(ϵ′si,k(R+))

)
=

exp(ϵ′st,πt(R))
exp(ϵ′st,πt(R+)

×
t∏

i=1

(∑k∈W exp(ϵ′si,k(R+))∑
k∈W exp(ϵ′si,k(R))

)
, (21)

where t indicates that Gπt is the first set containing the
element o to be added into the permutation π. That is to say,
after the t-th iteration, the remaining elements in R and R+

are identical. In Eq. (21), except for t-th term, all other terms
in the numerators and denominators cancel each other out.
This is because that all the corresponding set sizes are equal.
For the relationship of R and R+, we have two cases.

Case 1: R−R+ = {o}. We have that the first term of the
Eq. (21) is exp(ϵ′) and the other term in the product is at
most 1. So, Eq. (21) is less than exp(ϵ′).

Case 2: R+−R= {o}. Here, we get that the first term of
the Eq. (21) is exp(−ϵ′)< 1. In this case, each set in Ωo for
instance R+ is larger by 1 than that for R, while other sets
are identical. Based on this, we have

Pr[M(R) = π]/Pr[M(R+) = π]

≤
t∏

i=1

∑
k∈W

exp(ϵ′si,k(R))+(exp(ϵ′)−1)
∑

Gk∈Ωo

exp(ϵ′si,k(R))∑
k∈W exp(ϵ′si,k(R))

=
t∏

i=1

(1 + (exp(ϵ′)− 1)pri(R)). (22)

where pri(R) represents the probability that a set containing
the element o is chosen at i-th step based on the private
instance R. Now, the previous steps have selected the sets
Gπ1 ,Gπ2 , · · · ,Gπi−1 .

For a private task set instance R, we say that an output
is α−good if

∑
i pri(R)≤ α. Otherwise, we call the output

α−bad when
∑

i pri(R)>α. Thus, we first consider the case
where the permutation π is (ln δ−1)−good. Considering the
definition of t, we have∑t−1

i=1
pri(R) ≤ ln δ−1. (23)

Based on this, we continue Eq. (22) and have:

Pr[M(R) = π]/Pr[M(R+) = π] (24)

≤
t∏

i=1

(exp(exp(ϵ′)− 1)pri(R)) ≤ exp(2ϵ′
t∑

i=1

pri(R))

≤ exp(2ϵ′(ln δ−1 + prt(R))) ≤ exp(2ϵ′(ln δ−1 + 1))

= exp(2(ϵ/(2 ln(e/δ)))(ln δ−1 + 1)) = exp(ϵ).

Next, for any set Ψ of outcomes, we get

Pr[M(R) ∈ Ψ] =
∑

π∈Ψ
Pr[M(R) = π] (25)

=
∑

π∈Ψ∧π∈good

Pr[M(R) = π] +
∑

π∈Ψ∧π∈bad

Pr[M(R) = π]

≤
∑

π∈Ψ∧π∈good

exp(ϵ)Pr[M(R+) = π] + δ

≤ exp(ϵ)Pr[M(R+) = π] + δ,

where π ∈ good and π ∈ bad denote the sets in which π is
(ln δ−1)−good and (ln δ−1)−bad, respectively.

As a result, the proposed algorithm preserves δ-
approximate ϵ-differential privacy for ϵ∈ (0, 1) and δ<1/e.
The theorem holds. �

Intuitively, when we increase the size of the noisy task
set T, we will improve the differential privacy level. In
fact, the intuition is accurate here. In the above proof, we
use pri(R) to denote the probability that a set containing
the element o is chosen at i-th step based on R. Here,
pri(R) will decrease with the increase of the noisy task
set T. This is because that the true tasks in Gk (k ∈ W)
decrease when |Gk| remains almost unchanged. Then, we
have

∑t−1
i=1 pri(R) ≤ − ln δ∗ where δ∗ is a small constant

and δ∗ ≤ δ. Based on this, we have Pr[M(R) ∈ Ψ] =∑
π∈Ψ Pr[M(R) = π] ≤ exp(ϵ)Pr[M(R+) = π] + δ∗ here.

