

Combinatorial Multi-Armed Bandit Based Unknown Worker Recruitment in Heterogeneous Crowdsensing

Guoju Gao^{1,2}, Jie Wu², Mingjun Xiao¹, Guoliang Chen¹ ¹ University of Science and Technology of China ² Temple University, USA

- Background & Motivation
- Model & Problem
- Solution
- Extension
- Simulation
- Conclusion

• Mobile Crowdsensing

- Crowd workers are coordinated to perform some sensing tasks over urban environments through their smartphones.

Typical Applications

- Collecting traffic information
- Monitoring noise level
- Measuring climate, etc

Motivation

- Task Assignment
 - Objectives: maximizing coverage, maximizing qualities, etc.
 - Constraints: fairness, deadline, acceptance ratio, budget, etc.
 - Models: offline/online, competition-based, probabilistic, etc.
- Worker Recruitment (our focus)
 - Deterministic: users' qualities are known in advance.
 - Non-deterministic: unknown qualities in prior (learning)
- Data Aggregation
 - Incentive mechanism, privacy-aware, etc.

Motivation

Unknown worker recruitment in heterogeneous crowdsensing

Motivation

Unknown workers (sensing quality)

Overlapping tasks between workers

Multiple options for each worker

Limited budget for the platform

- Background & Motivation
- Model & Problem
- Solution
- Extension
- Simulation
- Conclusion

Model

main procedures in the mobile crowdsensing

Model

the index of round: t

N crowd workers: $\{1, \dots, i, \dots, N\}$

M sensing tasks: $\{1, \dots, j, \dots, M\}$

 w_j : the weight of the j-th task, $\sum_{j=1}^{M} w_j = 1$

limited budget: B

Model

total L options for each worker:

- $p_i^l = \langle M_i^l, c_i^l \rangle$: the l-th $(1 \leq l \leq L)$ option for worker i
- $M_i^l \subseteq M$: the subset of tasks in the l-th option
- c_i^l : the corresponding cost
- $q_{i,j}^t$: the quality of worker i completing task j in round t
- q_i : the expectation on the quality of worker i

P: all options; $P^t \subset P$: the selected options in the round t

When task j is covered by multiple workers, let the maximum quality value denote the completion quality in this round:

$$u^{j}(\mathcal{P}^{t}) = \begin{cases} 0; & j \notin (\cup_{p_{i}^{l} \in \mathcal{P}^{t}} \mathcal{M}_{i}^{l}), \\ \max\{q_{i,j}^{t} \mid p_{i}^{l} \in \mathcal{P}^{t}\}; & j \in (\cup_{p_{i}^{l} \in \mathcal{P}^{t}} \mathcal{M}_{i}^{l}). \end{cases}$$

The total weighted completion quality of all tasks in round t:

$$u(\mathcal{P}^t) = \sum_{j \in \mathcal{M}} (w_j \cdot u^j(\mathcal{P}^t)).$$

Problem

Objective: determine $\{P^1, P^2, ..., P^t, ...\}$ in each round, such that the total expected weighted completion quality of all tasks is maximized under the budget constraint

$$\begin{aligned} Maximize : & \mathbb{E}\Big[\sum_{t\geq 1} u(\mathcal{P}^t)\Big]\\ Subject to : & \sum_{t\geq 1} \sum_{p_i^l\in\mathcal{P}^t} c_i^l \leq B\\ & |\mathcal{P}^t| = K \text{ for } \forall t>1\\ & \sum_{l=1}^L \mathbb{I}\{p_i^l\in\mathcal{P}^t\} \leq 1 \end{aligned}$$

- Background & Motivation
- Model & Problem
- Solution
- Extension
- Simulation
- Conclusion

Extended Multi-Armed Bandit (MAB) model:

maximize total weighted quality <---> maximize total rewards

worker's quality is learned multiple times in each round $\leftarrow \rightarrow$ reward is learned once

K workers are selected in a round $\leftarrow \rightarrow$ one bandit in each round

Solution

Upper Confidence Bound (UCB):

optimism in the face of uncertainty

shutterstock.com • 1363449020

$$p_i^l = \underset{p_{i'}^{l'} \in (\mathcal{P} \setminus \mathcal{P}^t)}{\operatorname{argmax}} \frac{u_{[\widehat{q}_i(t-1)]}(\mathcal{P}^t \cup \{p_{i'}^t\}) - u_{[\widehat{q}_i(t-1)]}(\mathcal{P}^t)}{c_{i'}^{l'}}$$

Solution

Theorem 1: The worst α -approximate regret of Alg. 1, denoted by $R_{\alpha}^{A1}(B)$, is bounded as $O(NLK^3\ln(B))$

N: number of workers L: number of options

K: number of selected workers in each round

B: total recruitment budget

- Background & Motivation
- Model & Problem
- Solution
- Extension
- Simulation
- Conclusion

The extended problem:

the cost of each worker is also unknown, so the platform needs to learn workers' quality and cost, simultaneously.