Thus, we conclude that we can achieve the higher differen-
tial privacy level when given the larger noisy task set T.

Next, we analyze the approximation ratio of the pro-
posed algorithm. Before the i-th iteration, according to
|U|=x and |Ω|= |W|=y, we let yi=y − i+ 1 and xi= |Ri|
denote the numbers of the remaining sets and the remaining
elements. Moreover, let Li = maxG∈Ω |G ∩ Ri| denote the
largest number of intersecting elements covered by any set
in Ω. By a standard argument [9], any algorithm that always
picks the set of size Li/2 is an O(lnn)-approximation algo-
rithm. Thus, we have the following theorem.

Theorem 5. The proposed differentially private data collec-
tion algorithm can achieve an expected approximation
ratio of O(ln |U|+ ln(|W| ln(e/δ))

ϵ ).
Proof: At least one set in Ω contains Li elements. Ac-

cording to the exponential mechanism used in differential
privacy [9, 11], we get that the probability of selecting
a set covering fewer than Li − 3 ln(y/ϵ) elements is at
most 1/y2. In particular, for Li > 6 ln(y/ϵ), we always
select sets that cover at least Li/2 elements with prob-
ability at least 1− 1/y. Therefore, we use no more than
O(OPT ln |U|) sets where OPT means the optimal solution.
While Li ≤ 6 ln(y/ϵ), the number of remaining elements
Ri is at most OPT ×Li. Thus, any permutation consumes
at most an additional O(OPT ln y/ϵ′). By combining these
two cases, we get that the maximum number of selected
task sets is denoted as O(OPT (lnx + ln y/ϵ′)). That is, we
have |Φ|

OPT ≤ O(lnx+ln y
ϵ′ ). Based on this, we conclude that

the expected approximation ratio is O(lnx + (ln y)/ϵ′), i.e.,
O(ln |U|+ ln(|W| ln(e/δ))/ϵ). �

According to Theorem 5, we get that the expected ap-
proximation ratio of the data collection algorithm is denoted
as O(ln |R∪T| + ln(|W| ln(e/δ))

ϵ ). When we add more noisy
tasks into the task publishing process (i.e., increasing |T|),
the expected approximation ratio increases accordingly. In
order to balance the achieved differential privacy level and
the expected approximation ratio, we generally set the size
of the noisy task set T to that of the true task set R.
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TABLE 2
Simulation Settings.

Parameter name default range
number of consumers, |N| 200 100− 1000
differential privacy budget, ϵ 0.1 0.1− 0.5
number of data collection tasks, |R| 200 100− 600
parameter, λ 1 0.5− 3
parameter, η 0.2 0.1− 0.5

5 PERFORMANCE EVALUATION

In this section, we evaluate the performance of DPDT
with extensive simulations. We evaluate the data pricing
algorithm and the data collection algorithm in two parts.

5.1 Evaluation on Data Pricing Algorithm
We first introduce the methodology, and then present the

evaluation results including the privacy and revenues.
1) Methodology: Since the data pricing algorithm only

involves data consumers and platform, we omitted crowd
workers here. More specifically, we varied the number of
data consumers (i.e., bidders) from 100 to 1000. For each
bidder, we generated its true valuation, which was uni-
formly distributed over (0, 1]. Here, we first assumed that
the true valuations V are the same as the submitted bids
B. Then, we let one individual’s bid be different from its
true valuation to evaluate the expected utility of the bidder.
We also created the price set P which contains all generated
valuations and bids in (0, 1]. The cardinality of the price set
P is the number of different true valuations and bids values
in (0, 1], i.e., |V ∪ B|. In addition, we set the differential
privacy constant ϵ from 0.1 to 0.5. The default and range
for some parameters are displayed in Table 2.

Since our data pricing model involves the auction (ap-
proximate truthfulness) and privacy (non-numeric outputs)
simultaneously, there are no existing data trading algorithm-
s that can be applied to our model. We implemented the
optimal algorithm without privacy preservation for compar-
ison. In the optimal algorithm, the price in P which can
maximize the revenue of the platform is selected as the
single payment. In addition, in order to evaluate the impact
of differential privacy constant ϵ on the performance of the
proposed algorithm, we ran the algorithm with different ϵ
values. All the evaluation results under the same settings
are averaged over 1, 000 times.

To evaluate the performance of the differentially private
auction-based data pricing algorithm, we used four eval-
uation metrics: revenues, expected utility of one bidder,
probability distribution, and privacy leakage. The revenues
mean the total payment received from winning bidders. The
expected utility of one bidder indicates the achieved utility
when the bidder changes its bid, while other bidders remain
unchanged. As introduced earlier, when the outcome of the
probability distribution over prices only changes slightly if
any one bidder changes its submitted bid in a mechanism,
we say that this mechanism can guarantee good privacy.
Thus, we also used the probability distribution as an evalu-
ation metric. Finally, we define the privacy leakage.

Definition 5. [Privacy Leakage] For two input profiles D
and D′ which differ in only one bid in a mechanism,
we use S and S′ to denote the corresponding probability
distributions over a price set P. We let the average of

the absolute differences between the logarithmic prob-
abilities of the two distributions denote the privacy
leakage [42], that is,

1/|P|
∑

pj∈P

∣∣lnPr[Sj ]− lnPr[S′
j ]
∣∣. (26)

2) Evaluation Results: We display the evaluation results.
Evaluation of Revenues: We first evaluate the effects of

the number of consumers |N| and the differential privacy
constant ϵ on the expected revenues. The results are shown
in Fig. 2. We find that our algorithm achieves high revenues
which are very close to the optimal results. Moreover, the
smaller the constant ϵ is, the smaller the expected revenue
is. Also, a smaller ϵ value results in a wider distribution of
the expected revenue. The revenues rise continuously along
with the increase of the number of consumers.

Evaluation of Utility: We verify the approximate truth-
fulness of the data pricing algorithm by randomly picking a
bidder and allowing it to submit a bid that is different from
its true valuation. We observe that a bid higher than the
true valuation may make the expected utility of this bidder
negative, while a bid lower than the true valuation will yield
the expected utility close to 0, as shown in Fig. 3. Especially,
the larger ϵ is, the smaller the expected utility is.

Evaluation of Probability Distribution: We evaluate the
probability distribution for two bid profiles which differ in
only one bid. For a finer observation, we use the logarithmic
function ln(·) to amplify the probability values. The results
are presented in Fig. 4. We discover that the probability
distributions for the two profiles over the price set are
almost identical. This means a good differential privacy.

Evaluation of Privacy Leakage: Finally, we verify the
privacy leakage of the differentially private data pricing
algorithm. The results show that the maximum privacy
leakage value is less than 0.15 where ϵ=0.5, as displayed in
Fig. 5. We observe that the privacy leakage values rise along
with the increase of ϵ. These results are consistent with our
theoretical analysis.

5.2 Evaluation on Data Collection Algorithm
1) Methodology: First, we vary the cardinality of the set

R from 100 to 600 with the step as 100. Then, we set the
number of crowd workers (i.e., |W|) as 200. When generat-
ing noisy data collection tasks T, we set the cardinality of T
to be λ · |R| where λ is selected from {0.5, 1, 1.5, 2, 2.5, 3}.
For each crowd worker k ∈W, the cardinality of the subset
of U = R ∪ T that it claims to perform (i.e., Gk) is set as
|Gk| ≤ η|U|, in which η is selected in {0.1, 0.2, 0.3, 0.4, 0.5}.
Note that we will slightly control the generation of Gk, to
ensure that at least the total workers can cover the private
set R. This is reasonable because we can add more crowd
workers until R can be covered.