The extended solution:

1) UCB-based cost expression

2) greedy strategy: the most cost-effective option

Extension

Algorithm 2 The EUWR Algorithm

Require: $\mathcal{N}, \mathcal{M}, \mathcal{P} = \{p_i^l = \langle \mathcal{M}_i \rangle\}, \{w_j | j \in \mathcal{M}\}, B, K, f(\cdot)$ **Ensure:** $\mathcal{P}^t \subseteq \mathcal{P}$ for $\forall t \ge 1$, u_B and $\tau(B)$.

- 1: Initialization: t = 1, let $\mathcal{P}^1 = \{p_i^1 | i \in \mathcal{N}\}$ and obtain the quality $q_{i,j}^1$ and cost parameter ε_i^1 for $p_i^1 \in \mathcal{P}^1$.
- 2: Let $u_B = u(\mathcal{P}^1)$, $B_t = B \sum_{p_i^1 \in \mathcal{P}^1} \varepsilon_i^1 f(|\mathcal{M}_i^1|)$, $n_i(t) = 1$, $\overline{q}_i(t) = (\sum_{j \in \mathcal{M}_i^1} q_{i,j}^t) / |\mathcal{M}_i^1|$ and $\overline{\varepsilon}_i(t) = \varepsilon_i^1$ for $\forall i \in \mathcal{N}$;
- 3: while 1 do
- $t \leftarrow t+1, \ \mathcal{P}^t = \phi;$
- 5: while $|\mathcal{P}^t| < K \operatorname{do}$
 - Let $\mathcal{P}^{t'} = \{p_i^{l'} | \text{ for } \forall p_i^l \in \mathcal{P}^t\};$ $p_i^l = \underset{p_{i'}^{l'} \in (\mathcal{P} \setminus \mathcal{P}^{t'})}{\operatorname{argmax}} u_{[\widehat{r}_i^{\ l}(t-1)]}(\mathcal{P}^t \cup \{p_{i'}^{l'}\}) - u_{[\widehat{r}_i^{\ l}(t-1)]}(\mathcal{P}^t);$

Add p_i^l into \mathcal{P}^t , i.e., $\mathcal{P}^t = \mathcal{P}^t + \{p_i^l\}$; Each recruited worker *i* where $p_i^l \in \mathcal{P}^t$ obtains ε_i^t ;

if $\sum_{p_i^l \in \mathcal{P}^t} \varepsilon_i^t f(|\mathcal{M}_i^l|) \ge B_{t-1}$ then

return Terminate and output u_B and $\tau(B) = t$; Perform tasks and obtain the qualities $q_{i,j}^t$ for $\forall p_i^l \in \mathcal{P}^t$; Update $n_i^l(t)$, $n_i(t)$, $m_i(t)$, $\overline{q}_i(t)$, $\overline{\varepsilon}_i(t)$, and $\widehat{r}_i^l(t)$; $B_t = B_{t-1} - \sum_{p_i^l \in \mathcal{P}^t} \varepsilon_i^t f(|\mathcal{M}_i^l|)$, and $u_B = u_B + u(\mathcal{P}^t)$;

Theorem 2: The worst α -approximate regret of Alg. 2, denoted by $R_{\alpha}^{A2}(B)$, is bounded as $O(NLK^3\ln(NMB))$

N: number of workers L: number of optionsK: number of selected workers in each roundM: number of sensing tasks B: total budget

- Background & Motivation
- Model & Problem
- Solution
- Extension
- Simulation
- Conclusion

Trace: Roma-taxi dataset

the GPS coordinates of approximately 320 taxi cabs collected over 30 days in Rome, Italy.

Simulation settings

Parameters	Ranges	Default values
Number of tasks, M	[100,600]	300
Number of workers, N	[50,100]	50
Number of selected workers, K	[1/6*N,3/5*N]	N/3
Budget	[500,10^4]	1000

Compared algorithms :

- our algorithms (Alg. 1 & Alg. 2)
- α -optimal algorithm: quality/cost is known
- ε -first algorithm: ε ·B: randomness & (1- ε)B: best performance
- random algorithm: randomly selecting K workers in a round

Metrics:

total weighted quality; & total recruitment rounds

Results for Alg. 1: total weighted quality vs. budget

Results for Alg. 1: total weighted quality/rounds vs. K

Results for Alg. 1: total weighted quality vs. N/M

Results for Alg. 2: total weighted quality vs. budget

Results for Alg. 2: total weighted quality/rounds vs. K

Results for Alg. 2: total weighted quality vs. N/M

- Background & Motivation
- Model & Problem
- Solution
- Extension
- Simulation
- Conclusion

Conclusion

- 1) Alg. 1 almost catches up with the α -optimal algorithm,
 - and outperforms other compared algorithms, in any case.
- The total weighted quality achieved by Alg. 2 is larger than that of other compared algorithms in any case.

3) Due to two unknown parameters existing in the extended problem, the advantage of Alg. 2 over the compared algorithms is not as overwhelming as that of Alg. 1.

Thank you !

Q & A

gaoguoju@mail.ustc.edu.cn