We design and implement a greedy algorithm without
privacy preservation for comparison. The greedy algorithm
always selects the set Gk, which covers the maximum num-
ber of the remaining tasks in R, i.e., maxGk∈Ω |Gk∩R|. Ω and
R are updated in time after Gk is selected. Moreover, we ex-
ecute our differentially private data collection algorithm 200
times under different privacy levels (i.e., ϵ∈{0.1, 0.3, 0.5}).
To evaluate the performance of the proposed algorithm,
we use the following metrics: the cardinality of solution
set, i.e., |Φ|, and the probability distribution. The small |Φ|
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value means the small recruitment cost. The probability
distribution for the private set R indicates the possibility
of each worker being selected in the beginning.

2) Evaluation Results: We exhibit the results as follows.
Evaluation of |Φ|: We first evaluate the performance of

|Φ|when we change the number of true data collection tasks
(i.e., |R|), as shown in Fig. 6. We find that the greedy al-
gorithm without privacy-preservation outputs the best and
error-free results under the same settings. This is because no
perturbation exists in the greedy algorithm. In our algorith-
m, the smaller the privacy level ϵ is, the worse the result of
|Φ| is. This is because we cannot achieve good performance
and satisfactory privacy simultaneously. Next, we evaluate
the effects of the parameters λ and η. The number of selected
workers (i.e., |Φ|) remains almost unchanged along with the
increase of λ, as shown in Fig. 7, while |Φ| decreases by
increasing the value of η, as shown in Fig. 8. In both Figs. 7
and 8, our algorithm with larger privacy level ϵ obtains
better performance. These observations are consistent with
our theoretical analysis.

Evaluation of Probability Distribution: At the beginning
of this algorithm, we compare the probability distributions
for two private sets R and R′ which differ in one element, as
shown in Fig. 9. The probabilities here are amplified by the
logarithmic function ln(·). In order to distinguish the am-
plified probability distributions, we make the probabilities
based on R′ plus a constant 0.6. We observe that the two
probability distributions have a similar trend, and the av-
erage logarithmic function values for R and R′ are−5.3141
and−5.3119, respectively, which are almost identical. These
simulations validate our theoretical analysis results.

6 RELATED WORK
In this paper, we focus on the problem of designing a

privacy-preserving crowd-sensed data trading mechanism.
So far, there has been much research on the crowd-sensed
data trading problem, such as [3, 7, 10, 12, 15, 23, 36, 37, 39,
41], and the mobile crowdsensing problem, such as [1, 13,
14, 17–20, 27–30, 32, 38, 40].

More specifically, Z. Zheng et al. in [39] propose a data
acquisition scheme for crowd-sensed data markets. J. Yu et
al. in [36] introduce a prospect theory model from behav-
ioral economics to understand the users’ realistic trading
behaviors, and then design an algorithm to help estimate
the users’ risk preference and dynamically provide trading
recommendations. X. Cao et al. in [3] propose an iterative
auction mechanism for the data trading problem, which can
guide multiple selfish data agents (including data owners,
collectors, and users) to trade data efficiently in terms of
social welfare. T. Jung et al. in [15] study the responsibilities
of the consumers in the dataset trading, and then design
the accountable protocols such that the book-keeping a-
bility and accountability against dishonest consumers are

achieved throughout the dataset transactions. After consid-
ering the multiple task initiators and participants in the
mobile crowdsensing, S. He et al. in [10] propose the concept
of “Walrasian Equilibrium,” based on which they find the
Pareto optimal task allocation for initiators.

However, the above works rarely consider the privacy-
preserving issues in the data trading market. In particular,
only a few works have involved the identity privacy of con-
sumers or data privacy in the data trading process. W. Gao
et al. in [7] integrate homomorphic encryption technique
into the auction-based big data trading to protect the bid
privacy. L. Zhang et al. in [37] design a privacy-preserving
crowdsourcing-based image dataset purchasing framework,
in which buyers can purchase the image datasets that meet
their quality requirements. C. Niu et al. in [23] adopt homo-
morphic encryption and identity-based signature to design
a truthful and privacy-preserving data trading mechanism.
Nevertheless, the homomorphic encryption will result in
a huge computation or communication overhead that is
unacceptable to data consumers. H. Li et al. in [16] study the
location-sharing privacy leakage problem in mobile social
networks, while H. To et al. in [28] design a differentially
private geocast-based framework to protect the location
privacy of workers in mobile crowdsensing. Also, the au-
thors in [17, 19, 30] propose some privacy-aware incentive
mechanisms for mobile crowdsensing. Moreover, H. Jin et
al. in [13] devise an incentive mechanism for privacy-aware
data aggregation, while Y. Li et al. in [18] design an efficient
mechanism for privacy-preserving truth discovery in mobile
crowdsensing systems.

Different from the aforesaid works, we design a privacy-
preserving crowd-sensed data trading mechanism including
data pricing and data collection. We consider the identity
privacy of consumers and data collection task privacy in
the data pricing and data collection, respectively. To this
end, we design a differentially private auction-based data
pricing algorithm, which achieves a good approximation
to the maximum revenue, preserves the identity privacy
of data consumers, and at the same time guarantees an
approximate-truthfulness during the process of bidding.
None of the existing privacy-preserving data trading mech-
anisms can achieve these goals simultaneously. We also
propose a differentially private data collection algorithm,
by modeling our problem as a special set cover problem
with differential privacy. Indeed, it is challenging to si-
multaneously achieve good performance and a satisfying
level of privacy. Our proposed data collection algorithm can
ensure a tight bound of the expected approximation ratio
and meanwhile obtain a good level of differential privacy.

Differential privacy [11, 22], as a method to limit the
disclosure of private information records in a statistical
dataset, was first introduced by Dwork et al. [4] in 2006,
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and it has attracted lots of attention and researches recently.
In general, the Laplace mechanism and exponential mecha-
nism are the two most commonly-used differential privacy
methods. The former involves adding random noise into the
numeric queries so that the answers conform to the Laplace
statistical distribution, while the latter is designed for the
non-numeric queries and it makes high-quality outputs
exponentially more likely at a rate that depends on the
sensitivity of the quality score and the privacy parameter.
Since our crowd-sensed data trading scenario involves a
non-numeric output, we adopted the exponential mecha-
nism to preserve the privacy in this paper. Furthermore,
our data pricing also deals with the tradeoff between the
revenue maximization and the approximate truthfulness
in the auction mechanism [22, 42]. Therefore, we combine
the exponential mechanism with the approximate-incentive
mechanism to devise a data pricing algorithm, instead of the
simple application of differential privacy.

7 CONCLUSION
In this paper, we propose a differentially private crowd-

sensed data trading mechanism (i.e., DPDT), which consists
of a data pricing algorithm and a data collection algorithm.
We take the first step to integrate the differential privacy (ex-
ponential mechanism) into the crowd-sensed data trading
market to preserve identity and task privacy. The data pric-
ing algorithm not only realizes 2ϵ-differential privacy and
(e2−1)ϵ-truthfulness, but also achieves an expected revenue
of at least opt−3 ln(e+ ϵ|P|opt)/ϵ, where opt is the optimal
revenue and P is the set of possible prices. The data collec-
tion algorithm obtains δ-approximate ϵ-differential privacy,
and meanwhile achieves an expected approximation ratio
of O(ln |U|+(ln(|W| ln(e/δ)))/ϵ), in which U and W are the
sets of total tasks and crowd workers, respectively. Exten-
sive simulations were conducted to verify the significant
performance of DPDT.
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